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We shall now start a discussion of the representation of signals and systems for the 

discrete case discrete signals and systems and their representation one might argue that in 

the real world there are no discrete signal now if one takes that view then one is simply 

defining what one means by the real world, because in today’s world with digital 

cameras with digital recording of audio signals we do have discrete time signals and they 

are very much part of the real-world you might say that they are not present in the natural 

world, but then we will have to debate about what is natural and what is unnatural what 

is artificial and what is natural instead one can just confine oneself to the to a study of 

the advantages and problems that one associates that one can associate with a discrete 

formulation of the theory of signals and systems in contrast with the continuous 

formulation that we have spent some time on. 

So, far we already have an introduction to discrete sequences which are called discrete 

discrete time signals we have an introduction to the discrete complex exponential in 

considerable detail all this has already been covered in this course what we are now 

going to look at is a parallel study a study along the lines we have already travelled, but 



this time for discrete time signals there if you recall we started with periodic continuous 

time signals of the form x T equals x T minus t. So, the period was T now in this case we 

start with discrete sequences which we will denote by x n equal to x n minus n. So, the 

period is now an integer that we call n we also generally indicate that the independent 

variable of the signals is a discrete variable by using brackets instead of parenthesis for n 

as we have done just now alright now given this let us try to see, if there is some 

relationship we can draw between discrete time sequences and continuous time functions 

which are both periodic suppose I construct, suppose I try to construct a discrete time 

sequence by sampling a continuous time signal suppose further that x T is periodic as 

been given over here I want to ask the question if we have sampled a continuous time 

periodic signal x T using a discrete set of samples which are placed say T naught seconds 

apart from each other under what circumstances will the discrete sequence that results be 

periodic as well. So, the samples we have are x let me call this new discrete sequence as 

say y n y n equals x of k T naught for x T equal to x T minus t. 

 So, capital T is the period of repetition of x T and T naught is what we call the sampling 

interval. So, at integer values of k you get k T naught points on time and at those 

instance the value of x T will be taken as the values of the sequence y n sorry it is not k 

we will call this n. So, y n equals x of n T naught this is what we have now we want to 

ask is y n periodic periodic now it is a discrete sequence. So, its periodicity or otherwise 

will be judged by whether it meets the criterion for periodicity of a discrete sequence as 

set out in this equation this is what is going to determine that now we will see is y n 

periodic now there are several cases to consider a if T by T naught is an integer than y n 

is periodic and one period of y n will coincide with one period of x t. 
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This is the first case now going to the second case b if T by T naught is not an integer, 

but k T equals L T naught than again y n is periodic and one period of y n will coincide 

with k periods of x T this is when we have T by T naught equals L by k where L and k 

are integers. So, both for T by T naught an integer and for T by T naught a rational 

number y n is periodic the third case is when T by T naught is not even rational when 

this happens even though x T is periodic y n will never be periodic y n is not periodic. 

So, this tells us that when you construct samples of when you elicit samples of a periodic 

continuous time function certain criteria have to be met for this sequence of samples to 

also be periodic and if the samples the sequence of samples has to have a period which 

coincides with the period of the original continuous time signal certain additional criteria 

namely that T by T naught must be an integer must be satisfied otherwise it does not 

happen right. So, with this much in hand we will completely disassociate ourselves from 

continuous time signals and just deal blindly with discrete time sequences which are 

periodic. 

So, from now on we will only consider periodic discrete time sequences periodic discrete 

time sequences which satisfy x n equals x n minus n where capital n is therefore, called 

the period of the sequence we want a theory of representation for periodic discrete time 

sequences a theory of representation means we have to look for preserved classes which 

are as small as possible preserved classes which are as small as possible we could 



generate a set of preserved classes on the basis of finding harmonically related periodic 

signals that are harmonically related to x n. 
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So, one approach is to seek preserved classes of signals harmonically related to x n this 

would give us signals which are not necessarily only complex exponentials, but because 

of this fact they will not have the special property in relation to linear time invariant 

systems that complex exponentials have these classes would also be larger in size 

because they would contain classes of periodic complex exponentials which are also 

harmonically related to x n. So, for reasons very similar to those that we discussed in the 

context of finding periodic preserved classes of complex exponentials to represent 

periodic continuous time signals in the context of L T I processing linear time invariant 

processing we will proceed to also look at preserved classes only of complex 

exponentials periodic complex exponentials for the representation of periodic discrete 

time sequences the reason of course, is that a complex exponential periodic or otherwise 

preserves its form under linear time invariant processing just as it did in the continuous 

time case it does.  

So, in the discrete time case as well. So, we want to look at preserved classes of complex 

exponentials discrete of course, that are harmonically related to x n x n has a period n. 

So, if any complex exponential has to be harmonically related to it then it must satisfy 

the property that it also should repeat after every n members of the sequence that is to 



say if now we have a discrete complex exponential of the form e to the j 2 pi by n into n 

two pi by n into k n is to be considered for being harmonically related to x n then it must 

satisfy e to the j 2 pi by n k n must be equal to e to the j 2 pi by n k n minus n I have 

already let the cat out of the bag by saying that the fundamental frequency must be two 

pi by n if I had not told you this and if I had simply written these equations as e to the j 

omega naught n. And here also if I had written just e to the j omega naught n must be 

equal to the this then we would really have this job on our hands of finding out what 

choice of omega naught would yield this property of being periodic with respect to 

capital n and it does turn out that omega naught equal to 2 pi by n does yield this feature 

in order to verify this we will see the following consider e to the j 2 pi k by n times n I 

have not specified what k is I will leave it just as an integer for the time being now let us 

see what happens let us put n minus n over here.  

So, we will consider this minus n we will consider actually this expression this is equal 

to e to the j 2 pi k n by n times e to the j 2 pi k n by n which is just equal to e to the j 2 pi 

k n by n plus sorry not plus times times e to the j 2 pi k which is always equal to 1. 

Hence e to the j 2 pi k by n times n is periodic with period n n for all k for any integer k 

since we said for any integer k it would seem that since k can take all values from minus 

infinity to infinity we have an infinite number of different periodic discrete complex 

exponentials which make the grade which are periodic with period n.  
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Now, while we have an infinite number of them in one manner of speaking they all of 

them do not turn out to be different from each other and this is what we will. Now, show 

by manipulating the variable k and see what happens if I choose k equal to 0 k equal to 1 

and. So, on. So, for different values of k for different values of sorry small k we get e to 

the j 2 pi into 0 by n just gives you 0 e to the j 0 n this is the first sequence next you have 

e to the j 2 pi by n into k equal to 1 that is e to j 2 pi by n into n next you will get e to the 

j k equals two. So, you get four pi by n into n and going on us thus you will get e to the j 

2 pi n minus 1 by n into n.  

So, how many have we got over here we started with k equal to 0 then took k equal to 1 

and so on up to k equal to n minus one. So, there are n minus 1 plus of course, the zero. 

So, we have totally n different functions now suppose we proceed further and write the 

next function in the sequence now k is not n minus 1 it has reached n minus 1 its going to 

become n. So, you will get e to the j 2 pi n by n times n, but this is simply equal to e to 

the j 2 pi n which is equal to e to the j e to the j 0 n because e to the j 2 pi n is the same as 

e to the j zero n.  

That means, after the first n different functions that we got as listed over here the next 

member is the same as the first member there is no difference between the n th nplus 1 th 

member and the first member thus we find that we have only n different members you 

can go further and consider the n plus 1 th member n plus second th member and that 

will turn out to be the same as the second member for example, if you consider e to the j 

2 pi n plus 1 by n into n this is nothing, but e to the j 2 pi by n into n times e to the j 2 pi 

n by n into n which is just equal to e to the j 2 pi n by n.  

So, all these start repeating as you move further to the right in short we have found only 

n different discrete complex exponentials with period capital n though k can be given 

any value you like and you will end up with a complex exponential it is just a repetition 

of an earlier found complex exponential now let us move towards the left and see what 

happens we have been going only towards increasing k the first value we had was k 

equal to 0 let us take k equal to minus 1 what is this is equal to its equal to e to the j 

minus 2 pi just a second minus 2 pi n by n which is equal to 1 if you go further you will 

get e to the j minus 4 pi n by n which is sorry this is not equal to n equal to minus 2 pi 

which is nothing, but e to the j 2 pi n minus 1 n by n, if you go further to the left and 

examine e to the j 2 pi minus 2 n by n this turns out to be equal to e to the j 2 pi n minus 



2 by n n minus 2 n by n, so even towards the left the sequences the the sequence of 

different discrete periodic complex exponentials repeats now suppose we denote by phi k 

of n to make our life a little less this expression e to the j 2 pi k by n into n suppose we 

write this than we have now found that we have phi 0 n phi 1 n phi n minus 1 n as n 

distinct periodic complex exponentials with period n.  
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So, n distinct ones after this we find that phi n equals phi 0 phi n plus 1 equals phi 1 and 

so on towards the right and towards the left we find phi minus 1 equals phi n minus 1 and 

so on towards the left. So, in neither direction do you find any new periodic complex 

exponential you therefore, find for period n exactly n distinct complex exponentials only 

conclusion we have only n distinct periodic complex discrete exponentials no more no 

less with which to represent the periodic signal x n equals x n minus n this is all we have 

no more than this ; that means, that when we write a synthesis equation similar to what 

we wrote for x T we can be very compact about it it will be a sum only of a finite number 

of terms.  

So, we will write the synthesis equation the tentative synthesis equation x n equals 

summation x k which are the weights with which we should add the complex exponential 

components phi k n sorry phi k n as k goes from 0 to n minus 1 this seems. So, much 

more comfortable than dealing with summing an infinite sequence of components we 



just have a finite number of components that have to be added to present x n that is all 

we have. So, with this finite set of components there are some nice things which happen? 

There are times when we do not know if the transform representation or the signal 

representation we have for x n will actually converge to x n here there is no such issue 

because we are just adding a finite number of terms and the sum will also therefore, be 

finite because each term is finite. So, this is the synthesis equation the synthesis equation 

has dealt in terms of these phi k’s of n each phi k of n being e to the j 2 pi k by n into n 

now how do we find the weights x k to find the weights x k we hardly need to repeat that 

we do it exactly in the same way as we handled the problem in the continuous time 

fourier series case we do it by correlating x n with the corresponding complex 

exponential. So, x k turns out to be equal to 1 by n times summation this again is a finite 

summation n equals 0 to n minus 1 x n e to the minus j 2 pi k by n into n. 

Fine, now this gives the analysis we have a minus sign in the exponent of the complex 

exponential here simply because we have to take the conjugate of the function when one 

is carrying out a correlation. Now taking the synthesis and the analysis equations side by 

side as we have found and rewriting them in this form the synthesis equation can be 

rewritten as for example, one by n summation n equals 0 to n minus 1 x n phi star k of n 

this would be the analysis equation since both the analysis and the synthesis consist of 

finite sums and since they both carry out sums over the same set of basis terms phi k of n 

we can. Now write this in the form of a matrix operation the whole business of finding 

the x k’s unlike in the case of the continuous time analysis turns out to be simply a 

matter of solving n simultaneous linear equations in n unknowns n simultaneous linear 

equations in n unknowns fine with the further assurance knowing that the equations are 

independent why they are independent I will come to in a moment it is because these 

exponentials that we have are all orthogonal to 1 another they are all orthogonal to 1 

another which is very easy to demonstrate you just take say for example, a summation 

over one period n equal to 0 to n minus 1 of phi k n and phi star L n. 
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Where k is not equal to L this will be equal to n equal to 0 to n minus 1 of e to the j 2 pi k 

minus L n by n now this is a 0 average signal both its real and imaginary parts are 0 are 0 

average real and the imaginary component sequences of phi k n phi star L n both the real 

and imaginary parts are 0 average of course, when k and L are different and hence 

summing over one period will yield 0 summing over one period will yield 0 this; 

however, will not happen when k equals L k equals L you will get the summation 

evaluates to capital L that is what happens this is why we say or will I say this is this 

indicates that phi k n and phi L n are orthogonal for L not equal to k orthogonality it 

turns out is a repeated thing in our study of various kinds of representations for the 

fourier series we have already shown that the Fourier the complex exponentials e to the j 

omega naught T and e to the j 2 omega naught T. For example, are in general e to the j k 

omega naught T and e to the j L omega naught T were always orthogonal.  

So, let us just have a small about the orthogonality of these representing functions in the 

continuous time Fourier series we have e to the j two pi by T k T is orthogonal to e to the 

j 2 pi by T L T for k not equal to L orthogonal is orthogonal to; that means, that over one 

period 0 to T e to the j 2 pi k minus L by T of T equals 0 for k not equal to L this is what 

we have this is the proof of orthogonality for the c T f s for the c T f T.  
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We have similarly again that the integral the inner product this time evaluated again over 

one period, but now the period is infinity from T equals minus infinity to infinity still 

yields 0 that is if you have an integral from minus infinity to infinity of e to the j omega 

T multiplied by e to the minus j omega dash T d T which is the same as saying integral 

minus infinity to infinity e to the minus. Sorry e to the j omega minus omega dash T 

ready to go now even if omega and omega dash differ by a very small value differ by an 

extremely small value still e to the j omega minus omega dash T is a periodic complex 

exponential with 0 average real and imaginary parts when the averaging is carried out 

over a large interval such as minus infinity to infinity thus any two exponentials used any 

two distinct exponentials used in the CTFT representation are always orthogonal.  

So, that is true as it turns out as much for the CTFT as it was for the continuous time 

fourier series and again we see a manifestation of the same thing when we dealt with the 

discrete time fourier series we have only n different complex exponentials there which 

have all the period of capital n and each of them is orthogonal to every of the every one 

of the other members of the set and it is, because these different exponentials are 

orthogonal with respect to each other that we get a set of independent linear equations 

and because they are independent what we get is a matrix equation to solve where the 

matrix has full rank we are now going to write the equation in matrix form the…  
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So, now let us make a matrix of all the equations that go into determining the analysis. 

So, for the analysis we have the analysis equation x k equals one by n summation n 

equals 0 to n minus 1 x n phi k n star this is what we have this written out in plain 

language will give you a matrix of this form a matrix equation of this form you have x k 

which is x 0 going on to x n minus 1 equals the matrix phi 0 zero phi 0 on to phi 0 n 

minus 1 next row is phi 1 0 phi one one going on to phi 1 n minus 1 and finally, phi n 

minus 1 0 phi n minus 1 one phi n minus 1 n minus 1 all of them of course, conjugated 

something I forgot.  

So, you can put star star star star this thing times x 0 to x n minus 1 this is the analysis 

equation now for synthesis, we have the equation x n equals summation k equals 0 to n 

minus 1 x k e to the I will just write in terms of our abbreviated notation I will write x k 

phi k n. So, now, we do a summation over k’s instead of n’s and thus we have the 

synthesis equation in matrix form as x 0 to x n minus 1 equals phi 0 0 phi1 0, so on to phi 

n minus 1 0 phi 1 0 phi sorry phi 0 phi 0 of 1 phi 0 of 1 phi 0 of one was the first term in 

the second row then phi 1 of one going onto phi n minus 1 of one and so on until you 

finally, have phi 0 of n minus 1 phi 1 of n minus 1 going onto phi n minus 1 of n minus 1 

times x 0 to x n minus 1.  
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The coefficients x 0 x n minus 1 are called the discrete time Fourier series coefficients 

coefficients. Now it is important to ask whether we have only eight only whether we 

have only n different discrete time Fourier series coefficients or there are more the 

answer is that there are only n because these Fourier series coefficients are found as 

correlations of the corresponding complex exponential discrete complex exponential 

with the original function since there are only n different discrete complex exponentials 

periodic complex exponentials which can be correlated with x n we will get only n 

different discrete d T f s coefficients.  

So, we have the d T f s coefficients satisfying a periodicity property you have x 0 going 

on to x n minus 1 then if you write x n it turns out to be equal to 0 x n plus 1 will be 

equal to x 1 and so on this side and if you go towards the left and write x minus 1 that 

will turn out to be equal to x n minus 1 if you write x minus 2 that will turn out to be 

equal to x n minus 2 and so on towards the left side. So, in short you only have these 

many really distinct coefficients no more than these and the periodicity that you observe 

is a very, very important property of the discrete time Fourier series coefficients you do 

not have an unlimited number of coefficients like was the case with the continuous time 

Fourier series, but only a finite n number of different coefficients.  


