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Lecture - 2 

Wireless Channel and Fading 
 

Welcome to the second lecture on the course 3G and 4G Wireless communications. As we 

had seen in the previous lecture, we just started to describe the wireless communication 

environment. 
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We started with the idea that in a wireless communication system, there is typically a base 

station which is mounted at a height there is a mobile station. The electromagnetic wave or 

the signal propagates from the base station to the mobile station via direct path and there are 

several scattered parts. This is the main difference or the essential difference between a 

wireless communication and a wired communication system, because in a wired 

communication system there is only a single path of propagation between the transmitter and 

receiver. 

Hence, the wireless communication environment as we saw in the last lecture is a multipath 

propagation environment. This means depending on the lengths and depending on the 

distances and depending on the attenuation of each path, the different electromagnetic waves 



that are arriving from the different paths either add constructively or destructively at the 

wireless communication receiver. 
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We started by trying to characterize or trying to model or develop a mathematical model for 

this wireless communication system as a linear time invariant system.  

(Refer Slide Time: 01:50) 

 

We said that the wireless communication system can be represented or each path of the 

system can be represented by an attenuation a i belonging to the ith path and a delay tau i 

belonging to the ith path. So, if there are L minus or if there are L paths indexed 0, 1 up to L 



minus 1, we can represent it as a combination of follows. Each path e can be represented as 

an L T I system with attenuation a i and the delay tau i can be represented as delta of tau 

minus tau i. 

So, corresponding to the zero th path I have the impulse response a 0 delta t minus tau 0. 

Corresponding to the first path, I have the impulse response a 1 delta t minus tau 1 so on and 

so forth up till a L minus 1delta t minus tau L minus 1. We also said that the complex base 

band, using complex base band pass band notation the wireless communication signal can be 

represented as a real part of s b t times e power j 2 pi f c of t where s b of t is the complex 

base band signal and f c is the carrier frequency. 
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And we saw several examples of possible carrier frequencies. 
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We started to derive the received signal at the mobile station after it passes through the 

channel. We said that passing through the first path or the response or the received signal at 

the mobile station corresponding to the first path is essentially the transmitted signal s b of t 

minus s b of t attenuated by a naught and delayed by tau naught. 
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The received signal corresponding to path one is real part of a 1 s b t minus tau 1 e power j 2 

pi f c t minus tau 1. This is essentially the transmitted signal attenuated by a 1 and delayed by 

tau 1 and so on and so forth until the signal corresponding to the L minus 1 th path is 



essentially real part of a L minus 1, a l minus 1 is the attenuation corresponding to the L 

minus one th path s b t minus tau L minus 1 where, tau L minus 1 is the delay corresponding 

to L minus one th path and e power j 2 pi f c t minus tau of L minus 1. 

Hence, the net signal that is the net wireless signal let me write it as the net signal can be 

represented as the sum of all the signals arriving from the multipath components or the sum 

of essentially all the signals copies arriving through the different paths. That is simply y of t 

which is real part of the sum of all the above components.  

I can represent that compactly using the sum notation as sigma i equals 0 to l minus one a i s 

b t minus tau i e to the power of j 2 pi f c t minus tau i that is the received signal at the mobile 

station or the mobile phone can be represented as the combination of all the signals 

corresponding to each path. This is simply represented succinctly as real part of summation i 

equal 0 L minus 1 that is the L paths a i, a i is the attenuation corresponded to the i th path. s b 

t minus tau i, tau i is the delay corresponding to the i th path and e power j 2 pi f c t minus tau 

i where this corresponds to the delay of the carrier. So, thus we can derive the received signal 

corresponding to the signal that is received at the mobile station. Now, we have derived the 

received signal let me write that again. 
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For your convenience this is the real path of sum i equal 0 to L minus 1 e i s b t minus tau i e 

power minus j 2 pi f c t minus tau i. Let me perform some manipulations on this expression, 

just a simple manipulation where I will take out the common factor e power j 2 pi f c t, I am 



sorry this is e power j two pi f c t minus tau i not minus sign and this can essentially be 

written as real part of i equals 0 to L minus 1 a i s b t minus tau i e power minus j 2 pi f c tau 

i. The factor e power j 2 pi f c of t is common to all terms which are the carrier term.  

So, I am essentially separating at out from the rest of the terms, now if you glance at the term 

in the bracket, this is some complex signal this is some complex the term in the inner brackets 

is a complex signal that is multiplied by e power j 2 pi f c t which is the carrier term. Now, we 

know from the complex base band pass band representation that this is essentially the 

complex base band received single. For instance, let me go back a couple of slides we said if 

we have a signal s t which can be written as real path of s b t e power j 2 pi f c of t. 

Then the complex signal s b t corresponds to the complex base band signal. Similarly, here 

the signal the complex signal in the brackets corresponds to the complex base band received 

signal. So, let me write this down explicitly because this is going to be important for us. The 

complex base band R x, remember we introduce this notation R x yesterday to denote the 

receiver, so the complex base band received signal is simply y d of t. Let me use the notation 

y b of t equals i equals 0 to L minus 1, a i s b t minus tau i e power minus j 2 pi f c tau i. Let 

me box this because this is an important result which we are going to use, so complex base 

band received signal at the mobile station is y b of t which is summation i equals 0, a i s b t 

minus tau i e power minus j 2 pi f c tau i. 

Now, first observe that the summation still has L components that correspond to the L terms 

that correspond to the L received multi multipath signal components there is the attenuation 

factor a i the delay factor tau i corresponding to the base band signal. There is a complex 

phase factor e power minus j 2 pi f c tau i, this is a complex phase factor. Observe that this 

complex phase factor, it is arising out of the delay tau i that is what we said the different 

signals that are received at the mobile station by virtue of having travel different distances 

add up with different phases at the received. This factor e power minus j 2 pi f c of tau i is 

essentially testimony to that fact that that delay is resulting in a phase of that path of the 

signal received at on the i th path at the mobile station. 
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So, let me describe this in little bit more detail, let me write this here again that is the y b t 

that is the received complex base band signal can be simply with given as i equals 0 a i s b t 

minus tau i e power minus j 2 pi f c tau i a, a i is the attenuation, tau i is the delay of the i th 

path. Now, let me make a simplifying assumption which I will call the narrow band 

assumption and which is popularly known as the narrow band signal assumption. Let me 

describe what that means and give you an example the narrow band assumption is follows.  

Let f m be the maximum frequency component of s b of t, that is f m is the maximum 

frequency component of the transmitted base band signal s b of t. Let me draw a picture to tell 

you what how that looks like if the spectrum in the base band looks as follows that is from 

minus f m to f m. This maximum frequency component present in the complex base band 

signal is what we are denoting by f m this quantity. 
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Now, if for instance for a g s m signal, the total band width that is 2 f m is 200 kilo hertz 

which means f m is 100 kilo hertz. For instance example, g s m f m is 100 kilo hertz. Now, if 

f m less than 1 by tau i for all this signal, is a narrow band signal, this is the narrow band 

condition if f m this is the narrow band condition that is, at the maximum frequency in the 

base band signal is less than 1 over tau i for all i that is is less than 1 over the delay of all the 

paths 0 one 2 up to L minus 1. 

Then I call the signal narrow band, now typically tau i is approximately of the order of 1 

micro second. So, tau is typically of the order of 1 micro second we will see the reason for 

this in the future lectures, but right now I urge you to accept this typical value of tau i. So 1 

over tau i is 1 over 1 micro second which corresponds to 1 mega hertz. Now, you can see for 

a g s m signal, the f m is 100 kilo hertz’s which is much smaller than 1 over tau i which is 1 

mega hertz.  

So, this is a narrow band signal or in or for g s m is essentially is a narrow band. Let what we 

mean as the g s m signal transmitted, g s m signal is a narrow band signal. There are many 

cases were this narrow band assumption is not valid. For instance the very obvious case is c d 

m a, because by definition c d m a is a spread spectrum system, hence it is a wide band signal. 

So, such as generalization or such as simplification is not possible in case of c d m a or this 

assumption does not hold in the case of c d m a it holds in the case of some signals. So, let we 



start let us start with a narrow band signal to simplify the analysis then we will look at how to 

handle a wide band signal in the future lectures. 
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So, now coming back to my base band system model which is y b of t is a i s b f t minus tau i 

e power minus j 2 pi f c of tau i. 
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In case of a narrow band signal for a narrow band for a narrow band signal, a simplifying 

assumption that can be made is s b of t minus tau i is approximately equal to s b of t. What 

does this mean? This means that the base band signal for a different delays tau i is 

approximately equal to s b of t. The delay is in significant, that the delay does not cause 

significant distortion in the received signal, because its maximum frequency component f m 

is limited.  

Using this simplifying narrow band assumption, now if you go back to one slide, I have y b t 

equals the base band signal is i equals 0 to L minus 1 a i s b t minus tau i e power minus j 2 pi 

f c tau i. Now, all the s b t minus tau i is are approximately equal to s b t which means this s b 

t comes out of this expression. I can write a simplified expression for the narrow band 

received signal as follows: y b of t equals s b of t in to sigma i equals 0 to L minus 1 e power 

minus j 2 pi f c tau i and this is a very important expression. 

Let me recap what we have done, we modeled the wireless channel as a channel with multiple 

propagation paths consisting of attenuations and delays. We model the wireless transmitted 

signal as a complex base band signal modulating a carrier. Now, what this result says here is 

that if the base band signal is a narrow band signal such as a g s m what I receive at the output 

is essentially the transmitted signal s b of t. Look at this, this is the transmitted base band 

signal, this is the transmitted base band signal multiplied by phase factor, that is the input.  



That is the input s b t is multiplied or scaled by a complex phase factor and that is the 

complex received signal. So, this is a complex not just a phase factor, but a complex factor 

also a complex coefficient. So, in the output y b t is s b of t, the input times a complex 

coefficient and this has a name this is known as the complex fading coefficient we will see 

the reason for this. Now, one thing you can observe is right away depending on the tau i is the 

different tau i’s and forgive me there also has to be an i over here depending on the different a 

i’s different tau i’s. These different complex numbers can add up to either produces 

constructive interference or destructive interference. 
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For instance let me give you an example over here, let me consider a case of L equals two 

parts and let me consider the attenuation of the first part is 1 that is there is no attenuation, the 

magnitude of the input is the magnitude of the output and the delay is also 0 that is tau 0 

equal 0. Let me look at another example; let me consider another path where a 1 is also equal 

to 1, that is there is no attenuation or amplification for the first path. However, the delay of 

the first path is 1 over 2 f c. So, what I am saying is the delay, so a 0.  

There are two parts in this system, there are two parts in this wireless channel, one is the 

direct path which has an attenuation of 1 and delay of 0 and another part, which also has an 

attenuation of 1, but a delay of 1 over 2 f c.  Now, if I look at the coefficient, let me give the 

complex coefficient a name, the complex coefficient which I will denote by h which i will 

denote by h equals sigma i equals 0 to L minus 1 a i e power minus j 2 pi f c tau i. Now, this 



has obviously L equals 2, so this goes from i equals 0 to 1 a i e power minus j 2 pi f c tau i. 

Now, for the first path this is a 0, which is 1 time e power minus j 2 pi f c tau 0, tau 0 is 0. So, 

e power minus j 2 pi f c tau 0 is e power 0 which is 1. So, this is 1 plus a 1 times e power 

minus j 2 pi f c tau 1 a 1 is 1 in to e power minus j 2 pi f c times tau 1 which is one over 2 f c 

so this is e power minus j pi. Now, you can see this value is 1 plus e power minus j pi is 

minus 1, so this is 1 plus minus 1 which is 0.  
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For this example what does this mean? It means that if I have two parts having same 

attenuation factors that is 1 and 1, however one has a relative delay of 1 over 2 f c 

corresponding to the other then the complex coefficient is 0. This means the received signal 

over the above example equals s b of t times the coefficient which is 0 equals 0 which means 

there is no received signal because the paths are adding up destructively. This is the problem 

here, so even though you are transmitting a signal because both the paths by virtue of one 

path being delayed compared to other path, they are cancelling each other. As a result we are 

not getting any signal at the receiver. 

Now, as alternate to that consider another scenario were a 0 again I am considering l equals 2 

parts, a 0 equals 1 a 1 equals 1. However, the delays now are tau 0 equals 0 and tau 1 equals 1 

over f c. You can easily show in this case that the coefficient is h equals 1 plus 1 equals 

2.Hence, the received signal is y b of t equals s b of t s b of t in to 2 equals 2 s b of t. In this 

case, the signals from both the paths are adding up constructively in phase to give you s b of t 



plus s b of t that is one copy from the direct path another copy from the scattered path adding 

up coherently to give you 2 s b of t.  

So, the signal amplitude is twice which means, the received power is 4 times the transmitted 

power. So, amplitude is twice the received signal, power is 4 times the transmitted power. Let 

me just write this down clearly as s b of t. In this case y b of t is 2 s b of t, so what are we 

observed so far? What we have observed essentially is the fact that if one of the paths is 

delayed 1 over 2 f c compared to the other path then the total received signal is 0, because 

they cancel out each other.  

If one of the paths is delayed 1 over f c relative to other, then they add up constructively, 

hence the total received signal is twice s b of t, that is twice in amplitude. Hence, it is four 

times in power and for all values of delay between 1 over 2 f c and f c, the signal amplitude 

varies between 0 s b t that is 0 and twice s b t. So, what I wish to bring to your attention here 

is the fact that because of the random nature of these multipath components what you receive 

might be 0. You are not receiving any signal or what you receive might be proportional might 

be twice of depending on the number of components thrice and so on. 

So, you receive a range of signal powers at the receiver, you receive a range of signal powers 

at the receiver depending on the random nature of the multipath components in the channel. 

So, at the receiver it looks as if the signal is going through a set of various strengths, for 

instance in one case you might receive a signal of very poor power, 0 power in other case you 

might receive a signal of very high power. 
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So, if you plot the signal quality verses time, it will look as some curve where the signal 

power for instance, this is the power and this is the time, so the signal power is vary in time. 

For instance, here it is very low, here it is probably high and so on and this variation in the 

signal power is known as fading. The signal power waxes and veins and this variation is 

essentially what is termed as fading and it is a very important characteristic of the wireless 

propagation environment arising to due to the multipath propagation environment.  

Remember, this does not arise in a wire line propagation environment because in a wire line 

propagation environment that is a single path between the transmitter and receiver which 

means there is no constructive or destructive interference at the receiver. Because there is 

only a single path and the signal that is transmitted is the signal that is essentially received. 
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So, if I analytically model a wire line communication system, let me just compare analytical 

models of wire line and wireless communication system. In a wireless communication 

system, we said that the received signal y b of t equals h times s b of t, where h is the complex 

coefficient and now we can also give it a new name we can call it the complex fading 

coefficient. This is the complex fading coefficient fading because this is what results in the 

fading nature of the received signal the receiver. And in for a traditional wired system or 

wired or wire line system these are typically known as wire line systems, the received signal 

the received signal y b of t is simply s b of t, the received signal y b of t simply s b of t 

because there is only a single path and there is no multipath interference.  

So, what you transmit is what you receive of course, in both cases there will be noise at the 

receiver we will see the effect of this later. But the effect of the signal I mean in terms of the 

signal if you look purely in terms of the signal in a wireless system what you receive is h 

times s b t, where h is the complex flat fading coefficient. And in a wire line system y b t or 

the received signal is simply is b t that is the transmitted signal and this is a very important 

difference between wireless and wire line communication systems.  

What we are going to do next is we are going to arrive; we are going to compare wireless and 

wire line systems. But before that we will try to better understand the properties of this 

complex fading coefficient s b h. what we will try to do is we will try to statistically analyze 

this h and draw some conclusions about its behavior or conclusions about the randomness of 



the such, I mean what kind of behavior does this complex fading coefficient h exhibit, so I go 

to the next section. 
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This section is essentially titled as statistics of the fading; this section is titled as statistics of 

the fading coefficient. Let me remind you the fading coefficient is h which is equal to i equals 

0 to L minus 1 a i e power minus j 2 pi f c tau i, this is the fading coefficient. This can also be 

represented as a complex number x plus j y also represented in magnitude and phase form as 

a e power j theta. What I am saying is as just follows this is a complex number h which is 

given by this expression summation i equals 0 to L minus 1 a i e power minus j 2 pi f c of pi.  

This can be represented using the real part and imaginary part format of x plus j y, where x is 

the real part of this quantity, y is the imaginary part and also the magnitude and phase 

notation where a is the magnitude of this quantity and phi is the phase of this quantity. Now, 

what does this essentially look like, let me expand this a little bit further. This is essentially i 

equals 0 or to l minus 1 a i cosine 2 pi f c tau i minus b i sin 2 pi f c tau i, I am expanding the 

minus j b i sin 2 pi f c tau i. I am expanding each complex factor here as a i e power as I am 

expanding the e power minus j 2 pi f c tau i as cosine 2 pi f c tau i minus sin 2 pi f c tau i, 

sorry this b i should rather be a i.  

And now the real part of this is simply x equals a i cosine 2 pi f c tau i and y equals minus b i 

sin 2 pi f c tau i. So, I have expanded the complex fading coefficient as a sum of a real part 



and an imaginary part x which is the real part is simply summation or it is rather summation a 

i cosine 2 pi f c of t i and y is summation minus b i sin 2 pi f c of t i. 

So, I can express the real path x as sigma i equals 0 l minus 1 p i cosine 2 pi f c tau i and the 

imaginary path y of the complex fading coefficient as minus sigma i equals 0 l minus 1 a i sin 

2 pi f c tau i. Now, in general it is very difficult to explicitly estimate or explicitly arrive at 

values of each of the a i’s and each of the tau i’s in a real time wireless communications 

system or explicitly characterized each of these. 

So, what the approach that is followed is to be instead characterize each of them, separately 

try to complex. Try to characterize the properties of the complex fading coefficient as a whole 

that is to try to characterize the behavior of this complex fading coefficient. And for that 

process or to do to characterize the behavior of this fading coefficient, we will take the help 

of the theory of random processes and statistics and probability. So, let me start by refreshing 

your knowledge about Gaussian random processes. 
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So, let me start with the brief review of Gaussian random process and Gaussian random 

variables. A Gaussian random variable X which is X is a Gaussian random variable with 

mean mu and variance sigma square, that is if X is a Gaussian random variable with mean mu 

and variance sigma square. It has the probability density function that is given as f X of x 

equals 1 over square root of 2 pi sigma square e power minus x minus mu whole square 

divided by 2 sigma square that is, the probability density. Density function of a Gaussian 



variable f X of x is given as 1 over square root of 2 pi sigma square minus x minus mu whole 

square divided by 2 sigma square. 

And this has a shape that looks as follows, let me draw the approximate shape this is the p d f 

of a Gaussian random variable centered at the mean of this random variable which is mu and 

this has a spread which is essentially proportional, this is proportional to sigma this is 

proportional to sigma. The variance is sigma square the spread is proportional or the deviation 

is proportional to sigma. 
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There is a very specific kind of a Gaussian random variable which is the standard normal or 

the standard Gaussian random variable. It is simply the Gaussian random variable with mean 

0 and variance 1 and that has a p d f obviously which is 1 over 2 pi sigma square is 1. So, 1 

over square root of 2 pi sigma square is simply 1 over square root of 2 pi e power minus mu is 

0, so x minus mu is x and x minus mu square is x square divided by 2 sigma square, sigma 

square is 1, so simply divided by 2. This is the p d f of the standard normal or the probability 

density function of the standard Gaussian. 

We will use Gaussian random variables and the properties of Gaussian random variables 

extensively in the analysis that follows and extensively throughout this course on wireless 

communications. So, I would urge all students all viewers to kindly review your knowledge 

of probability random processes, probability distribution functions as we have already seen 

this information is available in the NTPEL course on communication engineering. 
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Now, going back to our problem of the complex fading coefficient, where h is x plus j y that 

this is h is the complex fading coefficient. I am going back to our analysis of the complex 

fading coefficient which is x plus j y and we have seen that each x at each j y is the sum of a 

large number of random components that is x and y are both sum of a large number of 

random components. Why are this components random because remember each of this 

components is arising from the multipath environment these correspond to every path and 

these essentially correspond, correspond to the distance between the base station and the 

mobile station.  

And also how the scatters are placed, what is the distance of the trees, what is the distance of 

the buildings, what is the distance of the cars and so on and each of them is the random 

quantity depending on the scenario. Hence, the real part x which is a summation a i cos 2 pi f 

c tau i and the imaginary path which is minus sum a i sin 2 pi f c tau i are both random 

numbers depending on the random quantities a i’s which are the attenuations and the delays 

which are tau i.  

So, these are the each x and y is the sum the large number of random components. And from 

standard results in probability theory we can assume when each in a random quantity is 

derived as the sum of a large number of random quantities. You can be assumed to be 

Gaussian in nature, so we will assume x and y to be Gaussian in nature. That is x and y are 



Gaussian random variables because they are derived as the sum at a large number of random 

component.  

For more details you can refer to an advanced property known as central limit theorem. As 

the central limit theorem which gives more information about y a large number of random 

quantities when they add up result in a Gaussian random variable for the purpose our analysis 

we can assume safely that this x and y exhibit Gaussian nature. 
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So, let us start with a basic assumption that is h equals x plus j y, I will assume x to be 

Gaussian distributed, I am using this notation a standard Gaussian notation which is x is N 0 

half, that is x is a Gaussian random variable of mean 0 variance half. y is another Gaussian 

random variable of mean 0 and variance half and further I will assume that x and y are 

independent random variables. x and y are independent random variables which means the 

probability distribution, the joint distribution of x y is given as the product of the distributions 

of x and y. And we know the distribution of x because x is a stand is a Gaussian random 

variable of mean 0 variance half. 
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So, the distribution of x is simply f X of x equals 1 by square root of 2 pi sigma square, but 

sigma square is half times e power minus x minus mu square mu is 0, so it is simply x square 

divided by 2 sigma square, sigma square is half so it is 2 in to half which is 1. So, I can write 

the distribution of x simply as 1 over square root of pi e power minus x square. Similarly, the 

distribution of y which is the imaginary part of the fading coefficient that is also assumed to 

be another normal random variable of mean 0 and variance half, so its distribution is 1 over 

square root of pi e power minus y square. 

Now, as we said or as we assumed that the x and y are independent random variables hence 

the joint distribution X comma Y or f X Y of x y is simply given as 1 over root pi e power 

minus x square times 1 over square root of pi e power minus y square this is simply 1 over pi 

e power minus x square plus y square. So, we have successfully derived the joint distribution 

of this random variable x of the components of the flat fading coefficient h which are x and y. 

Now, what I want to do is convert this distribution or modify this distribution in terms of x 

and y in to a and phi where a is the magnitude of the fading coefficient and phi is the phase of 

the fading coefficient. 
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Remember, we wrote h as x plus j y which can also be expressed as a e power j phi, where a 

is the magnitude and phi is the phase of the complex fading coefficient or in other words x 

equals a cosine phi, y equals a sin phi. So, x that is the real part a times cosine of phi, y the 

imaginary part is a times sin of phi, we already have the joint distribution of x and y. I want to 

now derive the joint distribution of a and phi and that will give us the better idea because 

remember a is the magnitude of this fading coefficient. So, it gives me an idea of the power or 

the gain between the transmitter and the receiver and this is an important aspect of any 

wireless communication system that is a square is the gain of the communication system.  

Hence, I want to characterize this in terms of a and phi, so I can study the behavior of this 

random variable a for that purpose I will use the standard result. That is, if I have to convert at 

distribution that is, if I want to derive the distribution in terms of random, in terms parameters 

a and phi given the distribution in terms of x and y I can convert that distribution as follows. 

First, let me derive the expression for x square plus y square, x square plus y square equals a 

square cos square phi plus a square sin square phi which is simply a square cosine square phi 

plus sin square phi which is equal to a square. 
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Hence, remember the joint distribution in terms of x and y is given as 1 over pi e power 

minus x square plus y square that is, 1 over pi e power minus x square plus y square. Hence, 

the joint distribution in terms of A comma phi is 1 over pi e power minus x square plus y 

square. However, we have seen that x square plus y square is a square, so this is 1 over pi e 

power minus a square and there is one more term which is known as the determinant of the 

Jacobian matrix of X Y, this is a scaling term.  

Let me let me define what the Jacobian matrix is? The Jacobian of X Y is essentially dou the 

partial derivative of x with respect to a, the partial derivative of y with respect to a, the partial 

derivative of x with respect to phi and the partial derivative of y with respect to phi. This is 

the Jacobian which is essential the partial derivative which is at two cross two matrix. In this 

case first entry is the partial derivative of x with respect to a second entry is partial derivative 

of y with respect to a, other entries are partial derivative of x with respect to phi and the 

partial derivative of y with respect to phi.  

And this is simply given as remember x equals a cosine phi, so the partial derivative of x with 

respect to a is simply derivative of a cosine phi with respect to a which is cosine phi the 

partial derivative of y with respect to a. Similarly, sin phi the partial derivative of x with 

respect to phi is the derivative of a cosine phi with respect to phi which is minus of a sin phi 

and the derivative of a sin phi with respect to phi is simply a cosine phi, this is the Jacobian 

matrix. 
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We now want to compute the determinant of this Jacobian matrix, that is the determinant of 

this Jacobian matrix, let me go back to the previous slide. If you look at the Jacobian matrix, 

one can clearly see the determinant of this Jacobian matrix is cosine phi times a cosine phi 

that is a cosine square phi minus minus of a sin phi in to sin phi that is minus minus a sin 

square phi, so let me write this down the determinant of this Jacobian matrix is a cosine phi 

times cosine phi minus minus a sin phi times sin phi which is a cosine square phi plus a sin 

square phi which is essentially a.  

Now, we have derived the Jacobian and now, I want to substitute the Jacobian in to this 

expression here which is the expression for the joint distribution in terms of a phi that is 1 

over pi e power minus a square times the determinant of the Jacobian. 
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Hence, the joint distribution is simply f of A phi equals 1 over pi e power minus a square 

times the determinant of the Jacobian which is simply a and hence the distribution is simply a 

over pi e power minus a square. With this I would like to conclude this second lecture on 3G 

and 4G wireless communications. We will start with this joint distribution of the channel 

fading coefficient in terms of a and phi and move on to and continue this discussion further in 

the next lecture.  

Thank you. 

 


