Signals and Systems
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Lecture - 12
Representation of Discrete Time Convolution

Recognize that the most important or the very important role that we have used, that has
been played in this exercise of analysing linear timing variance systems has been played

by the impulse representation.
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The impulse representation of signals in the form x n equals summation over k x k delta

n minus K. This impulses from impulse representation of an arbitrary signal is crucial to
our obtaining the impulse response approach to computing the output. If we do not have
the impulse representation, we cannot have, we cannot go there; that is very, very
important to understand. Once we know this, it is time to work out a few examples. Let
us take the original signals we had, we had x n consisting of just three non-zero points
delta n plus delta n minus 1 minus delta n minus 3. Here some signal we could sketch it
over here. Let us similarly take a system now, which has a very simple impulse response,
because we only want to demonstrate how we do this magic of obtaining the output.

So, let us take h n, let us say this value is minus 2 and, just 1 minute. So, h n will have a

value at minus 2 at minus 1; let us say it has a value of minus 1 at n equal to 0; and let us



say it has a value of 0 elsewhere. So, this is h n; it has values of minus 2 at n equal to
minus 1, and minus 1 at n equal to O; this is our system; this is the impulse response of

our system.

Now let us apply our formula for obtaining the output; and try to see whether we can
compute the output according to the formula. The procedure would be as follows. We
would first decompose x n into component simple signals - elementary signals, each
elementary signal is just once scaled and shifted impulse; we have already done this, we

have x n equals delta n plus delta n minus 1 minus delta n minus 3.

We have sketched that signal over here. Then we have h n over here. Now that we have
an impulse representation already laid out for x n; all we have to do is apply the
additivity part of our derivation. Apply the three components of x n one after the other,
and get the corresponding responses. So, | applied delta n. What happens, what will,

what will be the output, if the input is delta n?
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For delta n, by definition, the system will produce an output h n; for the other signal,

delta n minus 1 the second member of the 3, you would get h n minus 1; and for the third
member of the group minus delta n minus 3, you would get minus h n minus 3; that is it.
So, by the additivity property, if these are the respective responses, for these respective
input signals, then the response to the sum of these input signals which is of course x n,

will simply be the sum of these respective responses. So, y n then equals h n plus h n



minus 1 minus h n minus 3. If you want to do it with graphs, all we would do is first take
h n, what is h n? Then we would take h n minus 1; h n minus 1 is nothing but h n shifted

towards the right by 1 unit step, by 1 unit of time. So, we would have that is h n minus 1.

The next component of the response not of the input of the response is h n minus 3 or
rather minus h n minus 3. Here is the time margin, you have minus h n minus 3 to be
depicted over here, minus h n minus 3 is h n shifted to the right by 3 units of time. They
have already shifted it by 1 unit of time to get h n minus 1, we have to shift it further by
2 units of time. And we have to invert the direction. So, it gets the value of plus 2 at n
equal to 2, and plus 1 at n equal to 3. So, these are the three components of h n; if we add

them, we would get y n, I will try to squeeze it into this screen.

So, y n would have a value 0 for n less than minus 1, because none of these three
components is non-zero in these regions. At n equal to minus 1 we would have minus 2;
at n equal to minus 1 we have y n equal to minus 2; at n equal to 0 we have y n is minus
1 contributed by h n, and minus 2 contributed by h n minus 1, so we would have minus 3
in this place. So, minus 2 at n equal to minus 1, minus 3 at n equal to 0, at n equal to 1
we have minus 1 contributed by h n minus 1, then at n equal to 2 we have plus 2
contributed by h n minus h n minus 3; and finally, at n equal to 3 we have plus 1

contributed by h n minus 3.
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Let us just put down the values on the graph for each point of y n this is minus 2, this is
minus 3, this was minus 1, this is plus 2 and this is plus 1; all other points of y n are 0.
So, this has given us the output; from the input nearly by a knowledge of the impulses
forms and by the computation. There is a name that has been given for this process, this

process of computing the output from the input is called the convolution.

Convolution is the means of obtaining the output of an | T | system, given the input and
given the impulses forms. Note that convolution essentially obtains a result by
combining two input, two pieces of information; one is the input signal, the other is h n.
So, we have x n and h n used together to give us the output y n. There is a notation for
the convolution process; remember that just like addition and multiplication are
operations that we can do on signals; convolution is also an operation that we can do on
signals. That is why there is a symbol given for convolution, we would write normally
that x n, convolution h n equals y n; and x n convolution h n is given by the formula that

we had just obtained earlier x k h n minus k.

One important property of convolution is that it is commutative that is to say, it does not
matter, if you exchange the positions of x n and h n you will still get the same by n.
Putting this point down in the expression, we would get h n convolved with x n equals
the summation overall k of h k x n minus k. Now is this true? It is true and it can be very

easily shown as a | will just do now.
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We have x k convolved with h sorry x n convolved with h n equals summation overall k
x k h n minus k, we will carry out the change of variables in this infinite sum. Let n
minus k be equal to say some m, now if n minus k is m, then n is sorry, then k is n minus
m. And as k goes from minus infinity to infinity, infinity, what will happen? To n minus
m n minus m will go from minus infinity to infinity because that is k; and so k will m
will go from infinity minus n to minus infinity minus n; and both these this is nothing but

infinity, and this is nothing but minus infinity.

And since summation is the same irrespective of what order whether you sum from
minus infinity to infinity or infinity to minus infinity, this remains the same. So,
rewriting in terms of these substituted variables, we get x k sorry x n convolved with h n
equals summation m going from minus infinity to infinity x n minus m h m. This is
exactly of the same form as this, except that the role of x and h have, the roles of x and h
have been interchanged. Effectively therefore, this is nothing but h n convolved with x n
that shows that convolution is commutative. That in fact, the order of the two functions
been convolved does not matter, you could put either of them as the first and the other as
the second; the result is the same.
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Convolution also has some other interesting properties convolution being a linear
operation it distributes over addition, because if we have x 1 n plus x 2 n convolved with

h n; this is nothing but x 1 n convolved with h n plus x 2 n, convolved with h n. So, it



distributes over addition; this is very, very easy to show, you can just replace the
convolution formula on the left side, and expand the single sum into 2 sums and you will

get the expression on the right side.

Commutative is also associative, so that if you are convolving three functions
simultaneously something that is perhaps immediately not relevant to us, but it is
important to know the mathematical property so that we had say a convolution of x n x 1
n convolved with x 2 n, and this result of this convolution convolved with h n. We could

equally rewrite this as x 1 n convolved with the result of convolving x 2 n with h n.

These two functions would amount to the, to be the same, and this can also be shown by
writing the double summation for the left side, playing around with the variables,
substituting some variables, replacing some variables, and we would get the expression
on the right side; I do not go and had to do it, because it is available in most textbooks.
Of course however, some textbooks will make you do this as an exercise, this really a

various straight forward, just a little cumber some to do.

So, in short, convolution has the three following properties; first it is commutative,
second it is associative and third it distributes over addition. These three properties
characterize convolution; and what convolution does we know is provide us a means of
computing the output of a system that is linear and timing variant. If the input is the
output corresponding to the impulse as an input is known, in short if the impulse

response is known.

Now what about continuous time signals? Can we carry out this very interesting exercise
for the context of continuous time signals as well? Whether we can do it or not? Would
depend upon whether we can replicate some of these steps we have done here. Among
the steps we took, the first step was the impulse representation of a discrete time signal.
So, the question will now arrive as to whether we can have an impulse representation for
a continuous time signal. This is a problem of a much greater order of a much more
indicate kind, for which a more thorough and study of real analysis is required. And what
we will actually manage to do in this course is to take a few shortcuts wink at a few rules
and get away with a rather superficial understanding of the real inter crisis of the

problem.



We will however have enough of working understanding of the impulse representation
for a continuous time signal. To do whatever we require in engineering, there is however
much more to it; and that is important to know even if we actually have not worked out
the details. The impulse representation for continuous time signals requires a knowledge

of what an impulse would mean in continuous time, in the continuous time context.

So, let us try to see, what role the impulses played in the discrete time context? In the
discrete time context, the impulse was an entity that could be placed anywhere along
with time axis by shifting. And so what we did was to take the original signal, split it into
components; each component was none zero only at one point, and zero everywhere else.
Once we had this component, it could be expressed as a shifted and scaled impulse, the
point is if you take a finitely long interval of the discrete time axis, then there are only a
finite number of values of the discrete time signal between those two points.

So, if you take for example, x and between the points minus 1 and plus 3, then there are
only the point minus 1, 0, plus 1, plus 2 and plus 3 - five different values on the axis; and
at each of these points, the signal x n will take some value, so we have x minus 1, we
have x 0, x 1, x 2 and x 3. Once we know this much, we know this signal entirely; this is
the fundamental property of discrete time signal which is not present in the continuous
time signal. Even if you take a finitely long interval of the continuous time axis, there are
too many points and infinite number of points of x t on this interval. And at each of these
points x t could potentially be different from its neighbouring point. In short therefore,
we have a much larger number of points of the input signal to be represented, and that is
why it becomes important. To understand how we handle that problem here. Secondly,
there we had an option of an impulse; the impulse was also a discrete time signal like any
other discrete time signal.
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Here the impulse will turn out to be very different from the usual time kind of continuous
time signals. There we could write X n equals summation overall k x k delta n minus k;
this was our representation. We want a corresponding a similar representation for the

continuous time case. How do we do it? Let...



