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Lecture – 04 

Fading Channel Distribution 

 

Hello. Welcome to another module in this MOOC on Principles of CDMA, MIMO, and 

OFDM Wireless Communication Systems. 
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In the last module we had seen this Fading Channel Coefficient h which depends on the 

attenuations and the delays of the different paths and we said that this Fading Channel 

Coefficient has an important role to play in the wireless communication system. 
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Therefore, today we are going to develop models for this Fading Channel Coefficient. 

So, our Fading Channel Coefficient h which is given as  

h  =  ∑ 𝑎𝑖  𝐿−1
𝑖=0  𝑒−𝑗2𝜋𝑓𝑐 τ𝑖   

This is depends on that attenuations 𝑎𝑖  and the delays τ𝑖 . I am now going to expand this 

as  

    =  ∑ 𝑎𝑖  𝐿−1
𝑖=0 (cos2𝜋𝑓𝑐  τ𝑖  ) – j ∑ 𝑎𝑖  𝐿−1

𝑖=0 (sin2𝜋𝑓𝑐  τ𝑖  ) 
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I can write my Fading Channel Coefficient as h = x + jy.  

where x = ∑ 𝑎𝑖  𝐿−1
𝑖=0 (cos2𝜋𝑓𝑐  τ𝑖 )  

and y = - ∑ 𝑎𝑖  𝐿−1
𝑖=0 (sin2𝜋𝑓𝑐  τ𝑖 ) 

Now you can clearly see both these components x and y are the sums of a large number 

of random components involving the 𝑎𝑖’s which are the attenuations and the τ𝑖’s which 

are the delays. 

Depending on the wireless communication scenario these attenuations 𝑎𝑖  and these 

delays τ𝑖  are random in nature right and when you add a large number of these different 

random components what results from the central limit theorem is Gaussian random 

variables. Hence these x and y which are the sum of a large number of random 

components; so first we realized that since 𝑎𝑖  which are the attenuations and τ𝑖  which 

are the delays these are random in nature. Hence this x, y are the sum of a large number 

of random components. Hence by the central limit theorem x and y can be assumed to be 

Gaussian distributed random variables. 
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Hence, x y can be assumed to be Gaussian, this has to be Gaussian in nature. So, we are 

assuming x and y to be Gaussian random variables and just to briefly tell you about a 

Gaussian random variable; a Gaussian random variable has a PDF which looks as a bell 

shaped curve which is a probability density function that is a Gaussian random variable 

which is centred at the mean μ of the Gaussian random variable. So, x is a Gaussian 

random variable which is denoted as N that is with mean μ and variance σ² that is the 

spread of this Gaussian random variable; that is the width of this bell curve is related to 

which variance σ², the mean is μ and the PDF of this Gaussian random variable this is 

given as 

 FX(x) = 
1

√2πσ²
𝑒−

(𝑥−μ) 2

2σ²  

This is the PDF of this Gaussian random variable. 

Further, we are going to assume that this x and y are independent Gaussian random 

variables with mean 0 and normalized to variance 
1

2
  each. So, x is a Gaussian random 

variable which is distributed with mean 0 and variance 
1

2
. 
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As we had seen therefore, if I substitute in this expression μ = 0 and σ² = 
1

2
; we have  

FX(x) = 
1

√2πσ²
𝑒−

(𝑥−μ) 2

2σ²  

Substituting μ = 0 and σ² = 
1

2
,  

I have ,   FX(x) = 
1

√2π 1/2
𝑒

−
(𝑥) 2

2x 1/2 

            FX(x) = 
1

√π
𝑒−𝑥 2

 

This is the distribution of the real component x. Similarly also assuming y to be a 

Gaussian random variable which is distributed with mean 0 and variance 
1

2
; we have 

FY(y)  =  
1

√π
𝑒−𝑦 2
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Further assuming that this x and y are independent random variables what we are further 

going to assume that; assuming x, y are independent random variables. We have the Joint 

distribution that is FX,Y(x,y) , the Joint distribution is given as the product of the 

individual or the marginal distributions that is 

 FX,Y(x,y) = FX(x) FY(y)   

Therefore, the Joint distribution of the random variables is equal to the product of the 

marginal densities product of the marginal densities and therefore, we have  

FX,Y(x,y) = 
1

√π
𝑒−𝑥 2  

1

√π
𝑒−𝑦 2

 

                   =  
1

π
𝑒−(𝑥 2+ 𝑦 2) 

  

This is the Joint distribution of the x and y. So, what we have done is we have 

characterized the distribution that probability density function of the Fading Channel 

Coefficient in terms of the real and imaginary parts of the Fading Channel Coefficient. 

So, we have characterize it is distribution this is one way to characterize the distribution 

of the Fading Channel Coefficient. 



However a more interesting and a more useful way helpful way to characterize the 

distribution of the Fading Channel Coefficient h is to characterize it rather in terms of the 

real and imaginary components is to characterize it in terms of the magnitude and phase 

of the fading channel caution that uses an idea of the power of the received signal. 
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And the phase of the received signal therefore, what we are going to do is we are going 

to now convert h which we have presented as  

h = x + j y = a 𝑒𝑗ø  

where a, is the amplitude of the Fading Channel Coefficient and it is equal to  

a = √(𝑥 2 + 𝑦 2 and ø = tan
-1

 (
𝑦

𝑥
)  

Also we can write this the other way around as  

x = a cos ø  and y = a sin ø   

Now, what we want to do we are given the Joint distribution in terms of x and y. So, we 

have the Joint distribution in terms of the real and imaginary components x, y; what we 

would like to do is we would like to derive the Joint distribution in terms of the 

amplitude and phase factors A, ø and this can be done as follows. 
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What we have is the following thing; we have  

FA,ø (a,ø) =  
1

π
𝑒−(𝑥 2+ 𝑦 2) | JXY | 

But now you can see that 𝑥 2 +  𝑦 2 =  𝑎 2; therefore, I can write this Joint distribution 

as 

FA,ø (a,ø) =  
1

π
𝑒−𝑎 2 | JXY | 

 This Jacobian of X Y can be determined as follows : 

JXY = [ 

∂x

∂a

∂y

∂a
∂x

∂ø

∂y

∂ø

 ]  

as we have x = a cos ø  and y = a sin ø   

 and therefore, JXY = [ 
cos ø 𝑠𝑖𝑛ø

−𝑎𝑠𝑖𝑛ø 𝑎𝑐𝑜𝑠ø
 ] So, this is the Jacobian matrix the 

determinant of this equals  

| JXY | = 𝑎(𝑐𝑜𝑠ø)
2
  + 𝑎(𝑠𝑖𝑛ø)

2
 = a  
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Therefore, we have the determinant of this Jacobian matrix is simply equal to a; and 

therefore, the Joint distribution with respect to the magnitude and phase components 

equals  

FA,ø (a,ø) =  
1

π
𝑒−𝑎 2 | JXY | = 

1

π
𝑒−𝑎 2 . 𝑎 

FA,ø (a,ø) =  
𝑎

π
𝑒−𝑎 2 

 

This is the Joint distribution of the channel coefficient in terms of the magnitude and 

phase component. This is the distribution of h or the Joint distribution of A and ø which 

are the amplitude and phase of the Fading Channel Coefficient h because remember we 

have 

 h  = a 𝑒𝑗ø  

which means this is the phase and A is the amplitude of this Fading Channel Coefficient 

and therefore, we have the Joint distribution in terms of the magnitude and phase as  

FA,ø (a,ø) =  
𝑎

π
𝑒−𝑎 2 

 



Now what we would like to do at this point is let us try to derive the marginal 

distributions from the Joint distribution with respect to this magnitude and phase; let us 

derive the marginal distributions that is let us drive the individual distribution of the 

amplitude A and the phase that is ø. 
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The distribution of the amplitude that is FA (a); is I have to take the Joint distribution 

FA,ø (a,ø) and integrate it with respect to the phase that is between and the phase the 

limit of the phase is between – π and π. 

FA (a) = ∫  
π

– π
 FA,ø (a,ø) dø 

            = ∫  
π

– π

𝑎

π
𝑒−𝑎 2  dø  

            = 
𝑎

π
𝑒−𝑎 2 ∫  

π

– π
 dø 

            = 
𝑎

π
𝑒−𝑎 2 2 π 

           = 2a 𝑒−𝑎 2 
 



this is known as Rayleigh fading and this know as the Rayleigh Distribution. 
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Hence, this channel coefficient h is also known as a Rayleigh Fading Channel. So, it is 

distribution is given as  

FA (a) = 2a 𝑒−𝑎 2  

If you can look at this region this region which is close to 0 which corresponds to a; 

approximately equal to 0 that is where the channel coefficient the gain of the channel 

coefficient is very small it is close to 0 this is termed as the deep fade. 

So, this region where the Fading Channel Coefficient is very small that is the probability 

this region and the corresponding probability. So, this region corresponds to the deep 

fade regions where the Fading Channel Coefficient the magnitude of the Fading Channel 

Coefficient is very small and the corresponding probability is termed as the probability 

of deep fade. So, the probability that a; is close to 0 which means the probability density 

integrated over this region is basically termed as the probability of the deep fade. 

Remember we had earlier talked about the deep fade as an event where the channel takes 

a dips to take a very small that is where the different multi path components cancel out 

each, almost cancel out each other resulting in a very small gain or resulting in a very 

high attenuation of the received signal that corresponds to the deep fade event and what 



we are saying here is that basically this region where the channel coefficient. The 

magnitude of the channel coefficient is very close to 0 correspond to the deep fade event 

and the corresponding probability is the probability of the deep fade.  

So, we will stop this module here and we will continue with the next module. 

Thank you very much. 


