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Solving Differential Equation 
 

So, to retrace our steps, let us look at one of the solutions of the algebraic homogeneous 

equation. Let us say we take s k; some k, which is less than N, of course. 
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So, what we do with this s k? We know that it is a solution to the algebraic equation. 

Hence, we go back to the factorized form of the solution of the homogeneous differential 

equation namely e to the s t summation k equals 0 to N. Let me not call this s k. There is 

confusion can be caused. I will call it s n. Let say, I call it s n. So, this was our factorized 

form the solution e to the power s t times k equals 0 to N a k s to the k. This was the 

factorized form. 

Now, if f n is the solution for the algebraic equation, then if I put s n over here, that is I 

would subscript this by s by m. So, I have chosen s to be the nth root of the algebraic 

equation. Then, we already know that the right side factor the polynomial factor in this 

solution of the homogeneous equation will become equal to 0. Hence, this entire 

expression will become equal to 0. So, if I write n in more these places that is if I use f 

equal to s n, then the expression indeed solves the homogenous differential equation. 



 
 
Thus, after I have put f equal to s n in this entire expression e to the power s n t times 

summation k equals 0 to N a k s n to the k. This entire thing evaluates to 0, because as I 

said the polynomial factor evaluates to 0. 

Thus, we have seen that I have found a solution to the differential equation. The original 

differential equation; if we recall they are taking now, our second step backwards. We 

have moved from the homogenous algebraic equation and reach the homogeneous 

differential equation, the solution of homogenous differential equation. Now, we want to 

go further. But to recall where are exactly, let us now see that when you have the 

homogenous differential equation as a k d k y t to d t k. k equals 0 to N. This was our 

homogenous differential equation. When the right side is set to 0, then we know that if 

we use y t equals e to the power s n t. Then, this equation is indeed solved. So, e to the 

power s n t is a solution for the homogenous equation. That is nice. 

We may next to solve something at least, after having on round and round is solved 

something at least. But this that we have solved this part that we have solved as a lot a 

ramifications; what we have already done will take us another 15 minutes at least to 

understand the implications of it. Now, from what we have written over here, the first 

thing I can say is that I just chose f n as one of the N roots of the polynomial algebraic 

equation. If e to the power s n t is a solution for this differential equation for the 

homogenous differential equation, then I can make the following remarks immediately. 

Each of these remarks we done out to be self evident or will require very little 

explanation first.  

If e to the power s n t solves the homogenous equation, then inevitably so will e to the 

power s 1 t e to the power s 2 t and e to the power s subscript N t. All these will solve the 

homogenous equation. So, we did not get one solution for the homogenous equation like 

we wanted. We have already got N solutions. Fortunately or unfortunately, the story does 

not even end there. It gets much bigger than that as we will see in our little one. We have 

a n solutions for the homogenous differential equation. Let us choose any one of them 

and study further. Consider the solution e to the power s small n t. This is one of those 

solutions. n takes some value between 0 and between 1, N. 
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If this is a solution, let see what happens. If we use a scaled version of this same 

function, scale it by any complex constant say c to get c times e to the power s n t. 

Substitute this c e to the power s n t in the homogenous differential equation. What do 

you expect? You will get this. This is what we have. In words, this is equal to every time 

you differentiate a function that scaled by a constant, the constant factors out of the 

differentiations.  

We know that differentiation is linear with respect to scaling as well as to proposition. 

Furthermore, we just have some of these terms; c is going to be a common factor in all 

these terms. So, we will simply get this; c times k equals 0 to N a k d k e to the power s n 

t and d t to the k. This is c times this same differential equation we had earlier, for which 

we know that e to the s n t is a solution. So, this whole thing is just equal to 0.  

What is that mean? That means that not only are e to the power s n t, n equals 1, 2 up to 

N solutions for the homogenous equation. So, are other also c times e to the power s n t 

are solutions. Remember, we can put any value for c. c is the constant, but it is what we 

called an arbitrary constant. c is an arbitrary constant. Now, there is no room to get 

confused. What we mean by saying that it is arbitrary and constant at the same time? We 

simply mean when we say it is a constant, we mean that it is not a function of time. 
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It is once you set a number for it, a value for it, it stays is the same number irrespective 

of what time it is. On the other hand, you can choose any number you like. So, it is not a 

function of time. In that sense, it is a constant. It can be any number you like. Therefore, 

it is arbitrary. It is an arbitrary constant. You can choose c to the any number from plus 

infinity to minus infinity, if you want it to be real. You could even choose any number on 

the complex plane if you want it to be complex.  

For every one of those choices of c, you will have c e to the power s n t as a solution for 

the homogenous equation. So, that means that we do not have just one solution for the 

homogenous differential equation. We do not have just N solutions as we thought a little 

while ago for the differential equation. We have now an infinite number of solutions for 

the homogenous differential equation. 

In fact, if you pick each one of this s case or s n’s, each one of the roots of the 

homogenous algebraic equation associated with each of those roots. You will have an 

infinite number of solutions, which you can generate by changing the value of c over and 

over again on the complex plane. So, in fact you can of course, usually say that you have 

in infinite times N number of solutions. Infinity times N is still infinity. So, any way, we 

can say that there are an infinite number of solutions. So, we have all these solutions. 

Now, the matter does not even end here. That is what it so surprising. Let me now, make 



 
 
the final most general statement that will truly define the scope of the solutions of the 

homogenous differential equation. 

In order to say this, I will first denote by phi t, any function that solves the homogenous 

differential equation. So, we already know that there are multitudes of these phi t’s. I can 

have phi 1 t. I can have phi 2 t. I can have phi 3 t, each for different from the other. For 

example, I can choose phi 1 t equals 2 e to the power s 1 t. I can choose phi 2 t equals pi 

times e to the power s 4 t. Pi is a constant, arbitrary constant. So, I chose it to be pi. 

Then, 2 is another constant. Here, I have chosen the root s 1 of the algebraic equation. 

Here, I have chosen the chosen the root s 4 of the algebraic equation. So, in spite of all 

these variability and all these freedom, I have phi 1 t. It solves the homogenous equation. 

Phi 2 t also solves the homogenous equation. 

So, I have just taken two different solutions of the homogenous equation. Since, I have 

already known at this stage of the argument that there are lots of solutions; I can choose 

two of them. I can choose hundred of them very easily. Now, what we will wait for? We 

can see very demonstratively, very easily that phi 1 t plus phi 2 t also is a solution for the 

homogenous equation. Then, where that phi 1 t and phi 2 t has certainly distinct 

functions, they do not look the same.  
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They are not the same function. Furthermore, phi 1 t plus phi 2 t is different from both 

phi 2 t and phi 2 t. It is non trivially distinct from both. Yet this new creature that is phi 1 



 
 
t plus phi 2 t also turns out to be solutions for the homogenous differential equation. We 

can demonstrate this very easily. Let us just do it. Let us take, well, what are our input 

facts for our argument? 

The facts are that we have this says phi 1 t is a solution by assumptions for the 

differential equation. This equals 0. Likewise, this is also equal to 0 because phi 2 t is 

also a solution. Now, let see what happens if we apply phi 1 t and phi 2 t simultaneously; 

that is add, superpose them. Consider them to be a solution for the equation. Let see if it 

still established. Very obviously it is because what we have a hint is k equals 0 to N a k d 

k phi 1 t plus phi 2 t by d t to the k. This is what we want to examine. Is this a solution? 

We suspect it is. We want to prove this.  

What is this equal to? This is equal to the summation. This is what it is. So, each term 

has split into two terms. What we will now do in the summation is to split the entire 

summation into two summations. Now, we already know that phi 1 and phi 2 are 

solutions for the homogenous equation. In short, each of these two summations is 

individually 0. So, the 0 and this is individually 0. So, the entire expression is 0. This 

proves that if phi 1 and phi 2 are taken out of the set of the homogenous solutions. Then 

phi 1, phi 2 is also a member of the class of homogenous solutions; solutions for the 

homogenous equation. 

We can even in fact easily establish a slightly more general result. If phi 1 and phi 2 are 

solutions for the homogenous equation, then in general, c 1 phi 1 t plus c 2 phi 2 t solves 

the homogenous equation. That is every evident because all that will happen can be 

demonstrated in the expressions we have already written over here. All that will happen 

is, we will have d k by d t k of c 1 phi 1 plus c 2 phi 2, which will split into two 

derivatives a k times d k c 1 phi 1 by d t k plus d k c 2 phi 2 by d t k. By the linearity, the 

homogeneity of the differential operator, we would get a k times c 1 d k phi 1 by d t plus 

a k times c 2 d k phi 2 by d t. 

Then, we could split into two summations as we have already done. Each such 

summation would be 0 because c 1 would be a common factor for all the terms in the 

first summation. c 2 would be a common factor for all the terms in the second 

summation. The whole thing still comes to 0. Now, this means us to a realization of the 

vastness on the collection of solutions of the family of solutions. For a homogenous 



 
 
differential equation, we do not have one solution. We do not have two solutions. We 

have an infinite number of solutions, a huge infinite number of solutions for the 

homogenous differential equation. 

That is the state of the story up to now. Now, we want to add a few refinements to our 

understanding. We want to see whether we can somehow understand the relationship 

between the different solutions. It is not the case that though there are an infinite number 

of solutions, all these solutions are arbitrarily related to each other or arbitrarily different 

from each other. They are all related to each other in a very nice manner. In order to 

show you how they relate to each other, I will have to invent the notion of a vector space, 

the vector space of solutions to the homogenous equation. 
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Well, if we do not know what it a vector space, do not worry too much of it. What I am 

about to say? If you do, you will be happy to understand that this set of solutions to the 

homogenous equation constitute of vector space. A vector space resembles our three 

dimensional physical space, n dimensional vector space has N orthogonal axis. It can be 

made to have each axis is identified with so called basis function, which you would 

normally call a unit vector in that direction by a basis vector and arbitrary vector in this 

space. It is to say an arbitrary point in this space may be expressed as a linear 

combination of the basis vectors.  



 
 
So, I will just number the points and an arbitrary vector in the vector space, which is to 

say an arbitrary point in this space. Each point in the vector space is a vector in this 

shown. It can be may be expressed as linear combination of the basis vectors. Let us 

make a new point. The weights of the linear combination are called the coordinates of 

that point or of that vector. Now, what is this? I will just take this vector space, got to do 

with the set of solutions of the homogenous equation. What it has got to do is just this. 

We can organize all these huge number of solutions in to the structure of a vector space 

simply as follows. Let there be an N dimensional vector space and the N basis vectors or 

the N basis functions. We have chosen to be e to the s 1 t e to the s 2 t and so on. 
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So, if we choose these as the basis vectors, then clearly we can see that not only or each 

of these basis vectors solutions for the homogenous equation. But any linear 

combination of these basis vectors is a point to that lies in the same vector space on the 

one hand. From our knowledge of whatever we have just learnt in the last half hour is 

also a solution for the differential equation for the homogenous differential equation. 

Then, in chart, we can say that each basis vector solves the homogenous equation. Is 

basis vector shafts the homogenous equation and by what? We have found each point by 

I mean vector in the space, which has e to the s 1 t on to e to the s N t as a basis.  

 

  



 
 
It may be expressed as a linear combination of them. Hence, it is also a solution. So, we 

have constructed a vector space whose basis vectors are the fundamental solutions, the 

most basic solutions. We got e to the s 1 t e to the s 2 t on up to e to the s N t. We have 

found that every point in the vector space, which has this set of vectors as a basis will 

also be a solution for the same homogenous equation.  

So, the concluding remark, the enlightening remark is that the set of all solutions for the 

homogenous equation is a vector space. e to the power s k t k equals 1 to N can serve as 

a basis. This gives as a good picture of the manner in which the solutions of the 

homogenous differential equation or organized relative to each other. This is also 

probably the last remark that we can make about the homogenous solution alone. We 

are therefore, in a position to take the next step forward solving the non homogenous 

equation. 
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What was the non homogenous differential equation? This was the original differential 

equation, where we had a non zero forcing function x t. So, let us write it out. This is 

going to be a different kind of game altogether. We do not have 0 on the right side. There 

are lots of things we read earlier, which we cannot do. Now, our approach and trying to 

understand what sort of function can be substituted for y t. We ensure that the left hand 

side evaluates to x t for every instant of time is going to be governed by other 

considerations. We want to know how we can do this. Before we even begin, in order to 



 
 
simplify the exercise, we will have to make certain assumptions, some constraining 

assumptions which will allow as proceeding. 

Probably, we can relax these assumptions later. But at the initial stage, when we want to 

get an understanding, let us constrain our forcing functions to be one of a few different 

kinds of possible functions. To seek a solution of a non homogenous differential 

equation, we will abbreviate to n h e, the non homogenous equation. To seek a solution 

for the n h e, we have to consider only very simple forms of x t. We confine simple cases 

for x t. What are these simple cases?  

What constitutes of simple case? The answer is the following we want to consider such x 

t’s for which y t will be of the same form as x t. We want to consider such functions x t 

for which y t can take the same form as x t. Further, we want such functions where the 

derivatives of y t has the same form as y t. So this, what we have just written, we shall 

call the first constraint. We want to write the second constraint we will say. 
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We would also like to have such a y t that has derivatives of the same from as itself. So, 

two constraints x t and y t should be of the same form y t. Its derivatives must be of a 

same form. Now, what sorts of functions satisfy these constraints?  


