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The Fourier transform that we have just discovered is what is more formally called the 

continuous time Fourier transform, which we abbreviate to CTFT or even to just FT 

where there is no room for confusion, but sometimes there is room for confusion and 

then we will call it the CTFT rather than just the FT. This is characterized by the 

following features it finds representations for non-periodic continuous time signals in 

terms of complex exponentials, that are themselves periodic, but not harmonically 

related, they are not harmonically related. This is what allows us to construct the non 

periodic signals using periodic representations, using periodic components. Secondly, the 

number of representing signals, that is the number of signals we use for representation 

namely the complex exponentials e to the j omega t is un-countably infinite.  

Hence the linear combination that is the synthesis equation takes the form of an integral 

rather other than a sum rather than a sum, as was the case for the Fourier series, there it 

was a sum now it is an integral. So, this is relates number them this is point 1, point 

number 2, point number 3. The representation is thus in the form of a continuous 

spectrum not line continuous spectrum, and is generally complex valued, just like the 



Fourier series spectrum, generally complex valued just like the Fourier series spectrum, 

and has a real and imaginary part, and has a real and imaginary components or 

magnitude and phase. So, let us plot this Fourier spectrum for some standard signals for 

some examples. So, that we get an idea of what the Fourier transform spectrum looks 

like, I will not trouble to go through the details of the derivation I will just give the 

Fourier transform pairs for the original, fine time function and for the transform of that 

time function. 
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Examples of the Fourier transform as I said I will just give the pair’s, the transform pairs 

the original time function and its Fourier transform, it is very easy to derive these 

expressions, all you have to do is to substitute the expressions for the time function in the 

analysis transform in the analysis expression, and you will get the answer in few steps. 

So, one example is x t equal to e to the minus a t u t for a greater than 0, I cannot tell you 

right now why I am saying a greater than zero, but in a very little while in another few 

minutes that will become the topic of discussion, right now if we have x t equals e to the 

power minus a t u t then the Fourier transform of this turns out to be x omega equals 1 by 

a plus j omega for minus infinity less than omega less than infinity. So, this is one 

function, you can see that it is clearly complex valued you can find its magnitude part 

which will be 1 by and the root a square plus omega square. 



It will have a face component which will be minus tan inverse omega by a and so on, but 

evidently at least it is the complex valued function of omega of the continuous variable 

omega.  

Second example for the second example let me consider e to the power minus a mod t x t 

equals e to the minus a mod t. Now again I am assuming that a is greater than 0 for 

reasons which will be discussed in a few minutes. In fact, the reason is the same as the 

reason for the previous example, and x omega comes out to be under this assumption 1 

by rather 2 a by a square plus omega square, so that is the second example. Now, a third 

example, the third example I will take is of what is called a rectangular function, if you 

have plotted all these functions over here on this side for example, if I plot x t the first 1 

for a greater than 0 x t be a function that exponentially decays against time. The second 

function we have plotted is x t with a greater than 0 comes out to be symmetric on both 

sides of the time axis, and for a greater than 0 exponentials the decaying in both 

directions as I have drawn over here.  

The third example is of what is called a rectangular pulse? x t equals 1 for mod t less 

than t 1 equals 0 for mod t greater than equal to t 1, the shape of the function would be 

like this. This is what you would have and it is Fourier transform x omega turns out to be 

equal to 2 sin omega t 1 by omega by omega, which is often called a form of the sync 

function will talk about the sync function in a moment.  
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Now, let us take a forth example this will be of a rectangular pulse, but in the frequency 

domain, and what we will see is the inverse Fourier transform. So, let us specify x omega 

as given by 1 for mod omega less than some w and equal to 0 for mod omega greater 

than equal to w. Suppose this is what is given to us it is a rectangular pulse in the 

frequency domain is what has been given to us, and x t comes out to be equal to 1 by 2 

phi to sign wt by t which simplifies to sign wt by phi t sign wt by phi t alright. So, this is 

what it comes to.  

Now next point we will introduce the notation that we call the sync function, the sync 

function is defined as follows sync x is given by sign phi x divided by phi x, now with 

the definition of see this sort, you can see that the last 2 examples can be written in terms 

of the sync function, because they have sin of something divided by something else. 

Thus for example, with x t equal to 1 for mod t less than t t 1 equal to 0 for mod t greater 

than equal to t 1, we had x omega given by 2 sign omega t 1 by omega sign omega t 1 by 

omega which comes out to be equal to 2 t 1 sync omega t 1 by phi. Is not hard to derive it 

is just a matter of substituting number sign doing a little jaggery with the things. 

Similarly when x omega was equal to 1 for mod omega less than w equal to 0 for mod 

omega greater than equal to the w, then we had x t given by sin w t by phi t which was 

equal to w by phi sync w t by phi, sorry. So, this is how you make use of the sync 

function to denote function of the form sin x by x or sin phi x by phi x alright. So, the 

next thing we were going to now talk about is this property of the continuous time 

Fourier transform to deal with continuous functions of continuous time, and yield 

spectrum yield a spectrum which is also a function of a continuous variable namely 

omega. What has to do with what we are going to talk about next is the following. So far 

we have been only concerned with finding or discovering the Fourier transform.  
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We still now have to ask lots of important questions, such as the convergence questions 

or considerations of convergence in the case of the Fourier transform, considerations of 

convergence of the CTFT; convergence considerations of the continuous time Fourier 

transforms, does the Fourier transform exist if so when does it converge what points does 

it converge? Similar questions were asked in the case of the Fourier series as well and we 

will find. In fact, that both these discussions are extraordinarily similar. So, let us briefly 

go through the issues of convergence.  

So, first of all as was the case with Fourier series converging continuous functions, that 

is where x t is continuous finding a convergence is not difficult. So, when x t is 

continuous. So, let us start with the various discussions about convergence, the first is 

when x t is continuous then x omega if it exists, actually the existence issue is being dealt 

with separately we are saving that if x omega exists, we will yield a synthesis which 

following our earlier notation, we will denote by x hat of t that converges at all t to x t. 

That means, there is no point problem of convergence when x omega exists for the 

continuous function x t a function without discontinuities then the synthesized function x 

hat of t will converge to x t at all points t. 

Now, we are also we can speak of what we can call a truncated representation. What do 

we mean by a truncated representation here, suppose x t has a Fourier transform x 

omega, truncated representation also called partial representation, fine. What do we 



mean by a truncated representation is let x t have a transform of x omega, then we will 

denote the truncated representation we will say the t truncated representation x hat t 

subscript t of t given by 1 by 2 phi integral minus t to t x omega e to the j omega t d 

omega instead of integrating for all omega from omega equal to minus, sorry. This is not 

called the t truncated this should be called the w truncated representation for consistency 

of notation.  

And therefore, we will call this x w of t x hat w of t is the syntheses carried out from 

minus w to w, since w is finite and not equal to minus to infinity and minus w is not 

equal to minus infinity, some of the information in the transform is been lost and only 

partial information is being used to reconstruct the original signal or to attempt to 

reconstruct the original signal, that is why we call this x hat w of t. Now what we are 

saying is as w goes to infinity x hat w of t tends to x of t at every t, if x t is continuous, 

this is what I meant when I said converges at all points t. 
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Now, let us look at other criteria for convergence, the second criterion for convergence 

consider functions which are not which are possibly not continuous for all t which could 

have discontinuities and other diseases, but which satisfy the property of square 

integralablity over t equal to minus infinity to infinity. These signals are called finite 

energy signals. So, if x t has finite energy that is to say integral minus infinity to infinity 

mod x t squared d t is finite, then… So, many things happen, but before we talk about 



those. So, many things, let us compare this particular statement which the counterpart of 

it that appeared in the context of the Fourier series. There we said that it should have 

finite energy over 1 period or equivalently if it has finite energy over 1 period it would 

have finite power. That means, it would have finite energy over any finite interval that 

was the case for periodic signals, now we are concerned with non periodic signals and 

we derived the whole theory of representation of non periodic signals using Fourier 

transform by gradually making the period go to infinity. In that sense this new criterion 

which speaks of finite energy relates very easily to the old criterion for the Fourier series 

which spoke of finite power, there finite power meant finite energy over 1 period. Since 

it will have the same same energy over all successive periods, because they are identical 

to this.  

So, here finite energy over all time is certainly equivalent to finite energy over 1 period 

because now 1 period itself is all-time, we are still saying finite energy overall time, but 

now over over 1 period, but now 1 period extends from minus infinity to infinity. In this 

sense this criterion is not fundamentally different from what we spoke of over there. 

Now let us see what this criterion ensures, and what it guarantees to us. Now if x t has 

finite energy and satisfies this expression, then a - x omega exists for minus infinity less 

than omega less than infinity that is point number 1 the transform existence of the 

transform is ensured. Now, if you go back to the previous criterion for convergence 

where we said that x the reconstructed signal x hat will converge to x t at all points of 

time, we said that that is to if x omega exists we did not say when x omega will exist. 

Now we have a criterion with this we have a condition that ensures that x omega exists 

that is make sure that, it is square integral it has finite energy, fine. 

Now, x omega will exist for all minus infinity for all omega from minus infinity to 

infinity. Second the error between the reconstruction and the original signal x t has no 

energy, that is to say lets write this down. The error in the reconstruction has no… What 

is the reconstruction error? Reconstruction error is the difference between the original 

and the reconstruction. So, this is essentially the reconstruction error x t minus x hat t 

where x hat t is 1 by 2 phi integral minus infinity to infinity x omega e to the j omega t d 

omega, this is x hat t, and this is the reconstruction error x t minus x hat x t minus x hat t. 

Now if you have x t minus x hat t that is the reconstruction error.  



The square of that reconstruction error is this and if integral over all time minus infinity 

to infinity is the total energy in the error signal, and this is what we are saying is equal to 

0. So, the reconstructed signal has error probably has error with respect to the original 

signal, but the error has no energy, this much is guaranteed if we confine ourselves to 

square integrable signals; signals which satisfies this criterion. It however, does not tell 

us it tells us that the error signal might be non-zero in places, that is to say that x hat of t 

may not be equal to x of t for all t. There might be places where they are not equal, but 

unfortunately it does not tell us where they are not going to be equal.  
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If you want that kind of information we go to the next member of the criteria set of 

criteria, which is the criterion applied for the Fourier transform; the Dirioklets for the 

Fourier transform is the following, it sets 3 Diroklets constraints on the signal that is to 

be transformed. First I will call this d 1, d 2, and d 3; d 1 says absolute integral ability of 

x t absolute integral ability simply means in this case integral over 1 period of the 

absolute value 1 period is now minus infinity to infinity absolute value of the signal that 

is x t d t must be finite. This absolute integral ability ensures x omega exists for all 

omega, but there are other criteria absolute integral ability will ensure that x omega 

exists, but it goes further than that you have bounded variation which requires the 

criterion of the constraint of bounded variation requires that x t has lot more than a finite 

number of maxima and minima over any finite time interval. 



The third and last Dirioklets criterion d 3 says that there should be no discontinuities, we 

are allowed to have discontinuities, but there should be no infinite discontinuities infinite 

discontinuities are those where the jump of the discontinuity is infinite. For example, 

what you will find in 1 by x at x equal to 0, 1 by x at x equal to 0 is an infinite 

discontinuity, no infinite discontinuities and utmost a finite number of discontinuities of 

finite height in any finite time interval in any finite time interval; these are the 3 

constraints of the Dirioklets criterion. Now, what you get if you follow these constraints 

that is what do you get if certain x t needs all these constraints you get the following.  
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Existence of x omega b convergence at all points where x t is finite x hat of t converges 

to x t at all t, where x t is continuous, the third point is where x t is discontinuous say at t 

equal to t naught x hat of t equals x t naught plus minus x t naught minus by 2, where x t 

naught plus is the left side limit, and x t naught minus is the right side limit of x t at the 

discontinuous point t naught. So, it takes you to the midpoint of the discontinuity.  

So, at all points, where x t is continuous the reconstruction works perfectly, and only 

those points where the where x t is discontinuous, the reconstruction lands up at the 

midpoint of the 2 limits; the left and right side limits, this is what the Dirioklets condition 

tells us with this we now have an idea of what to expect from the reconstructions and the 

presentations that are provided by the Fourier transform. Now one important constraint 

on the Fourier transform you see is that the Fourier transform will exists only for signals 



which are finite energy, signal should have finite energy otherwise the Fourier transform 

will not exist.  

Now given this fact what happens to for example, an x t which is periodic, if an x t has 

non-zero energy and is periodic, then clearly it will non-zero power and is periodic then 

overall it will certainly have infinite energy, this is common sense, because it has a 

certain amount of energy per period which is what we call the power. And that gets 

added over and over for successive periods there are an infinite number of periods from t 

equals to minus infinity to infinity. And so over that period of time over the entire period 

of the time axis the energy will become infinite. So, there is a problem with handling 

periodic signals or finite our signals, the c t f t cannot handle finite power signals.  

For example periodic signals, that have periodic signals that have non-zero power non-

zero power this is an inherent limitation of the continuous time Fourier transform. Now 

we will try to see if we can address this limitation in some way, and ameliorated for 

certain kinds of cases at least in order to do this. We will recall an acquaintance that we 

have not dealt with for a long time the Dirac delta function. So, this is all motivated by 

trying to extend the Fourier transform to deal with finite power signals it only deals with 

finite energy signals. So, let us just write that here, the CTFT exists only for finite energy 

signals. 
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So, the next thing we will talk about is to extend, the scope of the CTFT to cover finite 

power signals it is for this that the needed to recall the Dirac delta. Remember that the 

Dirac delta was given was defined in terms of a property, that it had called the swifting 

property; swifting - swifting property of the Dirac delta said that if you integrated delta t 

minus t naught along with some f of t over an interval, which includes t naught over an 

interval a, b such that a less than t naught less than t then this integral was equal to f of t 

naught that is what we had.  

So, if t naught lies in the interval where the Dirac delta occurs, then this kinds of an 

integration over, and interval that includes the point of occurrence of the Dirac delta will 

field an integration of value equal to f of t naught. It will evaluate the companion 

function f of t at the point where the impulse occurs provided the impulse occurs within 

the range of integration, if it does not occur within the range of integration then of course 

the integral will evaluate to 0, that is to say if t naught is not in a b then integral a to b 

delta t minus t naught f f t d t equals 0, this was the swifting property of the Dirac delta.  

Let us see how this becomes useful to us now suppose we ask the question, what is the 

Fourier transform of the Dirac delta itself? Does the Dirac delta have a Fourier transform 

the swifting property of the Dirac delta, and how it can be used to find its own Fourier 

transform. Suppose we had Dirac delta then d f omega d f omega would be equal to 

integral minus infinity to infinity dealt of t which is the Dirac delta multiplied by e to the 

power minus j omega t d t. This just looks like an application of the swifting property, 

the Dirac impulse occurs at t equals to 0. So, this entire integral will simply evaluate to 

the value of e to the minus j omega t at t equal to 0, that is to say it is equal to e to the 

minus j omega 0 which is equal to 1. That means, the Fourier transform of the Dirac 

delta is the constant 1, now that is one side of the story suppose we look at the same 

story from the other side, suppose we had a dirac impulse in the frequency domain, that 

is to say let x omega be equal to delta omega. 

Then what will be x t x t will be equal to 1 by 2 phi integral minus infinity to infinity 

delta omega e to the j omega t d omega, this again is an application of the swifting 

property where the impulse in the frequency domain occurs omega equals to 0. So, if the 

impulse occurs at omega equal to 0, you just evaluate the companion functions in that 

place and that gives you the answer. The companion function is e to the j omega t set 

omega equal to 0, you get unity and therefore this evaluates to 1 by 2 phi. 
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But this means we have discovered something interesting, we are saying now that 1 by 2 

phi which is a constant function a value 1 by 2 phi for all time is equal to 1 by 2 phi from 

t equals minus infinity to infinity has a Fourier transform equal to delta of omega, 

alternately you can say 1 in the time domain has a Fourier transform equal to 2 phi delta 

omega right, but look at this constant functions like 1 by 2 phi and 1, they are not finite 

energy signals. They are in fact finite power signals certainly not finite energy signals; 

that means, we have found the Fourier transform of 1 at least of at least 1 a finite power 

signal which is not a finite energy signal.  

Now, let us see if we can generalize this further, suppose I had a delta in the frequency 

domain occurring not at omega equal to 0, but at omega equal to some other omega 

naught. What would we get if we had integral 1 by 2 phi minus infinity to infinity is the 

limit, delta omega minus omega naught e to the j omega t d omega sorry, d omega, then 

what happens. Then you have to evaluate the companion function at omega equal to 

omega naught e to the j omega naught t by 2 phi, that is to say that x t is e to the j omega 

naught t. The Fourier transform pair you now have is that the complex exponential 

periodic function e to the j omega naught t has a Fourier transform given by 2 phi delta 

omega minus omega naught.  

Now, clearly what you have on the left side is the function of time which is complex 

valued, but that is not relevant us right, now that it is complex value it is periodic and has 



finite power but not finite energy, it is one of those functions for which we were afraid 

we did not have a Fourier transform representation. Now, we find that there is a Fourier 

transform representation provided you allow the transform domain expression to have 

impulses what we originally derived was a Fourier transform where neither the time, 

domain nor the frequency domain representations were allowed to have impulses, but 

now when you allow impulses in the frequency domain you are able to construct time 

domain functions which are its transform counterparts; transform counterparts which are 

actually finite power. But not finite energy this means we have been able to do some 

extension of the Fourier transform to signals which are not a finite energy, but have finite 

power at least 2 periodic signals, how would we extend this to an arbitrary periodic 

signal very easy where practically, they are already suppose x t equals x of t minus t.  

Then we know that it has a Fourier a Fourier series representation, I am writing the 

synthesis equation over here, k equals minus infinity to infinity x k e to the j k omega 

naught t this is this Fourier series. So, we have an x t which we suppose meets all the 

criteria for convergence that is, it does have a Fourier series representation, if it has a 

Fourier series representation, then this is the synthesis for x t for this periodic x t which 

is finite power, but not finite energy. Now, if you find the Fourier transform of this 

expression here of this summation then you can clearly see that this will have a Fourier 

transform which I will call omega given by, now for each term in the summation you 

will have 2 phi delta omega minus k omega naught times x k, and it is a summation of all 

such terms.  

So, you get a summation k equals minus infinity to infinity 2 phi x k delta omega minus 

k omega naught, this is what you have fine. Now we have a means of representing 

periodic non-finite energy, but finite power signals in time domain in terms of a Fourier 

transform representation, that is now possessed of impulses inverse transforms will 

works. Similarly in short if you had impulses in the time domain these yield periodic 

functions of omega thus.  

For example, suppose you had delta t minus t naught suppose x t equals delta t minus t 

naught, then it is Fourier transform is easily found using the analysis equation, and 

applying the swifting property, you would get this has a Fourier transform of x omega 

equal to e to the j t naught omega. That means, it is periodic in omega and so it has no 



finite power it has finite power, but not finite energy the Fourier transform has finite 

power, but not finite energy, and it is time domain counterpart x t is an impulse.  


