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Welcome to the this lecture, on this course on 3 G and 4 G wireless communications. Let me 

start with a brief recap of what we did in the previous lecture. In the previous lecture, we 

completed our analysis of wireless channel characterization, and we began comparing the 

performance of a wireless communication system with that, of a wire line communication 

system, or with that of a wired communication system, and we said the most important 

technique, or the most important characteristic, use to compare the performance of these two 

systems, is the bit error rate characteristic, what is denoted as B E R , which is simply if I 

transmit a stream of bit, on an average what is the probability, that the bits are detected in 

error. 
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So we said a wire line communication system, can be represented as y equals x plus n. Since 

there is no multi path interference, like a wireless communication system, the coefficient is 

one. So whatever is input is received at the output y, in the presence of additive white 

Gaussian noise. We said the noise is of variance sigma n square, which is also the noise 

power. We said the signal is of power p; hence, the signal to noise ratio is p over sigma n 

square. 
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And then we also derived the expression for the bit error rate, of such a communication 

system. We said the bit error rate, is given as the q function of p over sigma n square, which 

is also q of square root of S N R. Since p over sigma n square, is also S N R. The bit error rate 

of a wired communication system, is q of square root of p over sigma n square, which is q of 

square root of S N R.  
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We also did an example, in which we computed at 10 dB. What is the probability of bit error, 

of a wire line, or a wired communication system. We said 10 dB SNR, is equal to S N R of 

10. And hence the bit error rate, is q of square root of ten we said there is no closed form 

expression from this, but this can be evaluated using tables, and the value is 7.82 into 10 

power minus 4. We also looked at a plot of the bit error rate versus S N R, and at around, at 

10 dB the bit error rate, is we said is 7.82 into 10 power minus 4. Now let me continue with 

that discussion, let me give you one more example, and then we will proceed on to the bit 

error rate analysis of a wireless channel.  
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So, let me give start with one more example. Another example of performance of a wired 

communication system. So this example, we want to compute. So the problem is, compute the 

S N R dB, the S N R in dB required for, a probability of bit error; that is, bit error rate, equal 

to 10 power minus 6. So what is the S N R required, to achieve a bit error rate of 10 to the 

power of minus 6, in this wired communication system, and we can solve this problem 

similarly, using the approach that we followed previously, which is if the bit error rate is 10 

power minus 6, the bit error rate, is given as a function of S N R as q of square root of S N R. 

Which means the S N R, the square root of S N R required equals q inverse of 10 power 

minus 6 which means if I square both sides, the S N R required is simply q inverse of 10 

power minus 6 square; that is q inverse of 10 power minus 6 square. Now again there is no 

close form expression to compute this, so we have to rely on tables. The value of this turns 

out to be S N R q inverse of 10 power minus 6 is 4.7534. 
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Hence the S N R is the square of 4.7534, is 22.595, and the S N R in dB is nothing but, 10 log 

10 of 22.595, S N R in dB equals 10 log 10 times 22.595, and this value is 13.6 dB. So let me 

summarize what we did, we wanted to compute, the S N R in dB required for a probability of 

bit error rate of 10 power 6, we said that S N R in dB is given as 13.6 dB. So the S N R dB is 

13.6 dB, for bit error rate, equals 10 power minus 6, and it is important to remember that this 

is for a wired communication channel, or a communication channel, in which there is a wire 

between a transmitter and the receiver. This is for a wired communication, channel. 
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Again let me go back to the p d f plot, and show you how, where the point it corresponds to in 

the plot. This point is 10 power minus 6 bit error rate, and that if I compute the S N R 

corresponding to that plot; that is 13.6 dB. 
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So the S N R corresponding to 10 power minus 6 bit error rate is 13.6 dB. So that essentially 

gives you two examples, and with that we complete our analysis, of the bit error rate of a 

wired, or wire line communication system. 
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Now let us procedure on to derive the bit error rate of a wireless communication system, so 

that for the same S N R, we can compare the performance of the wired, and the wireless 

communication system, and see how each of the systems performs, in terms of bit error rate, 

at a given S N R. So let me start with, what am I going to start with. I am going to start with 

bit error rate analysis of a wireless communication. I am going to start with the bit error rate 

analysis of a wireless communication system. And we said previously, that a wireless 

communication system model, can be represented as follows; that is y equals h x plus n. We 

said x is the transmitted symbol, n is the noise at the receiver. In addition, there is a fading 

coefficient, that results from the multi path propagation wireless environment, or the multi 

path interference at the receiver ,arising from the multi path components present in the 

wireless communication channel. So the difference between the wire line, and the wireless 

communication channel, essentially is the presence of this fading coefficient h, in the wireless 

communication system.  

 

We earlier saw that this h can be represented as; a e power j phi, where a is the magnitude. It 

is Rayleigh distributed, a is the Rayleigh distributed magnitude, and phi is the phase, which is 

uniformly distributed in minus pi or pi, minus pi and pi. For the purpose of the bit error rate 

analysis however, we will need only information of the magnitude, because it dependents, the 

gain dependents only on the magnitude, will not aid information, about the phase factor phi. 
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So in a wireless, let us say the power in the signal is p; that is the power in signal, the power 

of the signal, is similar as earlier equals p. Remember we want to compare the performance of 



wired, and wireless communications, for the same transmit power. And the noise power 

equals sigma n square, write this as power. So power of the signal equals p, power noise 

power equals sigma n square.  

 

And now remember that the channel equals is given as y equals h x plus n. So what is 

transmitted, is multiplied by a fading coefficient, and received in the presence of noise. So the 

received power in a wireless communication system, is simply the transmitted power p, times 

h square; that is magnitude of h square, where h is the fading coefficient, and this we know, is 

simply p times a square. The received power is transmit power, times the gain of the channel. 

The gain of the channel is magnitude h square, which is simply p times a square. Remember 

we said h is given as e j phi, the magnitude of h is a; hence, the received power is p times a 

square. Hence the received S N R is P a square divided by sigma n square. I can also write 

this as a square times p over sigma n square. So I am writing this received S N R as a square 

times p over sigma n square. Now this is similar to A W channel. This is similar to the wired 

communication channel, remember. 
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Let us do a comparison in wired, channel we said S N R equals p over sigma n square. In a 

wireless channels, S N R equals a square times p over sigma n square. Now everything is 

same, between wired and wireless, in terms of the system model, except the S N R in the 

wired channel, is now multiplied by a gain factor which is a square. So the bit error rate here, 

we said is q times square root of p over sigma n squared, which means the S N R here, will be 



q times square root of a squared p over sigma n squared. See the S N R from a wired to a 

wireless channel, is essentially. The difference is this S N R p over sigma n squared, is scaled 

by a square. Hence if this bit error rate is q square root of p over sigma n squared, this bit 

error rate is q square root of a squared p over sigma n squared. And hence the bit error rate is 

simply. Remember we defined the q function, as the cumulative distribution function of the 

standard Gaussian random variable. So this bit error rate of the wireless channel, is simply, 

square root of integral square root of a square p over sigma n square to infinity 1 over square 

root of 2 pi e power minus x square by 2 times d of x.  

 

So we derived an expression, for the bit error rate of a wireless communication system, as a 

function of a, which is q times square root of a square p over sigma n squared. Now q 

function, is the cumulative distribution function, of the Gaussian random standard, Gaussian 

random variable, so the bit error rate is simply q, which is integral square root of a square p 

over sigma n squared to infinity 1 over square root of 2 pi e power minus x square by 2 over, 

e power minus x square over 2 d of x. However observe that this a here, is a random quantity. 

We said earlier that a which is the gain of the Rayleigh fading channel, depends upon the 

random multipath components; hence, it is a random quantity. In fact we said this random 

variable has a Rayleigh distribution, which means this bit error rate, is going to be a function 

of this random gain of the Rayleigh fading channel. Hence to get the average performance of 

this Rayleigh fading channel now, I have to take this bit error rate, which is the function of 

this random quantity, and average it over the distribution of that random variable. 
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For instance for any function of a random variable, so let us say I have function g, which is a 

function of the random variable a, the average of g is computed as g of a times f of a of a 

integrated between the limits. Since the limits of a are zero to infinity. Remember the 

amplitude has a limit from zero to infinity, this is g of a multiplied by the probability density 

function f of a times d a integrated between the limits zero to infinity. This is the average, of g 

of a. Hence, if you look at this bit error rate, I have to similarly, average this over the 

distribution, of the random fading coefficient gain a, to get the average bit error rate of a 

wireless communication system, and that is what I am going to do next. 
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I want to compute the average bit error rate of a wireless system, which is the bit error rate of 

a wireless equals. Remember the bit error rate as a function of a, is simply q times square root 

of a p over sigma n square. This is the g of a, times f of a ,which is the distribution of the 

fading coefficient, which as we know is 2 a e power minus a square, integrated between zero 

to infinity d of a. So what am I saying, I am saying that the bit error rate of a wireless system 

is q of square root of a p over sigma n square, which is a function of a. I am multiplying this 

by the distribution of a, which is 2 a e power minus a square, and averaging this over zero to 

infinity, this gives me the average bit error rate.  

 

So this let me write this, as the average B E R, which is the B E R. The average B E R , 

because remember b bit error rate, is not an instantaneous statistic, but it is an average 

quantity; that is if you look across bits, large blocks of bits, at different instantiations of the 

wireless channel, and compute the average bit error rate; that is the correct bit error rate for 

this system. So now we will do some rigorous set of rigorous mathematical manipulations, to 

compute the average bit error rate. Remember we want to simplify this expression further. 

Unfortunately, it involves some lengthy elaborate mathematic, it is a lengthy mathematical 

procedure, but we have to go through that procedure, to derive the bit error rate, of the 

wireless system. So I urge you all to be attentive, and slightly patient, while we derive the 

expression of the bit error rate, of the wireless communication system.  
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So now what I am going to start with, is I am going to start with this expression, which is zero 

to infinity Q of square root of a square p over sigma n square into 2 a e power minus a square 



d of a. Remember this is the average bit error rate, this is the bit error rate of a wireless 

communication system. Now remember the Q function is nothing but, the C D F of the 

standard Gaussian random variable, so I am going to write the expression for that. So this 

now becomes two integrals; one integral for the averaging over the a. The other integral for 

the C D F of the Q function, because Q function as a function of a is given, as integral square 

root of, let me denote this p over sigma n square by the constant mu.  

 

This is a constant p over sigma n square, so let me denote this by mu. The Q function 

becomes sigma integral root square root of the a square mu to infinity of 1 over 2 pi square 

root of 2 pi e power minus x square by 2 d of x and there is a 2 a e power minus a square d a 

for the outer integral into 2 a e power minus a square d a. So I am writing this as the average 

of the Q function, over the distribution, probability density function of a which is 2 a e power 

minus a square, but the Q function itself, is described in terms of an integral; that is if p over 

sigma n squared is denoted by mu then this Q of square root of a square mu is nothing but, 

integral square root of a square mu to infinity 1 over 2 pi e power minus x square by 2, as you 

can see this is nothing but, this is the standard normal this is the standard normal random 

variable, so this is the integral, this is the cumulative distribution function, which is nothing 

but, the integral of the standard normal variable. And now I will make a simplifying 

substitution, I will substitute x by a square root of mu. Remember square root of a square mu 

is a square root of mu equals u, which means d x equals a square root of mu times d u. So x 

by a square root of mu equals u d x equals a square root of mu times d u, which means I can 

write this probability, this bit error rate. 
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So, I can write this bit error rate now, as follows; that is integral still, the outer integral is zero 

to infinity; however, for x, I am substituting x by a square root of mu, which means the lower 

limit here becomes a square root of mu divided by a square root of mu which is one. The 

upper limit becomes a square root of mu or infinity divided by a square root of mu which is 

infinity. 
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Hence this integral becomes 1 to infinity 2 a e power minus a square times a square root of 

mu times e power minus x square. Now x as you seen is a square root of mu times u which 

means x square is a square mu u square, so that is what I am going to write over here, which 

is minus mu a square u square over 2 times d u times d a. So now I have simplified the bit 

error rate, as this double integral which is zero to infinity, one to infinity 2 a e power minus a 

square a square root of mu e power minus mu a square u square by 2 d u d a and divided by 

there is a factor of 1 over square root of 2 pi. Now I am going to use a trick, that we often use 

in electrical engineering very frequently, especially in the context of Fourier transforms and 

other such manipulations which is. I will now flip the order of these two integrals.  

 

Remember the first integral, the inner integral, is here is with respect to u, and the outer 

integral is with respect to a. I will flip the order of these two integrals, the first integral with 

respect to a, and then integrate with respect to mu, and I can write this, in that context as 

follows, which is essentially. I can write this as square root of mu, the mu is a constant, so 

that comes out the square root of mu. I will first now, write flip the order of the integral, so 

which means the u integral comes out. I will write that as one to infinity. The a integral comes 

in, which means I will write this as zero to infinity, and this 2 a times a becomes 2 a square. I 

will pull this square factor of square root of pi n to write this as 2 a square over square root of 

2 pi into e power minus a square over two times 2 plus mu u square into d a, because this is 

the inner integral, this is with respect to d a, and this is the outer integral. So this is the inner 

integral, and this is the outer integral with respect to mu u. So if the integral, because of the 



flip that we did, the inner integral is now with respect to a, and the outer integral with respect 

to mu. Now let me first simplify this inner integral which is, integral zero to infinity 2 a 

square by square root of 2 pi e power minus a square over 2 times two plus mu u square. 
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Let me simplify this inner integral, let me use the following relation for that, let me write the 

relation down over here. Now consider this integral, which is essentially 2 y square over 

square root of 2 pi sigma square e power minus y square by 2 sigma square between the limits 

zero to infinity. So consider this integral zero to infinity 2 y square over square root of 2 pi 

sigma square e power minus y square to pi 2 sigma square. As you are familiar, or the 

audience is familiar with random processes, you will immediately recognize this, as the 

variance of a zero mean Gaussian random variable, with parameter sigma square, and the 

variance of this is nothing, but sigma square.  

 

So integral zero to infinity 2 y square by root 2 pi sigma square e power minus y square by 2 

sigma square d y is nothing, but sigma square, which means if I have now multiplied both 

sides by sigma I will get zero to infinity 2 y square by square root of 2 pi, because of 

multiplication by sigma the square root of sigma square, which is sigma cancels and we get e 

power minus y square by 2 sigma square equals. Now multiplying the right hand side with 

sigma, I get sigma cubed. So this integral 2 y square over square root of 2 pi e power minus y 

square by 2 sigma square into d y is sigma cube. Now let me write down what I had from the 



previous page. The integrali wanted to evaluate the inner integral is zero to infinity 2 a square 

by square root of 2 pi into e power minus a square by 2 into 2 plus mu u square times d a.  

 

So the inner integral that I wanted to evaluate, is nothing but, zero to infinity 2 a square by 

square root of 2 pie power minus a square by 2 to plus mu u square into d a. Now if you do a 

direct comparison, you can see that a here, is equivalent to y, and the sigma here, one over 

sigma square equals 2 plus mu u square, which means sigma is essentially 1 over 2 plus mu u 

square, square root, which means sigma cube, is nothing but, the value of this integral is 

sigma cube, this is equal to sigma cube, which is equal to 1 over 2 plus mu u square, to the 

power of 3 over 2.  

 

So, we said this inner integral, which we have simplified using this relation here on the right, 

is simply sigma cube, but sigma is nothing, but 1 over 2 plus mu u square to the power of 

half. Hence sigma cube is 1 over 2 plus mu u square to the power of 3 by 2, and that is the 

value of this inner integral. Now going back to our original integral, I can now, this inner 

integral has now been evaluated. 
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Now I will evaluate the outer integral, and this outer integral can now be written as, bit error 

rate equals square root of mu times one to infinity integral one to infinity 1 over 2 plus mu u 

square to the power of 3 over 2 times d u. So I am writing the outer integral now, as square 

root of mu integral one to infinity 1 over 2 plus mu u square to the power of 3 by 2. Now I 

will evaluate this integral and derive the final expression for the bit error rate of the wireless 

communication system.  

 

So I will make another substitution now, let me call this as t equals 2 by mu square root tan 

theta. I make the substitution t equals root, or let me make that substitution. sorry Not t, but 

rather u equals square root of over mu tan theta, which means d u equals square root of 2 over 

mu secant square theta d theta. So I am making the substitution u equal to square root of 2 

over mu tan theta d u is square root of 2 over mu secant square theta d theta. Which means 2 

plus mu u square is nothing but, 2 plus mu times 2 over mu tan square theta, which is 

essentially 2 into 1 plus tan square theta, which is also two times secant square theta. So this 2 

plus mu u square is nothing, but two times secant square theta. 
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Also the lower limit can be simplified as follows, when u equals 1, for the lower limit root 2 

by mu of tan theta equals 1, which means theta equals tan inverse square root of mu over 2. 

So theta equals tan inverse square root of mu over 2. Also the upper limit u equals infinity, 

which means 2 over square root of mu tan theta equals infinity, which means theta equals tan 

inverse of infinity equals pi by 2. Hence now I can simplify this integral as integral square 

root of mu, the lower limit becomes tan inverse square root of mu over 2. Upper limit 

becomes pi by 2 into square root 2 over mu secant square theta d theta divided by 2 secant 

square theta to the power of 3 by 2. 



(Refer Slide Time: 34:52) 

 
(Refer Slide Time: 35:46) 

 
 

So this integral, you can please verify. It can be written as the bit error rate, becomes square 

root of mu integral tan inverse square root of mu over 2 to pi by 2 1 over 2 secant square theta 

to the power of 3 by 2 into root 2 over mu secant square theta d theta. So this bit error rate 

integral, is square root of mu tan inverse square root of mu over 2 to pi by 2 1 over 2 secant 

square theta to the power 3 over 3 by 2 into square root 2 by mu secant square theta d theta. 

And this can be simplified as follows for instance. You can see here that the square root of 

mu here, cancels with the square root of mu in the dominator. There is a square root of 2 in 

the numerator, and there is a 2 to the power of 3 by 2 in the dominator, which will give a 

factor of half.  
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So this integral can be simplified readily, as integral tan inverse square root of mu over 2 to pi 

by 2 secant square theta by secant cube theta d theta, which is let me write it down. Which is 

secant square theta by secant cube theta d theta. Now secant square theta, the secant cube 

theta is nothing but, 1 over secant theta, which is cos theta. So this can be finally, simplified 

as integral tan inverse mu over 2 to pi by 2 cosine theta d theta, and we know what cosine 

integral cosine theta is, integral cosine theta is simply sin theta.  

 

So this integral simplifies very beautifully, and this is now half sin theta, between the limits 

tan inverse mu over 2 to pi by 2. And look at this, this integral has simplified so beautifully. 

We started with such a complicated expression, that involves these, rather bulky looking 

integral, expressions of double integral, and the result is simply so elegant, it is half sin theta, 

between the limits tan inverse square root of mu over 2 to pi by 2. 
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Let me remind you mu is nothing but, the S N R p over sigma n square, mu is nothing but, p 

over sigma n square. Now this is nothing, but half sin of pi by 2, which is 1 minus sin of tan 

inverse square root of mu over 2. Now this can be simplified as, remember sin of theta is tan 

square of theta divided by 1 plus tan square of theta square root which means sin of tan 

inverse square root of mu over 2, can be written as, tan square of tan inverse square root of 

mu over 2 divided by 1 plus tan square of tan inverse square root of mu over 2 whole under 

root, and this is now simply, we can say tan of tan inverse is simply tan of tan inverse x, is 

simply x. So tan of tan inverse square root of mu over 2 is simply square root of mu over 2, 



the square is mu over 2. So this is simply square root of mu over 2 divided by 1 plus mu over 

2, which is also essentially mu over 2 plus mu. 
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So the final expression, after this derivation process, is bit error rate of a wireless system. The 

bit error rate of a wireless system, is nothing, but half times 1 minus square root of mu over 2 

plus mu, which is nothing but, half times 1 minus S N R divided by 2 plus S N R square root. 

So the bit error rate of a wireless system, is half 1 minus S N R divided by 1 minus square 

root of S N R divided by 2 plus S N R. Let me write the performance expressions of a wired, 

and wire line system now for comparison; wired channel, wireless channel. The channel in a 



wired channel equals y equals x plus n; that is y equals x plus n. The bit error rate, is q times 

square root of S N R and a wireless channel is y equals h x plus n, and the bit error rate equals 

half one minus square root of S N R over two plus S N R, this is what we have derived so far. 
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Now let me simplify this bit error rate expression further, a little further, to give you more 

intuitive feel, for how the bit error rate, of this wireless communication system behaves, so let 

me simplify this expression a little further. This bit error rate is half one minus S N R over 2 

plus S N R square root. This can also be written as half times one minus, I will divide this by 

S N R, so that will give me 1 over square root of 1 plus 2 over S N R, which is also half. Now 

for high S N R 2 over S N R is a small value, and we know that 1 over square root of 1 plus x 

for small x is approximately 1 minus half x. So this is nothing, but 1 minus 1 minus half into 

2 over S N R, this is sorry I have to write an approximate sign here, this is approximately 

equal to half into 1 minus 1 minus half into 2 over S N R, and that is simply equal to 1 over 2 

S N R. 
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So the bit error rate of a wireless channel. Now we have a great formula for the bit error rate, 

of a wireless channel bit error rate of a wireless channel at high S N R is simply 1 over 2 S N 

R. So the bit error rate is approximately 1 over 2 S N R. Now let us to compare the 

performance of the wired and wire line communication systems, let us repeat the examples 

over the wired communication systems, in the context of wireless communication system. 

One of the examples we did was, to compute, for instance we compute the probability of bit 

error rate at, let us say a certain S N R. Now let us start with example one, for wireless 

communication system. For, this is for a wireless communication system. The problem is as 

follows. Compute the bit error rate of a wireless communication system at S N R equals 20 d 



B. So what are we trying to do, we are trying to compute the bit error rate of a wireless 

communication system, at an S N R of 20 d B. Now remember S N R of S N R in dB is 10 

log 10 of S N R, so 20 d B. Let us compute the S N R value corresponding to 20 dB so 20 dB 

equals 10 log 10 of S N R which means S N R log 10 of S N R equals to, which means S N R 

equals 10 square which is 100, 20 dB in dB S N R corresponds to 10 square, which is equal to 

100. 
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And the probability of bit error as we saw, is the bit error rate, for a wireless channel, is 

simply 1 over 2 S N R, and the S N R value is 100, so this bit error rate is 1 over 2 times 100, 

which is equal to 0.5 into 10 power minus 3. Now we computed the bit error rate in a wireless 

system, bit error rate of wireless, let me specify this clearly, bit error rate of wireless, at S N R 

of 100 or 20 d B, and that probability of bit error rate is 0.5 into 10 power minus 3. Now 

compare this with that of a wire line communication system, compare with wire wired, or 

wire line communication system. Remember at S N R of 10 dB, the bit error rate in a wired 

communication system, was 7.8 into 10 power minus 4. So the bit error rate of a wired 

communication system, at S N R equals 10 dB was 7.8 into 10 power minus 4.  

 

Now compare that with the performance of a wireless communication system, at S N R 20 d 

B, which is 10 dB higher than 10 d B, which means it is 10 times the S N R of a wired 

system; the probability of bit error is only 0.5 into 10 power minus 3or 5.5 into 10 power 

minus 3 is also 5 into 10 power minus 4. So I am using 10 times more power than a wired 



communication system, but my bit error rate, is still higher compared to that of a wired or a 

wire line communication system, and that is precisely the problem, with a wireless 

communication system. Wireless communication system, has very high bit error rate, we said. 

Let me repeat that again for 10 dB S N R in a wired system, the bit error rate is 7.8 into 10 

power minus 4 in a wireless communication system. For 20 dB S N R, which is 10 dB more 

than that of the wire line system; that is 10 times the S N R of the wired system. My bit error 

rate is 5 into 10 power minus 4, which is still which is which is not larger, but which is 

comparable to the bit error rate of a wire line communication system.  

 

So I am using 10 times the higher power, but I am still getting approximately the same B E R 

, which means a wireless communication system has a very high bit error rate, and that is 

precisely because of the multipath interference nature of the wireless communication system, 

that results in destructive interference, at the receiver, which causes very poor signal 

reception; that is why the bit error rate goes higher. So let me give you now an even more 

precise example. Let us try to compute the S N R required, to achieve a bit error rate of 10 

power minus 6 which is more or less, a kind of standard figure in communication systems. So 

let us do example, to which is essentially, to compute the S N R required for a bit error rate of 

10 power minus 6 in a wireless communication system. Remember in a wired communication 

system, that S N R is 13.6 dB. Similarly, we want to compute the S N R in a wireless 

communication system, for a bit error rate of 10 power minus 6. 
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So the problem is as follows, compute S N R of, an S N R in dB of a wireless communication 

system for a probability of bit error equal to 10 power minus 6, what is the S N R required in 

a wireless communication for a bit error rate of 10 power minus 6. We know that bit error rate 

in a wireless communication system, is given as 1 over 2 S N R. 
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Hence, this for a bit error 10 power minus 6, corresponds to 1 over 2 times S N R which 

means S N R is 1 over 2 times 10 power minus 6, which means S N R is 1 over 2 times 10 

power minus 6, which is essentially, what is this. This value is 1 over 2 10 power 6, a 10 

power plus 6 divided by 2. So the S N R in dB is 10 log 10 of this value S N R dB is 10 log 

10 of 10 power 6 over 2, which is equal to. Now this is equal to, remember the logarithm is 

the difference of the log, so this is 10 log 10 10 power 6 minus 10 log 10 of 2. 10 log 10 of 10 

power 6 is nothing, but 60. So this is 60 dB minus 2 3 dB 10 log 10 of 2 is 3 d b; that is 60 dB 

minus 3 dB equals 57 dB. So look at what we have achieved so far. We computed the bit 

error rate required, to achieve a probability of bit error 10 power minus 6, in a wired 

communication system, that was 13.6 dB. 
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The S N R required to achieve a bit error rate of 10 power minus 6 in a wireless 

communication system, is 57 dB; that is the difference is 57 minus approximately .The 

difference between a wireless and wired communication system is 57 minus 13.6 dB; that is 

approximately 43 dB. I need 43 dB more power in a wireless communication system, to 

achieve the bit error rate of 10 power minus 6. So it means a wireless communication system, 

has high bit error rate, and poor performance, and this is because of the destructive 

interference, or fading, this is because of fading. So let me stop here, with this we conclude 

this lecture on the performance analysis of wireless communication system. I will take this 

forward in the next lecture, and give you precise, a more precise comparison, so that we can 

compare them better.  

 

Thank you very much. 


