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Lecture – 41 

Singular Value Decomposition (SVD) 

 

Hello, welcome to another module in this massive open online course on the principles 

of CDMA/ MIMO/ OFDM communication systems. So, far we have seen various 

schemes for MIMO transmission and reception we have seen the Zero Forcing Receiver, 

we have seen transmit Beam Forming Alamouti Code. Let us now look at a slightly 

different perspective or MIMO, which is first let us look up look at a unique 

decomposition of the MIMO wireless channel this is known as the SVD or the Singular 

Value Decomposition. 
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So, what we are going to look at starting in this module is what is known as the SVD, 

and this stands for the Singular Value Decomposition and what this is? This is very 

useful in Analysing Behaviour or Characterising the MIMO channel. And what is this? 

This is a decomposition the Singular Value Decomposition is a decomposition of the 

channel matrix, just like, we have the Eigen value decomposition this is another 

decomposition for the MIMO channel matrix, but Eigen value decomposition exist only 

for square matrices, but the Singular Value Decomposition is a general decomposition 



and exist also for non-square matrices and therefore, this can be used gain valuable 

insides in to the properties and behaviour of the appropriate underlying MIMO channel. 
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So, let us start with a brief illustration of the Singular Value Decomposition. So, let us 

consider the channel matrix H which is r x t channel matrix and this has r rows, this has r 

rows and t columns and this channel matrix H can be decomposed as  

H = U Σ 𝑉 𝐻 

 = [u̅1 u̅2 u̅𝑡 ] (
σ1 ⋯ 0
⋮ ⋱ ⋮

0 ⋯ σ𝑡

)

[
 
 
 
 v̅1 

𝐻

v̅2 
𝐻

v̅𝑡 
𝐻

]
 
 
 
 

 

And the different matrix is the properties of the different matrix are as follows. 
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So, I have  

u̅𝑖  
𝐻u̅𝑗  

𝐻 = 0  if  i ≠ j 

|| u̅𝑖 ||
2 = 1

 

This property is designated as stated as follows the columns u̅𝑖  are orthonormal. So, 

these columns are orthonormal. 

Now; that means, if I look at this matrix  

 𝑈 𝐻𝑈 = 

[
 
 
 
 u̅1 

𝐻

u̅2 
𝐻

u̅𝑡 
𝐻

]
 
 
 
 

[u̅1 u̅2 u̅𝑡 ] =  (
1 ⋯ 0
⋮ ⋱ ⋮

0 ⋯ 1
) = I3𝑥3 
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So, we have the first property that is 

 𝑈 𝐻𝑈 = I𝑡𝑥𝑡  

 Now, let us look at the matrix V, the matrix V also be similar property. So, 

 𝑉 𝐻𝑉 = 𝑉 𝑉 𝐻 = I𝑡𝑥𝑡  

and this matrix V therefore, this is also known as a Unitary matrix, this matrix V is 

known as a Unitary matrix. Now let us look at the matrix Σ, the matrix Σ which is the 

matrix of singular values, remember Σ is the diagonal matrix of singular values. 



(Refer Slide Time: 08:32) 

 

This matrix is such that all the singular values are greater than 0 that is they are non-

negative. So, singular values are non-negative and also importantly the singular values 

are arranged in decreasing order of magnitude. So, basically this says that, the singular 

values are arranged in decreasing order of magnitude. So, to summarise basically for the 

Singular Value Decomposition what are the properties of this Singular Value 

Decomposition you have to summarise them in a Hermitian as, see channel matrix r x t 

channel matrix H with r greater than or equal to t, can be decomposed as the product of 

team 3 matrices that is U Σ 𝑉 𝐻 , where U is a matrix is an r x t matrix which contains 

orthonormal columns such that,  𝑈 𝐻𝑈 = I𝑡𝑥𝑡; V is a Unitary matrix such that  𝑉 𝐻𝑉 

= 𝑉 𝑉 𝐻 = I𝑡𝑥𝑡  and Σ is a diagonal matrix of singular values which are non-negative 

and the singular values are arranged in decreasing order also an interesting property of 

the singular value is that the number of non-negative singular values denotes the rank of 

the matrix.  

So, number of non-zero singular values is equal to the rank of the matrix and also; let me 

clearly write this again here that, this Singular Value Decomposition is valid for r greater 

than or equal to t that is the singular matrix decomposition, that we have just described is 

valid for r is greater than or equals to t. 
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Let us look at some simple examples to understand these things, so, examples of SVD or 

the Singular Value Decomposition example. So, let us look at lets starts with a very 

simple example the first case, let us start with this simple example; H is equal to 2 x 1 

this is a basically, 2 x 1 MIMO channel. In fact, this is a Single Input Multiple Output as 

my or a SIMO channel basically, we have r = 2 and t = 1 correct. I can write this now as 

basically,  

H = [ 
1
1
 ] =  [ 

1
√2
1

√2

 ] [√2 ] [1 ] 

So, now look at this I have my matrix U which is 2 x 1 which obeys the property 

 𝑈 𝐻𝑈 = 𝐼. In fact, 1 which is the 1 x 1 identity I have the diagonal matrix of singular 

value Σ which is a 1 x 1 and root 2, σ1 = √2 which is greater than 0. Therefore, 

 𝑉 𝐻𝑉 = 𝑉 𝑉 𝐻 = I𝑡𝑥𝑡  that is 1 x 1, it is the 1 x 1 identity which is equal to which is 

equals to 1. So, we have looked at a simple case of a Singular Value Decomposition of a 

Single Input Multiple Output channel in which, both the coefficients are 1 I have said 

that this can be decomposed as the matrix U which is the 2 x 1 matrix containing the 

elements 
1

√2
,

1

√2
 naturally its column is orthonormal in this case, there is only 1 column. 



So, it is a normal that is normalised to unit norm the singular value is √2, which is 

greater than 0 times, the matrix V which is again the trivial matrix 1 for this scenario. So, 

that explains that is the simple example of Singular Value Decomposition. 
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Let us look at a slightly more interesting example; let us look at a slightly more 

interesting example of the Singular Value Decomposition. I have the channel matrix H 

which is  

H = [
1 0
0 √5

] 

   =  [
1 0
0 1

] [
1 0
0 √5

] [
1 0
0 1

] 

This is a Singular Value Decomposition this is my matrix U, this is my matrix Σ, this is 

my matrix  𝑉 𝐻 .  

It satisfies all the properties of Singular Value Decomposition except now look at this I 

have σ1 = 1,  σ2 =  √5 therefore, σ1 is less than σ2  and this condition violates the 

SVD condition or the SVD property because, remember the singular values have to 

arranged in descending order of magnitude or in other words, σ1 has to be greater than 



σ2  ; however, here σ1 is less than σ2   correct, all the other properties are satisfied that 

is I have U Hermitian U is identity because, U is the Identity matrix  𝑈 𝐻𝑈 =  𝑉 𝑉 𝐻 

is also identity the singular values are positive except the singular values are not 

arranged in the descending order therefore, we have to rectify this since this is not a valid 

SVD. So, what I want to say is that, this is not a valid SVD, then how do we decompose 

the Singular Value Decomposition. 
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I have H is equal to  

H = [
1 0
0 √5

] 

   =  [
0 1
1 0

] [0 √5
1 0

] 

   =  [
0 1
1 0

] [0 √5
1 0

] [
0 1
1 0

] 

This is the Flip Identity Matrix and you can see that flips the rows of H. The 2 singular 

values are σ1 = √5  ,  σ2 = 1 and I have σ1 >  σ2 therefore, yes this is a valid. So, 

this is valid Singular Value Decomposition.  



So, what we have done is, we have done a simple manipulation we have pre multiplied 

and post multiplied this matrix which is the Flip Identity Matrix that basically shuffles 

the singular value √5   and 1 to the correct order. So, that will now we σ1 >  σ2, both 

the singular values are positive and therefore, this is the valid Singular Value 

Decomposition. So, now let us look at a slightly more refined example, let us look at a 

third example of another Singular Value of Decomposition. 
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This is a slightly more advanced example of a Singular Value Decomposition that is; I 

have H is equal to  

H = [
1 2
1 −2

] 

   =  [
1 1
1 −1

] [
1 0
0 2

] 

   =  [
1 1

−1 1
] [0 2
1 0

] 

   =  [
1 1

−1 1
] [

2 0
0 1

] [
0 1
1 0

] 

And now, you can see I have now we can see I still do not satisfy my property of 

Singular Value Decomposition because, this u matrix does not contain orthonormal rows 



correct, orthonormal columns. So, for this purpose what I am going to do is I am going to 

normalise the columns of this U matrix. 
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So, I have so, far I have H is equal to  

 H  =  [
1 1

−1 1
] [

2 0
0 1

] [
0 1
1 0

] 

     =  [

1
√2

1
√2

− 1
√2

1
] [

2√2 0

0 √2
] [

0 1
1 0

] 

You can see I have well now you can see, I have the matrix U, I have the matrix sigma, I 

have the matrix U equals identity,  𝑈 𝐻𝑈 =  𝑉 𝑉 𝐻 = 𝐼, the 2 singular values are 

σ1 = 2√2  ,  σ2 = √2  and I have σ1 >  σ2 and both the singular values are greater 

than 0.  

And I have σ1 >  σ2  that is the 2 singular values are arranged in descending order 

therefore, once again this satisfies all the properties of the Singular Value Decomposition 

therefore, this is a valid Singular Value Decomposition. So, since what we have done in 

this module is, we have defined a new decomposition for the MIMO channel matrix that 

is a Singular Value Decomposition we have defined the various components or the 



various component matrices of the Singular Value Decomposition namely, the matrix is 

U sigma V and we have illustrated the Singular Value Decomposition using some simple 

examples and that comprehensively clarifies this concept of Singular Value 

Decomposition. Now the application of Singular Value Decomposition is something that 

we are going to look at in the subsequent module. Let us conclude this module here. 

Thank you very much. 


