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We now consider the use of the convolution theorem for the solution of differential 

equations for implementation of systems that are described by differential equations. 

About the implementation of systems described by differential equations, we have 

already had some exposure. If you recall, we are only concerned with linear constant 

coefficient, ordinary differential equations, which were given the general form. 
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Just to recall the terminology, let us remember that y t is called variously the solution or 

output and x t is called the forcing function or input. We had already studied systems 

described by such equations and we had even studied certain implementations. If you 

recall their names, they were called a direct form 1 and direct form two implementations. 

Before we proceed, we will make some harmless assumptions, some assumptions that 

can be made without any loss of generality. This was something we did even earlier and 

this is simply that we will assume that M equals N and both are even if these assumption 

is not actually valid in a particular example of a differential equation. We can just set N 

equal to the max of M and N and add a fewer 0’s. For example, if M equals 5 N equals 7, 

then extend the equation. 

By including a 8 equal to 0 that would make N even and b 6 equals b 7 equals b 8 equals 

to 0, then you would have eight terms of the higher derivatives of both x t on the right 

side and y t on the left side. So, you could write this equation as summation k equal 0 to 

8 a k d k y t by d t to the k where a 8 is been designated as 0. Similarly, on the right side 

write such a similar expression where b 6 b 7 and b 8 are designated as 0. So, we will 

proceed with this assumption just because of the convenience it gives us. As we can see 

from what we have shown over here, it does not take anything away from generality of 

the formulation. 
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Now, if you recall direct form 1, then it was implemented using a set of integrators and 

the overall form looked like this. This was the direct form 2 implementation, it required 

N integrators for an N th order differential equation. So, this is the only way we could 

implement of course, apart from direct form 1 a system that was described by this 

differential equation. Now, with the strength of the Fourier transform and it is 

convolution theorem, the powerful convolution theorem, there are other ways in which 

one could implement a differential equation of this sort a system described by differential 

equation of this kind.  

This is what we are now going to examine, let us return to the differential equation. Now, 

suppose we use the differentiation property, the differentiation property says that d y t by 

d t will transform to j omega Y omega and more generally d k y t by d t to the k th 

derivative of y t will transform to j omega to the k Y omega.  So, using this property both 

for y as well as x we can write down the differential equation by transforming both sides 

by taking the Fourier transform of every term of both the signs this is what we have.  
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Now, let us go on recall the convolution theorem, it said that if you had an input x t and 

an output y t of linear time invariant system with impulse response h t. Then, the 

complete transformation of the following expression x t convolved with h t equal to y t 

was that X omega times H omega equals Y omega. This is the transformation of that 

equation, but from this it follows that H omega can be written as Y omega by X omega. 

Now, if we go back to the equation, we have just obtained by transforming both sides of 

the differential equation, we find that Y omega is a common factor in all the terms on the 

left side and X omega is a common factor in all the terms on the right side.  

Hence, we could factorize this expression, divide Y omega by X omega to get an 

expression for H omega. Now, both are N th degree polynomials, the numerator and the 

denominator, I will call this B of j omega over a of j omega. Then, both B j omega and A 

j omega are N th degree polynomials in j omega with coefficients given by b k’s and a 

k’s respectively with these coefficients. Now, for a real-world system, a system that 

actually exist in this world and describes some kind of a practical problem, we expect all 

the a k’s and b k’s to be real.  
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Now, let us see, this is called the polynomial rational form for the system of the transfer 

function H omega of the system. Now, where is all this leading to? We will know in a 

very short while where it is leading us to is this, you see, earlier as I said, we had only 

direct form 1 and direct form 2 ways of implementing the system, but now other 

possibilities open up. These possibilities open up by manipulating the polynomial 

rational form in two different but very, very interesting directions.  

The first approach is to manipulate A j omega by B j omega into a product of factors, 

rational polynomial factors. The second approach is to manipulate H omega into a sum 

of partial fractions, each a rational polynomial is in itself a rational polynomial. So, this 

is the second thing that we can do, so each of these is going to give us an interesting 

result. In order to be able to do either of this the first thing, we have to figure out is how 

to factorize A omega A j omega and B j omega. So, factorization of A j omega and B j 

omega since all the a k’s and b k’s are real this much can be said.  

We can say that the roots of A j omega and B j omega are all either real or found in 

complex conjugate pairs. They are all either real or found in complex conjugate pairs, so 

what we will try to do is to factorize A j omega to begin with into second-order factors. 

If we factorize them into first order factors, we may or may not get real coefficients in 

those factors, but let us just in any case do it to understand what happens suppose we 

factorize into first order factors. 
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So, we will write A j omega equals pi k equals 1 to N j omega minus p k, where p k are 

the roots, the n roots of A j omega. As long as the p k’s are real, there is no problem, if it 

happens that they are not real, then we will pair them up, so that the complex ones are 

matched along are matched against their conjugates. If we match each complex root with 

its conjugate and develop it into a second order factor by expansion. Then, finally we can 

say that we will be able to find an expression for A j omega in the following form 

matching gate, making matching conjugate routes into pairs and expanding into second 

order factor, second degree.  

We can write A j omega equals pi k equals 1to N by 2, remember that we have taken N 

to be even. Now, we know why we have taken into be even, so that we get a nice 

complete set of second order factors, second degree factors. Then we will write j omega 

square plus a k 1 j omega plus a k 0, this will be A j omega will be equal to a product of 

second order factors of this kind, where we are certain that all a k 1 a k 0 k equal to 0, k 

equal to 1 to N by 2 are real. When you match two factors, two first order factors with 

matched conjugate routes and expanded since the roots are conjugate, all these 

coefficients a k 1 and a k 0 will come out to be real.  

In addition to this, there could be some constant outside which I will call say is 0 that of 

course, will be the scale factor that lies outside this entire expression. Similarly, we could 

do the same exercise with the b polynomial and following the same arguments make the 



 
 
same claim about the second-order factors of the B polynomial. So, we will write 

similarly, B j omega can be written as some b naught capital b naught times the product 

k equal to 1 to N by 2 of j omega whole squared plus b k 0, sorry b k 1 j omega plus b k 

0. We could write this then; taking this whole thing together, we can now express our H 

omega has a product of N by 2 different second order rational polynomial factors as 

follows. 
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I will it write as B 0 by A 0 product k equals 1 to N by 2 of H k omega. So, it is a 

product of each of these factors and a factor like this is what I call H k omega. Now, let 

us understand one implication of the convolution theorem. The convolution theorem said 

that if you apply X omega or x t to a system with an impulse response h t and got output 

y t, then Y omega was X omega times H omega. From this, it followed that if you 

applied Y omega further to another system say h impulse response h dash of t.  

Therefore, a Fourier transform of H dash of omega to get say z of t then z of t would 

have a transform Z omega, which was related to X omega and Y omega as follows. So, 

let us consider what is called a cascading arrangement of multiple systems, x t goes to a 

system with impulse response h t to yield y t. This again goes to a second system h dash 

of t which goes, which yields h t. Let us have this, then we have Y omega equals H 

omega X omega Z omega equals H dash omega Y omega equals H dash omega H omega 

X omega.  



 
 
So, this is what we have, thus it follows that means if you have a cascading arrangements 

of several systems, then you simply multiply the transfer functions of the respective 

systems in the cascade. So, this follows from this the fact that convolution and 

multiplication are commutative. It means that you need not even arrange them in any 

particular order, I could write H dash omega times H omega times X omega equally as H 

omega times H dash omega times X omega or X omega times H dash omega times H 

omega in any way I like.  

The order does not really matter; the order in which we arrange these systems does not 

really matter as far as the theory is concerned. So, that means if we now look at H omega 

of our earlier system, let me just put a box on all these. This was a digression not so 

much a digression as a clarification of some of the implications of the convolution 

theorem. We will now return to the original discussion and see the following here, we 

have H omega equals some B 0 by A 0. So, I will just call, say H 0 which is just a 

multiplicative constant time the product k equals 1 to N by 2 of H k of omega.  

Each H k of omega is the typical second-order system with both moving average and 

autoregressive components. How would you implement H k of omega? H k of omega has 

an impulse response h of t, h k of t and is equivalent to a system described by a 

differential equation. What is this differential equation that will describe this h k of 

omega? The differential equation is simple, it has as you can see terms j omega squared b 

k 1 j omega plus b k 0 and on the other side has j omega squared a k 1 j omega and a k 

zero. So, this would correspond to the differential equation d squared y t by d t squared 

plus a k 1 d y by d t plus a k 0 equals d squared x t by d t square plus b k 1 d x t by d t 

plus b k 0.  

If you are not convinced of this, you can again take the Fourier transform of the left side 

and the right side here. Of course, y t and x t are not the same thing as before, in fact 

maybe we should call them as y k y k x k and x k to say that there are the input x k of t 

and the output y k of t of the k th system in the cascade alright. So, you can just take the 

Fourier transform on and do all the same things that we did a few minutes ago and you 

will find that h k omega given by this expression over here given by this expression over 

here will indeed be given by this differential equation, this difference equation. Now, 

how do we implement this that differential equation in our conventional direct form two 

kind of format very, very simple, you can recall what we used to do it was simply that. 
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If I had x k of t going into the system, then there were a few summing blocks, scaling 

blocks and you got y k of t over here. Then, you had a pair of integrators just to and then 

here we had b k 0 here we had b k 1 and here we had this sum of all those on this side. 

We have minus a k 0 minus a k 1 and then these were getting summed up and added to 

this. This is how you would implement it, this whole thing is nothing but an 

implementation of h k of t with x k of t as the input and y k as the output.  

Now, we have a cascade of such systems, we have a cascade of N by 2, such systems, 

because the Fourier transform of h omega is a product of all these plus there is this gain 

term that was there. Just go and recall what the gain term was, it was B 0 by A 0. So, let 

us write now a new implementation of a system described by the same differential 

equation and this implementation will be called the cascade form implementation, x t 

goes in to the first block which is h 1 of t. Next block h 2 of t and so on until you come to 

h n by 2 of t and you get y t in transform domain terms.  

You would write x omega entering h 1 omega leading to h 2 omega and eventually 

leading you to h n by 2 omega. This gives you Y omega, so this is what you would have 

this is the cascade form implementation this is an entirely new way of implementing. The 

differential equation which you really could not have done, because we had no means to 

factorize these things, the whole thing was in one piece. Now, you are able to factorize 

them. Now, factorization was not the only approach, if we go back a couple of slides we 



 
 
will see that there was another approach is that is to manipulate H omega this one, to 

manipulate H omega into a sum of partial fractions each a rational polynomial in its own. 
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So, this is the next thing we will look at, so we already have h omega in the form of B j 

omega by A j omega. Now, depending upon the actual values of M and N, which are the 

orders of the equation of the derivatives on the right side and the left side respectively of 

the original differential equation; this polynomial rational form over here for H omega 

might or might not be a proper fraction. In the sense that the degree of the numerator 

might or might not be less than the degree of the denominator.  

If we take the general case that it may not be proper fraction then we can always rewrite 

this as H 0 of omega plus we will write B dash j omega by A j omega, where now B 

dash, degree of b dash j omega is less than degree of A j omega. This is what I mean it is 

just done by long division, nothing very special about it. We have this term, which this x 

0 of j omega we will call is the quotient term, it will just be a polynomial we have 

already broken up H omega into a sum of two parts. This is just the beginning; we are 

going to break up B dash j omega by A j omega into a series of second order terms into a 

sum of second order terms.  

Now, A j omega is the same as we had earlier in the cascade form as well. Therefore, its 

factorization in this case would be really no difference from its factorization into second-

order factors in the case of the cascade form implementation. So, we will again write A j 



 
 
omega as a product pi k equal to 1 to N by 2 product of the terms of the form j omega 

whole square plus a k 1 j omega plus a k 0. This is what we will have for the 

denominator, so essentially we are looking at a situation where there are N by 2 second-

order factors of A j omega, all of which have real coefficients as far as b dash is 

concerned.  

Since, it is degree is less than that of the numerator after carrying out a partial fractions 

expansion. What you will get is a sum of factor of some of terms where each 

denominator is one of these factors of A j omega and whose numerator is a first order 

term that is a factor of B j omega that is depended upon B dash j omega. In short you will 

get H omega or rather we will just focus on B dash j omega by A j omega can be written 

as the sum of B dash k 1 j omega plus B dash k 0 divided by k equals 1 to N by 2.  

Here, you have j omega squared plus a k 1 times j omega plus a k 0, this is what you will 

have and therefore, finally, you can write that H omega equals H 0 omega plus this sum. 

Now, I will rewrite this as H omega equals H 0 omega plus summation k equals 1 to N 

by 2 H k of omega. Of course, these h k’s are not the same as h k’s we got in the cascade 

form. They are quite different alright because these are essentially partial fraction terms 

where there we had second-order rational polynomial factors.  
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So, now we have this how do we implement this? Implementing any h k for k equal to 

going from 1 to N by 2 is very straightforward. It would have an implementation like this 



 
 
it would have an input x k of t that would go into the system B dash k 0 B dash k 1. This 

would be y k of t and on this side you would have a dash no minus a k 1 and here you 

would have minus a k 0 that would give you the implementation of the autoregressive 

part. So, you have this would be the implementation of one h k of omega, so this would 

give me one block. Now, how do I put the all the blocks together? In the earlier form we 

cascaded all of them, but here we have to add all of them.  

So, we actually do the following: we apply x t to a kind of a distributor which passes it 

successively through H zero of t which is the Fourier transform. I am just pointing out 

that H zero of t is the inverse transform of H 0 of omega and then you will have H 1 of t, 

the inverse form of H 1 of omega and so on up to H N by 2 of t. All this would have to 

contribute to a common sum and the final result would be y of t in both the cascade form 

and the parallel form implementations.  

We have succeeded in decomposing effectively the larger more complex N th order 

system into a combination either a cascade combination or is called a parallel 

combination . We have succeeded in decomposing larger and more complex system into 

component systems either in parallel form or in cascade form where none of the 

component systems has a degree or has an order, which is greater than 2. This completes 

our discussion of the study of continuous time signals and their representation through 

discrete time Fourier series.  

For periodic functions, sorry, not discrete time continues time Fourier series for periodic 

continuous functions continuous time functions and continuous time Fourier transform 

for non periodic continuous time functions. We also extended continuous time Fourier 

transform to obtain a unified formulation that admitted of both finite energy and finite 

power signals, so that we really only need to carry the Fourier transform along with us in 

our minds. We have seen how the system, this theory of signal representation has 

allowed us to do many things in a new way it has given us physical interpretations of 

notions like frequency which are certainly easily palpably meaningful.  

In the context of say the analysis of music or in the analysis of detail in an image, so 

since we cannot go deep into these into the study of these applications we will merely 

point out that one of the truly original things that has a reason out of our study of the 

Fourier transform. As a means of representing systems is signals and systems is these 



 
 
two new completely new ways of implementing systems described by differential 

equations. What we have seen is truly a new way of implementing the differential 

equation, the cascade form as well as the parallel form. These forms of implementation 

would not have been possible if we did not know how to decompose be higher order 

differential equation into a combination of lower order differential equations.  

That could happen only because we used the theory of signal representation provided by 

the Fourier transform. So, that completes our discussion of the Fourier transform and the 

Fourier series for continuous time signals. The next thing we will touch upon is the study 

of discrete time signals and systems, which process them, and how we represent discrete 

time signals, how we find representations for discrete time signals. 


