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Difference Equation Intro 
 

When we study difference equations, this mutuality with respect to the direction of  

time for difference equation is much more easily brought out, and you could by inference 

conclude that the same whole for differential equation as well. So, let us now start 

talking about difference equation. 
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Difference equations relate to discrete systems, in the same way that differential equation 

relate to continuous time systems. So, if you have continuous time systems, you 

described them by differential equations, if you have discrete time systems, you would 

describe them using difference equations. Further more if you had you are if you 

confined yourself to linear time invariant difference discrete time systems, then you 

would naturally confined yourself to what are call linear constant coefficient difference 

equations. So, let us try to see, what is the form of the general linear constant coefficient 

difference equation. 
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This is the general form of the equation alright. So, we have we believed that this should 

corresponds to a system where x(n) is the input, and y(n) is the output. Before we 

proceed further, let us try to understand how these y(n) minus k that we have with 

essentially shifted versions of y(n) shifted by different values of k and scaling each of 

them by a k and adding them how this really matches or resembles the earlier differential 

equation that we had. The differential equation we had was the following, the linear 

constant coefficient differential equation was n equal 0 to n a n d n y(t) by dt to the n 

equal to x t. 

So, for the continuous time case we have derivatives, for the discrete time case we just 

have shifted version of the input by shifting an input shifted version of the output, 

shifting an output or shifting the signal is not the same as or not even similar to 

differentiating it, so why this discrepancy over here. On the one hand we take gradients 

in the continuous case, here we are not taking gradients or so it seems, in order to 

understand this better, let us actually see what we would mean by the counter of a 

derivative in the discrete context. What is the derivative in the continuous case. 

In the continuous time case a derivative is d save y (t) by dt, and it is given by limit as 

epsilon goes to 0 of y t minus y t plus epsilon or if you like t minus epsilon whichever 

divided by epsilon. What can we do in the continuous in the corresponding discrete case, 

suppose we say the same thing. Remember that in the continuous time case, we want 



epsilon to get as close to 0 as possible, in order to get better and better approximation of 

the derivative, but we do not want each to become 0. Same thing is true for the discrete 

case as well, there we could say limit as epsilon tends to 0, is the discrete case of y(n) 

minus y(n) minus epsilon divided by epsilon. But in the discrete case time which is 

represented by epsilon can either be 0 or 1 or 2 or minus 1 or minus 2, we cannot have 

fractional values of time, time is discrete. 

So, what is the smallest non zero value for epsilon 1. So, we get and there is no limits to 

be taken, because there is no continuous variation here, epsilon is clearly going to be 

equal to this fixed value called 1. So, this entire expression simply becomes y(n) minus 

y(n) minus 1 divided by 1. So, that you just get y(n) minus y(n) minus 1, this quantity is 

what we call for convenience now, y dash of n in the language of single processing and 

system theory, we call this the first difference of y(n) corresponding to what we would 

have call the first derivative of y(t), here we call the, the first difference of y(n). 
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Now, what would be a higher derivative or the equivalent of higher derivative over here, 

the higher derivative second difference. Second difference or the equivalent of the 

second derivative of y(n) is defined simply as the first derivative, first difference of the 

first difference of y(n). So, the second difference of y(n) that is to say y double dash n is 

defined as equal to y dash of n dash, which is equal to y dash of n minus y dash of n 

minus 1, this is the second difference. And by another (( )) you can go on and define the 



n th difference; the n th difference will simply be I will denote this by y(n) of n is equal 

to y(n) minus 1 of n minus y(n) minus 1 of n minus 1. 

So, now it is clear how to get higher differences of any order, we have the first 

difference, we have the second difference, we have higher differences of all orders right. 

So, now let us see how we got that equation for the general form of a linear constant 

difference system described by a linear constant coefficient different system this, this 

one. How did we get this very simple, after you add the zero th difference which is y(n) 

itself with some scaled version of the first difference and some scaled version of the 

second difference and so on up to some scaled version of the n th difference. You will get 

all kinds of terms, but they will all be y(n), y(n) minus 1, y(n) minus 2, y(n) minus 3, and 

so on up to y(n) minus capital N, this is all we get. Except that now, the coefficient are all 

getting a little mixed up you will have several terms with coefficient y(n), you will have 

several terms with coefficient y(n) minus 1, and so on. 

 So, you could just collect all the coefficient together and define new coefficients and in 

fact subsequent to doing that we have got these coefficients a k over here, this completes 

our justification of calling this the n th order difference equation for a system that 

describes a system. So, let us re write it over here to acknowledge that we have 

completed our justification, for a N th order system this is what we have? And just by the 

side, if you are interested in knowing what is the opposite of differentiation or what is the 

opposite of differencing. In the case of differentiation its integration, it is the running 

integral. What is the opposite of the difference of the first difference in the discrete case, 

that again is best address right now.  

What does integration give? Integration after differentiation returns to us the original 

signal, that is if I had x t and applied it to a differentiator, I would get x dash t where the 

differentiator is nothing but d x t by d t. Now, the inverse of this would be applied x dash 

t over here to a system which is an integrator and get back x t, what would be the 

expression that describe the integrator. We already know this, I think this has been 

discuss earlier in the course, it is simply integral minus infinity to t x dash of t dash d t 

dash this would give us x t back. 

Now, let us see what happens in the discrete case. In the discrete case, you have x(n) and 

to apply the first difference, which we again denote by a block with a D written inside. 



To get x dash n, if you want to get? If you want to apply x dash n to a system, that returns 

x(n) then what you really need to do is to replace this or rather to to write this over here, 

where this actually signifies a summation from k equal minus infinity to infinity sorry to 

to n, k equals minus infinity to n x dash of k, this would be the inverse of the 

differencing operation; this is called while this was called a running integral, this is what 

we just call a running sum. 

So, let us now take a look at the difference equation once again, the general difference 

equation was one with involved a sequence an unknown sequence y(n), which would 

arise out of the system as a response to an applied sequence x(n). So, the x(n) was the 

forcing function or the forcing sequence or the input, and y(n) is the solution or the 

response of the system.  
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The equation itself if you will recall was, so this was the equation and just as before this 

we will try to associate with a system in an electrical system, there x(n) is the input and 

y(n) is the output. In short we wish to determine the output y(n) when x(n) is applied as a 

input. The way we proceed with this exercise of discovering y(n) given x(n) and given 

the coefficients a k is going to be very similar to what we did in case of the differential 

equation, the reason is that both are going to be linear constant coefficient and ordinary. 

This in fact is something that we should always aware in mind, what we are dealing with 

is the linear, constant coefficient ordinary difference equation which I will simply 



abbreviate by D prime E. So, when I write DE it will be the difference equation, 

differential equation and I write D prime E, it will refer to the difference equation, this 

will make my writing a likely easier right. 

So, how do we solve a linear constant coefficient ordinary difference equation? The steps 

we have to go through are going to be very, very similar to those that we followed when 

we solved the linear constant coefficient ordinary differential equation. We start by 

seeing, if there is any special sequence which is invariant to the process of differencing. 

If you recall for the case of the differential equation, we did try to seek a function which 

was not affected by differentiation, and we found such a function. For the case of 

differentiation, we had an exponential as the invariant function, which are differentiation 

simply becomes s e to the power s t. 

Clearly invariance does not mean a function remains exactly the same, it simply means 

that a function changes only by a multiplicative constant factor. In this case the constant 

multiplicative factor is s this, now for the case of differencing we shall claim that what 

we need is what is called the discrete exponential of the form a r to the power n. Now, let 

us see what happens to a r to the power n when you difference it. We have to first check 

the that is indeed invariant is short, that it only alters by a multiplicative constant upon 

differencing, and subsequently we will see what is that multiplicative constant as well. 

Having establish that we will be in a position to take the next step forward with regard to 

discovering the solution of the difference equation. 

So, well let us take a typical discrete exponential sequence, if it is of the form a r to the 

power n that is to say if this is what we call as x(n), then this sequence of members of 

x(n) would be of the form a x(n) would be of the form a, a r, a r to the power 2, a r cubed 

and so on a r to the power n and continuing endlessly, this is what we would get right. 

So, now let us look at x(n) plus 1, this would give us the sequence a r, a r squared and so 

on, you would get a r to the power n plus 1, and so on endlessly. Now, there are two 

things to recognize about these two sequences; the first is that there is the constant ratio 

between corresponding members of the sequence equals for example, a r by a or this is 

one point, another point is the difference. What is the difference between successive 

members of the sequence. 
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Let us take a look, suppose we subtract the first member of the second sequence of the 

first sequence from the first member of the second sequence, we would get a r minus a 

that is equal to a r minus 1. So, this is the first member of x dash n first member, second 

a r squared minus a r this would give us r a r minus 1 second member. So, this is actually 

x dash this would be the first we could simply directly write as a x dash of 1, x dash of 

two. Similarly, if you go on you would get a r to the power n plus 1 minus a r to the 

power n which is equal to r to the power n times a r n minus 1 r r to the power n a r 

minus 1.  

So, this is the sequence you would get you would get x dash n as the sequence a r minus 

1 r a r minus 1 r to the n a r minus 1. So, on which still a sequence that is exponential, 

why it is a sequence which is exponential, because it matches the first property it still 

needs the first property that we just discussed namely that there is a constant ratio 

between a pair of consecutive members. If you take the second member of the sequence 

and divided by the first member of the sequence, you will get r, if you take the third 

member and divided by second member you will get r. So, this is certainly still an 

exponential sequence more importantly the exponential sequence with the same r as the 

original the only thing that has changed by differencing is the factor is the appearance of 

the factor r minus 1, that is the only thing that has changed. 



So, if since that is only a change by a constant multiplicative factor by our criteria it 

constitutes or rather it this sequence the exponential is eligible to be called an invariant 

sequence under differencing, what would happen? If you differentiate once again, that is 

what would happen? If you took x dash n plus 1 minus x dash n which by the way is 

exactly the same as x dash n minus x dash n minus 1, this is something that might have 

worried some of the viewers, because we started by saying that this is what we call the 

first difference, and later on when x dash was x(n) and x x dash n minus 1 was x(n) 

minus 1, this is what we call the first difference. 

Then what happen was we replace x(n) by x(n) plus 1, and x(n) minus 1 by x(n) does that 

difference really matter, it does not because whatever differencing operation, we are 

doing we are doing it for all n. So, if you just write n plus 1 equals m, then you will get 

the same form as before you will get x m minus x m minus 1 equals x(n) plus 1 minus x 

n. So, whether you do x x dash n plus 1 minus x dash n at this point to get the second 

difference or you do x dash n x dash n minus to get the second difference, you can be 

sure that you get the same result in both cases, you are quacking of the same function in 

the both cases. 

Now, there is really no need to prove that under the operation of second differencing the 

exponential still remains an invariant function, it automatically will because as far as x 

dash n minus 1 or x dash n plus 1 or x dash n is concerned, this is also nothing but an 

exponential sequence, and so if writing x dash makes us uncomfortable. You will 

completely rename it and call it y(n), then we are just considering then the second 

difference, that is to say x double dash n is nothing but y dash n, and since y(n) is going 

to be a discrete sequence discrete exponential sequence as before y dash n, which is x 

double dash. And will again remain a discrete exponential sequence the only point the 

only thing that will occur is that another factor r minus 1 will come out. So, that we will 

now get r minus 1 squared in every member of the sequence as a constant multiplying 

factor, that is the only change right. 

So, we have now established the invariance of the discrete exponential under 

differentiation or rather under differencing, once we have this very important fact in hand 

we are ready to go on and look at the solution look at the process of solution of the 

difference equation. I do not at all intent to do this in full detail, because I have already 

spent sufficient amount of in fact luxurious amount of time on the study of the 



differential equation. So, all I will now do is to keep presenting analysis with the 

differential equation, and very quickly run through the process of solving the difference 

equation solving the difference equation right. 
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So, if this is the difference equation, we will first look at solving the homogenous 

equation the homogenous equation the corresponding homogenous equation would be 

this is, of course what we call the non homogenous equation. So, we have the 

homogenous equation to look at... 

Now, recall what we did last time. We looked we made use of the invariant function 

under differentiation, and assumed that y(n) would have the form of the invariant 

function. Hence here to we will assume that y(n) is of the form a r to the power n, if we 

make such an assumption then is clear that factor a r to the power n will appear in every 

term of this summation, and hence a r to the power n can be factored out to leave behind 

just a polynomial, and polynomial in the coefficients a k. 

So, what we can say is that substitute, substitute this assumed solution factor out the 

exponential a r to the power n, and you are left with the algebraic characteristics 

equation. So, all these is what we will step one? Step two, I am just going to write out the 

steps, since most of the steps as I said are extremely analogous even step one is 

analogous to what we used to do for the differential equation, when we try to solve it for 

the linear constant coefficient ordinary differential equation. So, step two, once you have 



the characteristic equation solve the characteristic solve the algebraic characteristic 

equation find the roots fine. 

Now, there are several cases that can occur as in the case of the differential equation as it 

happened with the differential equation, you could have multiple repeated routes, you 

could have all distinct root so on and so forth. So, in order to avoid getting into matters 

of details I will assume for the present that we have a set of n distinct roots, then what 

you will get is a sequence of n different complex exponential each of which would be 

prefixed with an arbitrary constant. So, what you would get is essentially something of 

the form y(n), where y(n) is the solution to the homogenous equation place. We are still 

not even started on the non homogenous equation each of the form summation, let us call 

them, let us call the arbitrary constant say c k r k to the power n, this is an exponential c 

k is the arbitrary multiplying constant, and you have. Since, you have n roots you have n 

capital n possible values of k. So, k goes from one to n this is the form of the solution 

that you have… 

Now, as before we will not stop here, and start examining the arbitrary constant, it is a 

little too early for that these arbitrary constant do need to be addressed, but not at this 

point of time before we start looking at them. We have to now look at the solution, we 

have to first look at the solution of the non homogenous equation. 
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Three well just, just go back for a minute we have solved this, and we have found the 

roots. So, that there be end district roots then the solution is takes the form given over 

here, now that we have that we now look at the solution of the non homogenous 

equation. 

Now, again for the case of the non homogenous equation, what we do is very similar to 

what we did in the case of the differential equation. So, there what we had in hand was 

only a few cases of possible functions that you going to apply as the forcing function, we 

confine ourselves to that those forcing functions which had easy solutions namely 

exponentials constant, and polynomials. We will see here to that these are the three 

categories of exciting function to our forcing functions for which we will approach the 

non homogenous solution, solution to the non homogenous equation. 

So, the non homogenous equation is of the form a k y(n) minus k k going from 0 to n 

x(n), well under differencing a constant function x(n) is reduced to the identically 0 

function, which you can just call 0 of n. If you like which is just a equation 0, 0, 0 ,0 

which is also a constant function, this is obvious because when you do a differencing you 

take x(n) plus 1 minus x(n) or x(n) minus x(n) minus 1, and when x(n) minus 1 equals 

x(n) equals x(n) plus 1 differencing would just yield the 0 sequence, that is fine. 

So, this is consequence which is invariant to differencing another, we know of course is 

the exponential, the third we know or we would we guess is the polynomial. So, what is 

a polynomial sequence? What is a polynomial sequence x(n), it is of the form say k k n k 

n squared k n cubed. So, on this is a polynomial sequence. We will see, this is invariant 

under differencing, we are really not seeing if this same sequence appears under 

differencing. What we are going to see is if we get a function of the same category as the 

polynomial upon applying the differencing operation, that is what we really have to see, 

let us if that is the case, k n minus k use u n into k minus 1.  

If you take k n squared minus k n, sorry k n minus k will give you k into n minus 1 k n 

squared minus k n will give you k n into n minus one and so on, this is what you will 

get? So, you will get the sequence k times n minus 1 k n n minus 1 k n squared n minus 

one and so on, this is the sequence you will get which clearly is also a polynomial 

sequence, because it has factors n n squared n cubed and so on. However, it it is to be 

seen that this sequence is not identical to the original polynomial sequence certainly is 



not, but that is not a problem all we want is that it remains a polynomial sequence which 

it does? 
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Thus it is only for these three cases of a, constant x(n), b polynomial x(n), and c 

exponential x(n) that we attempt to solve the non homogenous equation. A solution of the 

NHE with any of the above forcing function, forcing sequences will proceed by 

assuming that the solution two is a sequence of the same category, that the solution y(n) 

is also a sequence of the same type. 

So, we assume a solution of this same type, and we go ahead and solve the equation and 

using this we can find the solution to the non homogenous equation. How we exactly do 

it is really not necessary to go into it something that you can sort out for yourself its very, 

very similar to what you do in the case of the differential equation factor it takes similar 

to that. Let us call the solution to the NHE found by this approach the basic solution to 

the non homogenous equation and denoted by psi 0 of n right. 

Now, let us go and check, what point? We are at this was point three solving the non 

homogenous equation of point three and this is the end of point three. Now, that we have 

the basic solution to the non homogenous equation, let us just add a footnote. What do 

we mean by the basic solution of the non homogenous equation, how is it different from 

what we have also sometimes called the complete solution. The basic solution to the non 



homogenous equation is just the complete solution in which all the arbitrary constants to 

be inserted into the homogenous solution have been set at zero. 

So, the basic solution psi naught n to the non homogenous equation corresponds to the 

case of the complete solution to the non homogenous equation found by constraining all 

the arbit, constant arbit in the homogenous equation solution to... So, if you constrain the 

solution the all the constant arbitrary constant to zero in the solution of the homogenous 

equation, then what you get as the complete solution is nothing but psi naught. So, that is 

psi naught, and what you get as psi of t is the general case the more general case psi of t. 

So, we are now at point four. 

(Refer Slide Time: 52:46) 

 

The complete solution psi of t takes the form y(n) is not psi of t its psi of n hangover 

from our differential equation days y(n) equals psi 0 of n plus summation c k r k to the 

power n as k goes from 1 to n where c k is the arbitrary constant right. So, as long as you 

have arbitrary constant, even if you have one coefficient constant, you are about to have 

an infinity number of solutions, if you have more coefficient constants than one. Then 

you are going to have more infinites solution, if more infinity makes any sense it really 

does not actually, but all I want to point out is that you have lots, and lots and lots of 

solutions just like in the case of the differential equation, but the important part again is 

how can a physical system have an infinite number solutions. How can even have two 

solutions for that matter, it should have only one solution. 



The answer again is the same as in the case of the differential equations, it is that you 

have give some external help, help not found in the differential equation itself to pick the 

correct solution out of the too many that have been supplied to you the physical system 

has only one solution. And therefore, that one solution must be present in this multitude 

of solution that the theory is throwing up at us except that you have to know how to pick 

it up the way, we pick it up is by getting some additional information about the physical 

solution by in the form of settling value for the coefficient conditions. 

So, now come in the coefficient condition, we invoke the coefficient conditions to 

resolve the problem of picking the unique solution, all the mathematically possible 

solutions fine. So, we have to invoke the coefficient conditions for the first order case, 

for the case of a first order equation, only one coefficient condition is required, and that 

coefficient condition will be in the form of the value of the solution at some coefficient 

instant of time, just like it was the value of the capacitor voltage at some coefficient 

instant of time here.  

Of course, it is an coefficient discrete instant of time, it does not have to be the initial 

condition there also it does not have to be here, also it does not have to be it can be any 

point of time along the discrete time action at which you specify what value the solution 

has the moment, you do this you have put your finger on just once solution. This takes 

the form of this takes the form of a value of the solution y(n) at any point of discrete time 

of our choosing. 

So, you choose any n naught and let y(n) take the value y naught at n naught. So, that y 

naught is the coefficient condition and is given by y of n naught. So, if you do this, you 

have picked a particular solution this happens in the case of the first order system, 

because as in the case of the continuous first order differential equation, no to solution 

trajectories. Though there are an infinite numbers of solution trajectories no to solution, 

solution trajectories ever cross each other in the first order system no two distinct 

solution trajectories, trajectories ever cross each other. 
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So, since this is the case, one coefficient condition is enough for higher order system. For 

higher order discrete systems, different solutions trajectories can cross each other and 

additional coefficient conditions will be required to ensure a unique solution to ensure a 

unique solution. The additional information could be in several forms can be supplied in 

several forms, such as a fixed n naught for a fixed n naught for a discrete time instant n 

naught provide y(n) naught y dash n naught, etcetera. That is one way of doing it or for 

different discrete time points n naught 1, n naught 2, etcetera, supply y(n) naught 1, y(n) 

naught 2, so on; c I will guess a various other combinations, this is c, d, and so on all the 

various other combination. 

So, we have multiple ways of specifying the coefficient conditions again very, very 

similar inform to what we had in the case of the differential equation, and once you set 

down all the coefficient condition one by one, you tie down the solutions. So, that you 

narrow down and narrow down, and finally you land up unique solution, this unique 

solution the final unique solution, the final unique solution will match the output of the 

physical system right. So, that takes care of the multiplicity of the solutions, I think we 

were somewhere in the ram of point number four no point number 5, alright. So, point 

number five, point number four was about composing the complete solution, point 

number five discussed the multiplicity problem. 


