
Signals and Systems 
Prof. K. S. Venkatesh 

Department of Electrical Engineering 
Indian Institute of Technology, Kanpur 

 
Lecture - 33 

Discrete Time Fourier Transform 
 

It is essential for us, beyond recognising that there are only n distinct discrete frequencies 

in the d t f s, is still essential for us to understand what the values of these frequencies are 

and what range of values they lie within. It is with this in mind that let that we shall go 

and re-examine the different complex exponentials, that are associated with each of the 

discrete sequence. So, let us recall what the coefficients are. We have the component 

complex exponentials are.  
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The first one is e to the j 2 pi by N into 0 into n, this is the first number. This is what we 

have called phi 0 of n. Then we have e to the j 2 pi by N times 1 times n which is what 

we call phi 1 of n and so on until we get e to the j 2 pi N minus 1by N times n which is 

phi N minus 1 of n. That is already given as n different frequencies, but just for 

explanation sake, let us see what the next number will be. The next number is e to the j 2 

pi N by N into n. 

Now, what are the frequencies associated with each of these? The normal format of the 

complex exponential are of the purely imaginary exponential, as in this case, is there is 



the time index which might be discrete or continuous. Then there is the frequency index. 

In this case, this is the frequency index. This represents the frequency. Here for example, 

this gives the frequency and so on until you have here, the frequency given by this and 

here by this.  

So, that is what the frequency is supposed to represent. The frequencies, as you can see, 

run from 2 pi by N into 0 is omega not, 2 by N into 1 is what I will call omega 1 which is 

the fundamental frequency. This is the zero-frequency. Then you have 2 pi into 2 by N 

which we will call, say this is exactly twice the first the previous one. So, it is 2 omega 1 

and so on until you come to 2 pi N minus 1 by N which we will call N minus 1 omega 1. 

Now, this is not common convention.  

So, I will just make a slight change in what I have just said. I will just call this the zero-

frequency and I will call this as omega not. This is the fundamental frequency. So, this 

becomes 2 omega not and soon up to n minus 1 omega not. So, these are the frequency 

components. As you can see, the values vary from omega not to n minus 1 omega not 

where omega not is essentially 2 pi by N. So, the smallest non-zero frequency is 2 pi by 

N. The largest non-zero frequency is 2 pi times n minus 1 by N. So, they are all some 

fraction of 2 pi. 

And they range from 0 to 2 pi times n minus 1 by N. For large n, you can see that the 

largest non-zero-frequency will become very close to 2 pi and this finally, tells us what 

the frequency axes should be like. It should be running from 0 to 2 pi and on this we will 

plot these coefficients of the d t f s namely, the x 0 x 1 where this is 2 pi by N. Then we 

have x 2 occurring at4 pi by N and so on until just before 2 pi, we have x n minus 1 

corresponding to 2 pi n minus 1 by N. So, the largest possible frequency in their 

presentation is 2 pi and even this is really not achieved except for very large values of n, 

so much for giving a physical interpretation to the notion of frequency.  

If you want an even more understanding of this then we must start with setting a certain 

analog frequency. A continuous time frequency value and then measure the rate at which 

this signal of continuous time is sampled to obtain a discrete signal and understand 

things from there. That is too much matter to get into at this stage. We will be doing it 

when we talk about the theory of sampling and reconstruction. Right now, we see that 



discrete frequencies take on discrete values omega not, 0 omega not. 2 omega not up to n 

minus 1 by N omega not and all these lie within the range 0 to 2 pi. 

With this understanding of discrete frequencies, we know how to make a spectral plot. It 

will be something like this. For example, for the frequency plot of the Fourier spectrum 

would be something like this. Line spectrum, this is what we have it is s only a line 

spectrum. Next, we want to see what is the common way in which the discrete time 

Fourier series is used? You see the discrete time Fourier series, as I have been saying, 

deals with periodic discrete time signals. 
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But, another way of looking at periodic signal is to call it a finite support signal or what 

is called a signal of finitely many points and this is the nomenclature and terminology 

that is used in what is called the d f t. Finite support signal of a support of n points. Now, 

in the first case, we would say that the signal repeats itself an infinite number of times in 

all directions. The same n point of the signals are repeated. In the second case, we just 

say that now the signal is only defined for n points, we are not saying that it is 0 outside 

those n points, we are saying that it is defined only for n points.  

Once we make that definition that is defined only for n points then lots of things become 

much simpler. For example, we can say since the Fourier transform the d t f s, the 

discrete time Fourier series, of this sequence has also n coefficients capital n coefficients 

and they too are periodic, it turns out even there you can take this time that it is only a 



finitely supported sequence of transformed values. In short, you can say that the d t f s 

maps n length sequences in n to n length sequences in the omega domain. 

So, instead of periodic, we are saying it has a finite support. Now, this interpretation is 

given a different name, it is called the dft, standing for discrete Fourier transform. The 

dft has a slightly different set of notations. It takes sequences x n for n equals 0 to n 

minus 1 and maps them to signals x k as they are called discrete frequencies where k 

goes from 0 all the way to n minus 1. So, this is the discrete Fourier transform. As you 

can see it is only notationally different and if you wish to write the analysis and synthesis 

equations of the d f t, you would simply write synthesis and the analysis is X k equals 1 

by N summation over n of x n, n equal to 0 n minus 1.  

So, everything is of finite length now. The impulse response is of finite length, the signal 

is of finite length, the output is of finite length, everything is of finite length. The next 

thing we will move on to investigate is what happens, if we take a certain n periodic 

signal or n length signal depending up to whether we use the d t f s terminology or d f t 

terminology and pad it with an equal number of zeroes. What does happens to the 

Fourier series spectrum? 
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So, let us say that x n or other x 1 n equals x n for n equals 0 to N minus 1 and x 2 n 

equals x n for n equals 0 to N minus 1 and its equal to 0for n equal to N to 2 N minus 1. 

Now, x 1 n is of length n or has period n. So, you can say, if we take d t f s terminology 



which we are more familiar with, we can say therefore, x 1 n equals x 1 of n minus N. 

Whereas, here x 2 n equals n minus x 2 of 2 N. Let us call 2 N as N dash. Now, I will 

rewrite the analysis equations in the slightly modified manner.  

The analysis equations gave the value of the x k for various values of k, k going from 0 

to the number of points in the sequence. So, we will write first N x k which is the set of 

coefficients of x 1 n scaled by factor k, n x k equals summation x n times phi k star of n 

as n equal 0 to N minus 1. So, there are n different coefficients available over here, but 

now, moving to x 2 of n, x 2 of n is a 2 n length sequence is an N dash length sequence 

and hence we will write N x 2 k. This we call N x 1 k, N x 2 k will be equal to 

summation n equals 0 to 2 to the power k of x 2 n.  

Here it was x 1 then because x 1 equal was equal to x 1 n, x 2 N phi n star of 2 N. This 

earlier one was for this one, it was phi n. That means there are n different complex 

exponentials which combine whose correlations we have to evaluate. Now, there are 2 N 

over here. So now, the coefficients of these, the coefficients of x 2 of n run from k equal 

to 0 to k equal to N dash minus 1 which is equal to k equal to 2 N minus 1. So, these are 

the different coefficients you have. Now, we shall denote N times x 1 k as x 1 k omega 

not where omega not equals 2 pi by N. 
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Then it turns out, using similar notation for x 2 also, it turns out that N x 2 0or rather N 

dash, n x 1 0 which is the zero-th coefficient of x 1 multiplied by N equals N dash x 2. 



Here, then N x 1 1 equals N dash x 2 2 and so on until you get N x 1 N minus 1 equals N 

dash x 2 2 N minus 2. That is to say that alternate coefficients of the d t f s of x 2 are the 

same as the sequence of coefficients in the d t f s of x 1. In fact, all the even coefficients 

of x 2 correspond 1 for 1 in magnitude and frequency position with those for x 1, but the 

spectrum of x 2 n has an additional N points. That is to say that its frequency 

representation is higher in the resolution than that of x 1 n. We have doubled the 

frequency resolution by padding with n zeros. 

If we had padded with three times n zeroes, we would have quadrupled the frequency 

resolutions and so on. In short, as we make n dash time to infinity as n dash tends to 

infinity, 2 pi by N dash which I will call omega not dash tends to d omega tends to an 

infinity symbol value. Of course, there are a large number of coefficients now in the 

Fourier transform. There will be coefficients far more in number than before until finally, 

as N dash goes to infinity, we find that the line spectrum merges into a continuous 

spectrum.  
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This continuous spectrum which we will call X 2 of omega is that what I have called it 

satisfies at frequencies k omega not. The relation X 2 of omega at omega not equals X 1 

of and omega equal to k omega not equals to X 1 of omega not at k omega not and it is 

non-zero elsewhere whereas, this is 0 elsewhere. By means of this process, we can go on 

increasing the resolution until it becomes a continuum. When it becomes a continuum, 



this implies certain modifications in the analysis and synthesis equations. Let us look at 

each of them, first of all analysis. 

The synthesis equation says that x n equals summation x k e to the j k omega not n and 

for x 2 k it could be this and subscript of x 2 k over here. But, we have already made the 

notational change that N dash x 2 k is what we are calling X 2 at k omega not. If we use 

this notation, then x 2 n becomes equal to a summation, all the summation is of course 

over all k. So, I am just writing k over here, overall k of k going from0 to N dash minus 

one. 

So, you will get X 2 of k omega not by N dash because that is x 2 k into the j k omega 

not n. Now, as N dash increases as I said there are more closely spaced line frequencies. 

So, e to the j k omega not n simply becomes e to the j omega n and the summation 

becomes an integration. Finally, you have on by N dash, summation becomes an 

integration and 1 by N dash is nothing but d omega by 2 pi.  

 (Refer Slide Time: 33:48) 

 

Making all these changes and recognising that integration from summation for k equal to 

0 to N dash minus 1 over k equal to 0 to k equal to N dash minus 1 is the same as 

summation over omega equal to omega not to omega equal to N dash minus 1 omega not 

which tends to 2 pi. We can write with all these changes that x 2 n which is now a non-

periodic signal because it is of infinity duration, equals 1 by 2 pi integral 0 to 2 pi X 2 of 

omega e to the j omega n d omega. But since, this x omega x 2 of omega is periodic 



which is very easy to show, we could actually integrate over any contiguous period of 

length 2 pi. For example, we could rewrite this as equally as 1 by 2 pi integral minus pi 

to pi X 2 of omega e to the j omega n d omega. It is equally valuated to right this. 

Now, the analysis equation. We have N x 2 k equal to X 2 of k omega not was given by 

summation n equals 0 to N dash minus 1 x n e to the minus j k omega not and applying 

the same changes over here, we find that as N dash tends to infinity, e to the j e to the 

minus j k omega not n simply becomes e to the minus j omega n and n runs from n 

equals minus infinity to n equals infinity. So, that you get X 2 of omega equals 

summations n equal to minus infinity to infinity x n e to the minus j omega n.  

With this, the spectrum of the non-periodic x n has become a function of the continuous 

variable omega as it runs over an interval of length 2 pi. So, we have a continuous 

spectrum. No longer have a line spectrum but instead a continuous spectrum. However 

this spectrum is periodic with period 2 pi, something we will demonstrate in a moment 

but let us understand at least what has finally, resulted.  
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What has finally resulted is a frequency domain representation for non-periodic discrete 

time signals, where the representing signals namely the complex exponentials, the 

periodic complex exponentials e to the j omega n, are themselves periodic. But, can 

never the less represent non periodic signals x n because they are all no longer 

harmonically related. This is analogous to the similar discussion that we had for the case 



of the continuous time Fourier transform. Even there the representing signals are all 

periodic signals. 

But they manage to represent the non-periodic signals there and that again happens 

because we are actually combining by addition periodic signals, which are not 

harmonically related. So, this is called discrete time Fourier transform called d t f t 

whose analysis equation is given by X omega equals summation overall n x n e to the 

minus j omega n and synthesis is x n equals 1 by 2 pi integral minus pi to pi, if we like, 

X omega e to the j omega n d omega. These are the analysis and synthesis equations, 

with this implies it is time to discuss issues like the convergence behaviour of 

convergence existence issues of the d t f t. 
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It can be shown that if the sequence, infinitely long discrete sequence the non-

periodically long discrete sequence, x n is absolutely sum able overall n. Then X omega 

will be finite for all omega 0 less than equal to omega less than 2 pi and whenever X 

omega exists, the reconstruction x at w n I will say, integral from minus w to w X of 

omega e to the j omega n d omega for 0 less than equal to w less than pi, this is X at n. 

Now, this turns out that limit as w tends to pi of x at w of n equals x n for minus infinity 

less than n less than infinity. That is for all n.  

The reconstruction matches or converges to the original sequence. Whenever the discrete 

time Fourier transform exists, this convergence will happen. We only had to take care 



that the existence is ensured, rest of it will follow automatically. So, this has brought us 

to a certain level. Now, what can we say next is that at this stage it will be worthwhile to 

look at examples of d t f t. 
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Examples of the d t f t remember that d t f t exists for sequences which are absolutely 

sum able. So, very evidently we cannot consider sequences which keep blowing up 

without limit. They should be absolutely sum able. So, we will consider such examples 

of sequences and see what the d t f t comes to. First example, let x n be equal to an un. 

That means it is a sequence like this a sequence which exponentially decays n tends to 

infinity. 

Now, what would be the Fourier transform of the sequence? The discrete time fourier 

transform of the sequence, x omega, would amount to summation from 0 to infinity 

because for negative values of infinity this is 0 because it is multiplied by un and you 

have a to the power ne to the minus j omega n. Now, note that a must be between minus 

1 and 1, mod a must be less than a 1 for this kind of graph to exist. Otherwise it will be 

going up and not going down. So, mod a is less than 1.When mod a is less than 1 and x 

omega is this, x omega evaluates to 1 by e to the minus 1 by 1 minus e to the minus j 

omega. 

Next, second example. We will now consider a bilateral signal, a signal which is non-

zero for both negative and positive time and which is also even symmetric and see how it 



comes out. Clearly for the first example, 1 by 1 minus e to the minus j omega is not 

really a real function. It is complex value, because there is complex numbers in the 

denominator and that is understandable for reasons of symmetry that we will come to 

know a little while.  

The second example is x n equals a to the power minus mod n. Again, we are going to 

say that a to the power mod n where a is less than 1, mod a is less than 1. Now, in this 

case, you will have X omega equal to summation from minus infinity to infinity, we can 

split it up into two terms, and get summation minus infinity to minus 1a to the minus n e 

to the minus j omega n plus summation 0 to infinity a to the n e to the minus j omega n. 

Now, this expression is what we want to evaluate and this comes to finally, after 

simplification it comes 1 minus a squared, actually let me write the intermediate steps as 

well. 1 by 1 minus a e to the minus j omega plus 1 by 1 minus a e to the j omega. Going 

back to the previous problem there is just a small factor I have missed in the final 

expression in the x omega.  

If you look at this part, this part is wrong and we are just going to strike it out, I forgot 

about a, is equal to 1 by 1 minus a e to the minus j omega. So, this can be knocked out 

now because it is wrong. This is the expression over here. Here, we have similar 

expressions, but separate expressions for the two parts, and now for simplification, this 

becomes 1 minus a squared divided by 1 minus 2 a cos omega plus a squared. So, this is 

the expression for the d t f t of the second example.  

Now, see second example is even symmetric it will turn out for reasons that we will 

describe when we discuss the properties of Fourier transform that they should be 

completely real as indeed actually is all terms, all factors in the expression for x omega 

can easily be seen to be completely real. There are no complex terms over here. Now, the 

third example is of the rectangular pulse. 
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The rectangular pulse is given by x n equal to 1 for mod n less than N 1 equal to 0 for 

less than equal to N 1 and equal to this mod n greater than N 1. So, you will get X omega 

as a finite sum from n equal to minus N 1 to N 1 of x n is anyway equal to 1. So, you just 

get the basis function e to the minus j omega n. This is what you get and this comes to be 

equal to sine omega N 1 minus half omega times N 1 minus half over sine omega by 2. 

So, these are a few standard examples of the d t f t of some simple expressions. 


