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Signal Properties 
 

 To a slightly different topic. This topic is about the properties of signals. Signals are 

what we will be applying to systems. So, we should be very clear about the properties 

that different signals are expected to have. This also will be an elementary discussion, 

there will be more and more properties that we can ascribe the signals, and we will learn 

them as we proceed through the course. At the present stage there are some very basic 

properties that signals must have. Signals are functions and what we expect of a function. 

Now, saying this by emphasizing more strongly on this property then we did at the time 

we introduce the meaning of a signal. Is that a signal must be defined for all values of the 

argument, must always be defined for all values of the argument. 
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A signal must necessarily be defined for every value of the argument; that means, if the 

argument is time, for every instant of time the signal must take on some value. And by 

saying that it should take on some value, we mean some value within the range set. In 

this case the range set is the set of real numbers. Now on the face of it this might seen 

may quite unnecessary stipulation, because obviously every signal will take on some if 



specified. Also it seems well, to make the point that this is not a trivial speculation. Let 

us take an example, the most straight forward example such as let x t be equal to 1 by t. 

This signal takes on a value in the sense that I said signal should take on the value. 

For all points of time not equal to 0. That is x t can be said to be finite for all t, that is 

non zero; however, we know what happens when x t tends to 0, its value will rise without 

limit and for t equal to 0, x t we can usually say is infinite. Now if we say that x t is 

infinite, that is not good enough because this. So, called infinite is not a real number. Let 

us put that down real or complex for that matter. In short we will have to admit that in 

this case x t is not defined for t equals to 0 that serious. Serious enough for us not to 

allow x t to be called a signal x t does not qualify to be called a signal in present form; 

however, we can do some repairs. We can make an artificial stipulation, a different 

stipulation for the time instant t equal to 0 and say x t is given by 1 by t for t not equal to 

0 and say its equal to 0 or whatever value we like for t equal to 0. 

This way x t has been forced to have some value for of all values of time including t 

equal to 0 is not infinity anywhere. And this kind of a piece wise specification that is a 

specification which defines the value of x t by giving different expressions for different 

points of time or different regions of time is perfectly alright, we will do this all the time 

we consider it to be perfectly legitimate. And there are more examples of signals which 

are not properly defined. For example 
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Suppose we take x t equals tan t. Again we know that tan x or sorry tan t tends to infinity 

as t tends to pi by 2. So, not apart from pi by 2, it will also tend to either plus infinity or 

minus infinity at three pi by 2 or 5 pi by 2 and so on and so forth. 

So, in general about the signal or a function such as this, we can say that x t is undefined 

for t equals 2 n minus 1 pi by 2, is it right n equal to 0 is pi by 2, three pi by 2 and so on. 

It is right. So, this is another example of a signal which is not another example of a 

function which cannot be called a signal. What we will therefore, restrict ourselves to our 

signals which are so to speak finite valuable, which is to say that the signal has a finite 

value for every instant of time? Let us take example of finite valued signals. First 

example, how about x t equal to t, no problem here, this signal is finite, because as long 

as t is finite, t will be finite of x t will be finite, which comes to the same thing. 

However at first sight people can raise objections, they can say things like wait a minute, 

as t tends to infinity, let us make a plot of these functions. It goes like this is x t and this 

is the t axis. People can raise the objection that x t seems to be finite around the parts 

which we have wrong, but that is not necessarily true as t gets larger and larger. Now as t 

gets larger and larger. What are we afraid of as t gets larger and larger x t will also get 

larger and larger in fact, as we see it is always equal to t. But along the time axis t is 

finite at every point.  

And therefore, x t is also finite at every point for that corresponding value of t. In short 

there is no point on the time axis at which x t is not finite. Thus x t as specified here is a 

finite valued signal and therefore, qualifies to be called as signal. Let us take other 

examples, more dangerous looking examples such as x t equal to t square. I do not have 

to argue again from first principles for this second example. So, long as t is a finite 

number, t squared is also a finite number no worry there, fine. 

Three even more dangerous which we like what about x t equal to e to the power t. e to 

the power rises even faster than t square does. In fact, it rises faster than any power of, 

yet there is no problem. Because as long as t is finite e to the power t will also be finite it 

might be extremely large, but we are not afraid of something being extremely large. We 

are only afraid of something being infinite, we do not wanted to be infinite, but it can be 

extremely large, there is no problem there.  



So, these are all examples of finite value d signals; signals whose value is finite at all 

times. But finite valued signals while better than signals or functions that we discus 

earlier such as x t equal to tan t or x t equals to 1 by t. These functions are defined 

everywhere, but still they have they problem that they raise they can as we said earlier 

increase without limit and that is what is happening with x t that is happening x t equals 

to t, that is happening x t equals to t square, e to the power t all this functions. But there 

are other signals which do not increase without a limit; for example, what about let me 

make this separate set of examples signals which are finite valued, but which do not rise 

without the limit.  
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There are some very familiar examples here, such as x t equal to sin t, x t equal to cosine 

t, all this are examples of signals, which vary as t varies, but which stay within limits. So, 

to speak, you can think of more examples what about. This was the second example then 

a third example, such as x t equal to e to the power minus mod t. The third function 

perhaps is not so familiar, but it can be easily plotted. e to the power minus mod t may be 

expanded and written as e to the power minus t for t greater than 0, e to the power t for t 

less than equal to zero. 

Such a function appears like this. The familiar exponential decay for positive time and a 

backward decay for negative time, at t equals to 0 it takes on the value equal to unity. 

This is the signal which stays within limits. So, to speak in the sense that it never gets 



below 0, it never gets higher than 1. So, we can say that for this x t, the third example we 

can say that 0 is less than e to the power minus mod t less than equal to 1, and this is true 

for very instant of time. 

So, these are the signals, which do not rise without the limit. So, what exactly are we 

trying to say, when we speak of a signal rising or not rising without the limit. This thing 

has to be discussed in a more formal manner and in order to do. This I will go to next 

screen and speak about the notion of the bound of a function or a signal.  
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What do we mean by a bound? Suppose we have a signal x t, x t takes on various values 

for different points of time. Can we find a number which I will call B such that mod x t 

the absolute value of x t is never greater than B. If such a B can be found then we will 

say that B is a bound on x t. 

Let me put this down. If mod x t the absolute value of x t is less than equal to B for all 

time, minus infinity less than t less than infinity. Then we will say that B is a bound on x 

t. Signals which we have been accusing of raising without a limit will not have any 

bound at all. Signals which, on the other hand we have been coating as example of those 

which stay within limits do have a bound and that is exactly the formal meaning of 

saying that a signals stays within limits. Let us take some of the previous examples and 

see what we mean? Let us take for example, x t equals to t. The first example we 



prepared for signals which were finite, but not bounded, x t equal to… Can we just stop 

this for a minute?  

Now, let us take the first example that we had earlier namely x t equal to t can we find a 

bound for x t. The argument of course in that we cannot and the best way to prove it is to 

try to find the bound for it. Suppose I say that a bound is ten thousand, suppose we say 

that B equals 10,000 sorry. The first example was x t equal to t. Now what kind of a 

bound would be large enough to ensure that x t exceeds it or mod x t never exceeds it. 

The point is that for a signal like this there is no bound, because even if I take a very 

large value of a bound just to be safe. Such as if we let B equal to say 1000 are we safe, 

clearly not. 

Because, as soon as t exceeds 1000, that same 1000, x t will also exceed 1000. So, 1000 

is not a safe bound. But this is not the only place where trouble will happen, even if x t 

goes below minus 1000 which will, obviously happen for t less than minus 1000 the 

same trouble will happen, because even here, mode x t is greater than 1000. 

So, this are places where the bound will be exceeded and therefore, it will seems to be a 

bound. So, B equal to thousand is not suitable as a bound for an x t such as this. What 

about B equal to say 10,000, are we safe now? Again clearly not, because as soon as t 

exceeds 10,000, x t will exceed. In fact, as soon as mod t exceeds 10,000, mod x t 

making the argument, briefer than last time we will also exceed10, 000. So, we will be in 

trouble again, fine. So, of course, I can go on using larger and larger bounds, but the 

point is already made, that no number can serve as a bound for an x t such as this. This is 

equally true of some other x t such as x t equal to t square, here 2 the problem is the 

same.  
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Whatever t you choose, whatever B you choose, they will always be a t beyond which x t 

will exceed the B, the absolute value of x t will exceed the B. Third example, recall the 

same x t equals e to the power t. Now e to the power t is a little interesting, because for t 

less than 0, x t is bounded. x t in fact, equals mod x t, because x t is always greater than 0 

and this is invariantly less than one. So, it is bounded. 
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But for t greater than 0, whatever bound you said x t will exceed that bound very soon. In 

short it rises without limit. So, these are all unbounded signals. Signals for which a 



bound cannot be found, unbounded signals, it is a fact that in signal and system theory 

we try to stay away from an unbounded signal perhaps not entirely, but as far as possible 

our interest will be in bounded signals. Signals for which a bound can found we need 

example for this as well. 

And let us do that lets pick up a few examples. First, a signal like sin t what sort of a 

bound can we find for sin t consider say B equal to 4. Is B equal to 4 a bound for sin t, it 

is because we know that, sin t or rather in this case we are concerned with the absolute 

value of x t equal to sin t. 

So, we know that, mod sin t is always less than 1, less than equal to one. So, B equal to 4 

is a perfectly valued bound for this kind of an x t, but this is not the only bound. The 

bound of a function is not a unique number if it exists. It will exist in plenty if it does not 

exist it will not exist at all. There is in fact, no signal for which only 1 bound can be 

found. If there is 1 bound there are many bounds, if there is no bound then there are no 

bounds.  

So, for example, B equal to 3 or 10 or 45 or 100 or even 1, the last is also a bound, 

because the definition of a bound is just that the signal. The absolute value of the signal 

should not exceed that bound. So, even 1 is a bound. In fact, it is the lowest possible 

bound for x t equals to sin t. x t equal to sin t has an absolute value that never exceeds 1. 

So, 1 is also a bound, a bound need not be greater than 1 in this case, but all these others 

like 3, 10, 45, 100 etcetera are also valued bounds for x t. Now, cos t is a similar signal 

as the same kind of properties and in fact, can have all the same bounds. 

Every bound given above for sin t is also a bound for cos t. What about say going a little 

off track, x t equal to 4 cos 3 t what can we say is a bound for this signal. This signal has 

a frequency, radial frequency of three, but that does not concern as because that does not 

affect the amplitude of the signal. What affects the amplitude of x t is this coefficient 

outside namely 4 and because there is four outside. We know that a signal such as this 

can swing from minus 4 to 4. Thus we need B to be greater than or equal to 4, but 

certainly B exists this is also a bounded signal. 

Let us try to construct one more example. In fact, refer to the example we dealt with 

earlier what about x t equal to e to the power minus mod t, e to the minus mod t we 

found confined itself to the range 0 to 1. In short we know that, 0 is less than e to the 



minus mod t which is less than equal to 1. Hence a bound for e to the power mod t would 

be anything that is greater than or equal to 1. Any of these would be a bound for e to the 

mod t, but there is a possibility of going wrong in understanding the meaning of a bound. 
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And therefore, let me give you some examples, where the bound must be understood 

more carefully. Consider a signal such as x t, to continue with our discussion of bounded 

and unbounded signals. Here are some signals which probably might appear to be 

bounded for the uninitiated, but which are actually unbounded. So, the first example is of 

x t equal to say 2 minus t square, lets plot this signal just roughly on the side. This is x t 

equal to 2 minus t square, it achieves a maximum of 2. Is this a bounded signal? That is 

the question. 

Though it appears to be bounded from above in the sense, that x t is less than equal to 2 

for all t. x t is not a bounded signal, simply because a bounded signals should be bounded 

both from above and below. That is why we say, that mod x t should be bounded; it is 

not x t alone that must be bounded, but mod x t. And in these cases you find, that for in 

the range of negative values x t can go below, can go down and down without limit. In 

fact, it goes towards minus infinity, as t tends to infinity or t tends to minus infinity. So, 

though x t is bounded, mod x t is not bounded here. And it is important to note that 

boundedness is a property of x t only, when mod x t has a bound not when x t has a 

bound. 



So, both in positive and in negative values x t should not change without limit, should 

not vary without limit. This is a sufficient example to point out that boundedness is to be 

understood a little more carefully. Now, that we have a general idea of what we mean by 

a bounded signal lets close the matter by saying that, we expect signals to be bounded for 

most of our studies. For apart from mathematical considerations, there are also physical 

considerations. In real life, every signal we meet with, every signal we deal with is 

always bounded the voltage that comes out of a source is always limited, both in its 

positive and negative value by the kind of circuiting that has been used to generate that 

voltage. That is one example of a signal being bounded. 

Now, you can take any other kind of example, the sound that I make out of my throat has 

bounded amplitude. Because there is only a limited amount of power only, a finite 

amount of power that I can produce with my throat. So, speech signals, music signals, 

any of these signals, that come out of musical instruments or loud speakers or human 

voices all these are bounded. The brightness of a picture that comes out of a television 

set is also bounded, because it cannot produce infinite power at any instant of time. So, 

fundamentally we may say that all physical signals are inherently bounded because any 

physical source of signals can produce only limited signal power. This can be our 

justification for confining our interest to bounded signals. So, to summarize what do we 

know about signals? 
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These are of course, some of the properties that we have discussed so far. There are some 

more properties I will be going into right now in a moment. First is that sum signals or 

some functions are not even finite at certain points. Examples; tan t, 1 by t these are 

examples. The next category is of signals which are finite, but not bounded. Examples; x 

t equal to t, x t equal to 1 minus t squared, x t equal to e to the power t these are 

examples. The third category the once which we like most are bounded signals. Bounded 

signals are have examples like cosine t, then e to the power minus mod t, then x t equal 

to a constant such as a 4 that is also a constant signal therefore, bounded all these are 

bounded signals. 

Now, we should note that signals of the first category mentioned here, are not recognized 

as signals at all. We will not in fact, deal with them, as far as possible. The second 

category we will also avoid, but sometimes we will have to face such signals and deal 

with such signals. The third category is almost essentially, what we will deal with and we 

already know why because physically also only signals of the third category can be 

generated by sources. There is no physical phenomenon which can increase or decrease 

the value of a parameter namely the signal of our interest, towards infinity or minus 

infinity without limit. Everything in the real world is limited by the process which 

generates it. 
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So, that closes that discussion. Next thing we will talk about some examples of signals 

sorry just cut that. There can be other properties of signals and we will just discuss one 

more at the present time. It is better to wait for them, when these properties emerge 

naturally for us.  

Right now, we will speak of another property which can be called a symmetry property. 

The sort of symmetry that a signal can have may be of many kinds. Periodicity is 1 kind 

of symmetry. What do we mean by saying that a signal is periodic? When we say that, a 

signal is periodic. We mean that it repeats itself over and over again and infinite numbers 

of times after a certain length of time. Mathematically we will say that x t is periodic, if 

it is equal to a time shifted version of itself. x t equal to x t minus t ,what we mean by 

that is this? If we have x t over here, let us say I plot x t like this. Then I can designate 

this point to be t and this next point to be say 2 t, likewise somewhere behind over here 

we will have minus t. 

Now, these numbers t minus t 2 t are significant with reference to this signal, because if I 

slide this graph that I have drawn of x t towards the right by t units of time. Then what 

would essentially happen? We get a new graph I will call, this new signal say x prime t 

equals x of t minus t. This point would come over and land up here, this point would 

come over and land up here, this point would come over and land up here, but even if we 

shifted the time axis in this manner. As I have shown, the function would shift along 

with the time axis, but yet it would end up looking exactly the same as before because of 

its symmetry, because of its periodic nature. This cycle which I have drawn over here 

would turn up over here. So, this point has come over here. 

Now, this second cycle would turn up over here. This so that for example, this point 

would land up over here. The third cycle would move further to the right and come here, 

so that a point such as say this one, would come over here. So, everything has moved to 

the right, but because this shifted signal is indistinguishable from the earlier signal. We 

will say that, this signal, the new signal and the earlier signal are identical. And we will 

denote that by a writing, what we have written over here, that x t is equals x of t minus t. 

So, periodicity is a kind of symmetry, in spite of making change in the signal, the signal 

remains the same. And that is the essential definition of symmetry in fact, then we 

subject a signal to a change and after undergoing the change it still ends up looking 



exactly as before. We will say that the signal has certain symmetry. This is a periodicity 

and periodicity is one kind of symmetry. 
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We will just discuss one more kind of symmetry and that is called even symmetry. This 

is the second kind of symmetry, we are speaking of even symmetry is the property, 

because of which if we invert a signal about the vertical axis. It still will look exactly the 

same, if we reflect a signal this what I mean. So, suppose we take a signal like this, let us 

say the signal is like this and it is 0 for all points greater than 2. And let us say this is 

minus 3 by 2, this is 3 by 2, something like this. Now, consider this signal, let us call this 

x t. And try to understand what happens, when you plot x of minus t. x of minus t would 

look exactly the same as x t, and because it looks the same in spite of being subjected to 

a reflection about the vertical axis. We will say that this signal is even symmetric, x t is 

even symmetric. 

There is another property that is often spoken of side by side with even symmetry and 

that is called odd symmetry. It is not really a symmetry, but people tend to call it that. 

So, I will just note it here. Note that even symmetry is the property by which x t equals x 

of minus t. Odd symmetry on the other hand, is the property by which x t equals minus 

of x of minus t. Let us take a signal that is an example of odd symmetry, this is an odd 

symmetric signal because I can show it in two steps. The first step, I will reflect it about 

the time axis, if I do that I will get x of minus t.  



This is x of minus t and this is t and in the third step I will invert it or reflect it about the 

horizontal axis the time axis to get minus x of minus t, it would again look like this. This 

is odd symmetry, we will say that x t is odd symmetric, if minus x minus t is the same as 

x t, we will say it is even symmetric, if x t is the same as x of minus t. So, even and odd 

symmetry are two nice properties, that a signal might or might not have, but interestingly 

if you take any arbitrary signal it can always be broken up into a sum of two parts; one 

which is odd symmetric and one which is even symmetric, so just as a diversion an 

interesting diversion. 
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Let us consider, what happens to the decomposition of a signal? How we acutely 

decompose the signal into even and odd parts. Our objective is to take an arbitrary signal 

and express it, as a sum x e of t that is an even part and x o of t that is the odd part. Since 

x e of t is an even part, x e of t will be equal to x e of minus t and x o of t will be equal to 

minus x o of minus t. The interesting thing is that, this can be done for any signal. By 

which of course, we refer to any finite valued signal it need not even be bounded in order 

for us to do this.  

Let us take examples; let us take for example, x t equal to t, x equal to t looks like this. 

As we already know it is not a bounded signal, is this an even signal or odd signal or if it 

is neither can we decompose it. In this case of course, it is trivial this signal is already an 

odd signal. So, how do we decompose it in to a even and odd part, very simple, we will 



say that x e of t the even part is 0 and x o of t the odd part equals t. So, x t is equal to x e 

of t plus x o of t, sounds like cheating, but that is happening only because the signal is 

too simple. Now let us take another signal, let us take a signal that looks like this. I will 

draw the graph instead of describing the signal mathematically. 
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Let us consider a signal that is 0 for all negative time and for positive time it is like this. I 

think it is evident to you by now, that this is neither an even symmetric signal nor an odd 

symmetric signal, but it can be decomposed in to an even and odd part. Let us just put 

down some values here let us say this is t equal to 1 and let say its value at this t equal to 

1 is also a unity. So, let us say this is the signal. How do we find its even part? All we do, 

is take x t and add it to x of minus t and divide the sum by two.  

So, x e of t can be shown to be x t plus x of minus t divided by 2, likewise x o of t equals 

x t minus x of minus t by 2. So, if we take x t over here, as we have shown and try to 

construct x e of t out of this. It is a straight line, with the slope of unity between 0 and 1 

and after that it is a constant. That is a line of 0 slope and a value equal to 1 and for t less 

than 0, it is equal to 0. So, going through the calculations, you will find that x e of t can 

be plotted like this. This is the even part; the odd part would be this. This is the odd part 

of x t. Now see what happens we you add these two? You will find that for t greater than 

0, x e of t in this instant is exactly equal to x o of t. 



So, that for t greater than 0, x t simply equals 2 x e of t or 2 x o of t. On the other hand 

for t less than 0, x e of t is the exact opposite of x o of t, is exact negative of x o of t, so x 

e of t equals minus x o of t. So, that x t equals 0, this is true for t less than equal to 0 and 

we have covered x t at all points. So, this is a simple decomposition. The formulas to be 

used are these; they tell you how to decompose a signal into an even and an odd part. 

And finally, to compose a signal from its parts is to simply add the two parts and you get 

x t. So, this is an interesting exercise in using certain symmetries of a signal to 

decompose the signal. In fact, there is always going to remain an intimate relationship 

between the symmetry properties of a signal and its decomposition in various ways. 
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So, symmetries are intimately related to signal representations. How the relationship is 

exactly formed is a little deep for us to cover in this course, but it is a still a worthwhile 

point to remember. We just used even odd symmetry and showed that a signal could be 

represented as a sum of even and odd parts, and then it could be decomposed in to this 

parts and that it could be done for any signal at all.  


