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To move on to module 2, where we will speak of systems which are possessed of two 

very important properties and properties which are very particularly valuable to us 

namely linear time in-variant systems, briefly called LTI systems. LTI systems are 

practically all that we will ever be discussing in the rest of this course, the other systems 

are too complex to be discussed in an introductory course, but LTI systems with the 

simplifying property of being both linear and time in-variant allow us to get a first grasp 

of signal and system theory. 

Now, what is an LTI system? An LTI system briefly is something that is both linear as 

well as time in-variant this should be understood clearly, we are not saying that it can be 

either linear or time in-variant, no it has to be both. So, the system, an LTI system is both 

linear and time invariant. Now, when a system is both linear, and time in-variant, in turns 

out that our description of the system becomes much more neat, much more compact, 

and much more capable of manipulation and construction. 



So, we will now see what it is about linear time in-variant systems, that makes life, so 

interesting, recalling our definitions of linearity a linear system is 1 where if x 1 t gives 

you an output y 1 t, and if x 2 t gives you y 2 t, x 1 t yields y 1 t and x 2 t yields y 2 t. 

Then if the system is linear we know that x 1 t a x 1 t plus b x 2 t, if this signal which is 

this combination of the input signals is applied as a single signal to the input, then the 

output should be a times y 1 t plus b times y 2 of t, writing the single expression covers 

both the homogeneity and the additively property. So, a linear system is simply one 

which satisfies this single property that we have put down over here, time invariance 

says that if you apply x 1 of t minus t naught or x of t minus t naught whatever to the 

system. 

Then the output should be y 1 of t minus t naught for all t naught positive or negative, it 

also goes without saying as we made particular example of in the last incidence we 

discussed with linearity, that any of these properties must be valid not only for all values 

of the parameters involved such as a or b in the case of linearity r as t naught in the case 

time invariance, but these properties must hold for every input signal on every set of 

input signals. Only then do we say that the system is linear and time invariant. So, a 

linear time invariant system satisfies this property we have put down here, for all values 

of a, all values of b, all values of t naught as well as all signals t 1 x t 1 x 1 t and x 2 t, 

this must be very, very clear at the outset. Now, once we have this property for a certain 

system we can see gradually what this yields in terms of our forming a new description 

for systems which are linear and time invariant. So, let us begin we introduce a property 

called convolution. 

Now, in order to understand convolution, let us first begin with a discrete setting we will 

not consider continuous time signals, we will consider discrete time signals x n being 

applied to an LTI system to get y n, right. Now, we want to understand what makes 

linearity and time invariance so interesting to us, in order to understand that we will take 

this discrete signal x n and find a representation for it, a new representation for it which 

we will call an impulse representation for x n. Now, what is an impulse representation? 

Let me begin the discussion by introducing a new signal either to un presented either to 

unknown this signal is called delta n is called the Kronecker delta, and this signal is 

equal to 1 for n equal to 0, and its equal to 0 for n not equal to 0. 
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So, what does the signal look like what does its graph look like, very simple; you have 

the n axis over here, you have say this is the origin. This signal has a presence at n equal 

to 0 its value is 1 at all other points of time its value is 0. So, at n equal to 1, 2, 3, minus 

1, minus 2, minus 3, etcetera; the signal is 0 except at n equal to 0 where this signal has a 

value of 1. Now this is our Kroneckaer delta and this signal is going to play a very, very 

important role, when we discuss signal and system theory. We will have a corresponding 

signal called dirac delta when we start talking of continuous time systems, but that is a 

little while later. Right now we have this Kronecker delta with us and let say we have an 

arbitrary signal x n, let me take a simple example first of an x n which has only finite 

support, let say that x n is this. 

Let say this is x n, and let say that x n is 0 at all other points of time such as minus 1, 

minus 2, minus 3, and for values of n greater than 3 as well. So, let me just put down 

values of x n, x n equals 1 at n equal to 0, and n equal 1, that is what I have put down 

over here is equal to 0 at n equal to 2 is equal to minus 1 at n equal 3, and further x n is 

equal to 0 for n greater than 3, and n less than 0, this is our description of x n. Now, what 

can be do with this x n, the idea is to express x n as a sum of a shifted and scaled 

versions of the dirac delta of the Kronecker delta, you have the Kronecker delta given to 

us, and we know what is shifting a signal, we know what is scaling a signal.? 
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So, we want to express x n as a sum of scaled and shifted modifications of delta n, the 

first point you recognize here is that should be express as a sum. The final expression at 

the outer most level must be as a sum not as a product or any other kind of form, it 

should be as a sum. And each term of the sum can be scaled by some arbitrary constants, 

it can be shifted by an arbitrary amount, but only shifting and scaling by constant 

numbers are allowed the shifting and the scaling parameters cannot themselves be 

functions. For example, I would not consider, n delta n as a shifted version of delta n no, 

because n is a variable all I am allowed to do is to have a shift by a factor like k delta n. 

So, k delta n is acceptable n delta n is not acceptable, because k is a constant likewise 

shifting I can shift by some factor n naught to get delta n minus n naught, this is 

acceptable. However, shifting by say by an amount like delta n minus mod n, say this is 

not what I would call a shifted version for our present purposes. So, this is not right. 
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So, you can shift only by a constant by a fixed number or you can scale by a fixed 

number you can normally do both. So, we want x n to be expressed as a sum say over an 

index i of terms of the form k i delta n minus n i, this is our objective. Why are we going 

into this particular game, we are not in a position to explain right now. Let us wait a little 

we will understand the motivation for looking for such a representation for x n in a little 

while, but right now let us just see how this can be done, and whether this can done take 

the x n, we had earlier and in that x n we will find the following. x n is 1 for n equal to 0, 

and 1; x n is minus 1 for n equal to 3 and x n was 0 elsewhere. So, what I will do is to 

split x n into component signals, each component signal will be allowed to be non zero 

only at one point time at most and 0, elsewhere thus if I take the x n I had. 

I am not pointing out the other points where the signal is anyways 0. So, this is our x n, I 

will express it as a sum of the following I will do everything is sketches. So, that things 

are more comfortable this equals the sum of the following, just this one point will zeros 

elsewhere fine, plus another signal where its 0 everywhere excepted n equal to 1, the first 

signal was 0 everywhere excepted n equal to 0, this is 0 everywhere except n equal to 1 

then 2 more terms or just 1 more term. In fact, it is very easy to see that if I call these 

signals say x 1, x 0 of n x 1 of n and call this x 3 of n, where the subscript essentially 

indicates the point on the time axis where the non zero value of the original signal is 

substituted with all other values being kept at 0.  



Then you can see that x n now equals x 0 n plus x 1 n plus x 3 n, you can verify this it is 

very straight forward. So, this is our first step. What do we do after this, we try to see if 

each of these component terms x n is already in the form of a sum, is in the form of a 

sum of much simpler signals than x n itself was; these signals are simpler because they 

are non zero at only at one point of time and they are 0 everywhere else, fine.  

So, now let see if we can find an expression for x 0, x 1, and x 2; we can, we can write x 

0 n as equal to simply delta n, Kronecker delta. x 1 n becomes equal to delta n minus 1, x 

2 n sorry x 3 n becomes equal to delta n minus 3, sorry the minus sign there minus delta 

n minus 3, this is all we have very, very straight forward, you can verify each of these 

things minus delta n minus three is this signal, this signal, then delta n minus 1 is this 

signal, and delta 0 delta n is this signal. So, we have all these three things. 
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Now, we have achieved our expression of x n in the form we desired, and this form is 

delta n plus delta n minus 1 minus delta n minus 3. So, we have a representation, and the 

point your understand at this stage is that you can carry out such a representation for an 

arbitrary signal x n. If you have general x n not necessarily this 1 which had a finite 

support and these particular values, you would simply do the following. You had you 

take this x n split it up into components signals each component signal must be non zero 

at a particular point. So, x n is expressed as a summation of x k n, we can say let k run 



from minus infinity to infinity and x k n equals 0 for n not equal to k, and its equal to x k 

for n equal to k, that is all I expect of x k n. 
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Thus we have expressed x n as a sum of shifted and scaled impulses, that is the essence 

of the argument. Now, if we had an arbitrary signal for x n not the highly simplified case 

that we just picked up to demonstrate the point, we would still do exactly the same thing, 

only difference is that our sum expression has a sum would probably bigger, and sum of 

this scale factors would be other than plus 1 and minus 1 as it has being in this case. In 

general therefore, if we had an x n with probably large values at some places probably 

infinite support, whatever x n, then the point to note is that x n is again expressed as a 

sum of simpler signals. 

These simpler signals I will call x k of n x n i said is the sum of these signals. So, x n is 

actually the sum, in the general case k runs from minus infinity to infinity, and it is a sum 

of these x k n component signals. Now, each x k n itself being a very simple signal is non 

zero at only one point that is a very, very important feature of x k n and 0, everywhere 

else. So, x k n here is 0 when n is not equal to k, and at n equal to k its equal to x of k the 

original signal x, that we wish to represent evaluated at n equal to k. So, this makes up 

each x k n. So, when each x k n is given by this x n is given by the following sum or x k 

n k running from minus infinity to infinity, this gives us what we shall call an impulse 

representation for x n the significant point of course is that this is possible to do for any 



signal x n any discrete signal x n. Once we have the impulse representation in our hands 

the next point is to understand, how this impulse representation is useful. 
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In order to understand the to get the answer to this question. Let us first see we have a 

system, let us say we have an LTI system, let let this system be generally unknown to us 

we do not know what output it produces for particular inputs. So, what we do is we take 

this system, and we apply a very special signal to this system is an ordinary signal just 

like any other signal, but it is is the simplest possible non zero signal. 

This simplest possible non zero signal is of course, the Kronecker impulse, the 

Kronecker delta as I have called it. So, take the system take any arbitrary LTI system. 

Remember that it has to be linear time invariant that is very, very important. Now, we 

take the system then apply as the input, the signal delta n the Kronecker impulse, it is in 

terms of scaled and shifted Kronecker impulses that we have found a representation for 

arbitrary signals, but that is as far as the relationship of the Kronecker impulse goes with 

discrete time signals. 

Now, we are bringing the same Kronecker impulse, which we have been discussing in 

the context of signals to the world of systems and applying this Kronecker impulse to the 

given LTI system. Now, this Kronecker impulse as I said is also a kind of a signal it is 

also particular signal, and so there must be some output that the system produces for this 

signal, let that output be some signal which we call h n is also a discrete time signal. So, 



you apply the Kronecker impulse to the input and observe the output call it h n, so h n is 

the another discrete time signal. 

Now, we will see what happens with our impulse representation of discrete time signals 

on the one hand, and our knowledge of h n on the other hand with respect to a particular 

given system it will be shown in a few minutes that if you know h n which. In fact, is 

very appropriately called the impulse response it is the response to the unit magnitude 0 

shifted Kronecker impulse. We will find that our knowledge of h n will help us to find 

the output of this particular system to any arbitrary input signal. Thus from a knowledge 

of only one distinguished input output pair namely delta n, h n; we able to construct 

every other input output pair in the lookup table that represents other system. So, how do 

we do it? Remember that is it is a linear time invariant system that we are concerned with 

and so a certain property is hold for the system its time invariant, so if instead of 

applying delta n to the system. 
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We know that delta n yields h n. So, if I shift delta n by time by some time k and apply it 

to the same system, because of time invariance the output cannot be something 

altogether view is has only got to be an correspondingly shifted version of h n. So, if I 

apply delta n minus k to the system, I should get correspondingly h n minus k, this is 

because of time invariance by virtue of time invariance the system has no choice, but to 

produce h n minus k when delta n minus k is applied. This will obviously be true for any 



value of k from minus infinity to plus infinity, any value of k you like this should 

happen. That makes the system more predictable in a way, you know what it is going to 

do when you apply delta n minus k by virtue of your knowledge of what it did when you 

apply delta n, when you apply delta n it gave you h n when you apply delta n minus k, it 

gives you h n minus k. 

Another thing we know about the system is its linearity. So, we know that from the 

homogeneity property of linearity, from homogeneity aspect of linearity if instead of 

delta n, I apply some a times delta n as the input, the output again cannot be altogether 

new it has to be a times h n, it cannot be anything else. So, a delta n will produce an 

output a h n delta n minus k will produce h n minus k. So, this second part is by 

homogeneity. So, we have used time invariance, we have used homogeneity, all that is 

left unused is the linearity property is the aspect of linearity property that we call 

additivity. So, we are just going to use additivity also now.  

Remember that we have a particular representation for an arbitrary signal x n. x n equals 

summation overall k x k of n, if you go back to the definition of x k of n you will that its 

non zero only at n equal k and at that point it takes the value of x k, and other places it is 

0. So, x k of n may be written as x k which is just a number x k is a number the signal x n 

evaluated at n equal to k multiplied by the impulse function, this is a very simple and 

important fact to keep in mind. So, I will substitute that in this expression for x n, and get 

our impulse representation in the form x k delta n minus k, it takes this formula.  

So, where do we go from here, remember that the system is additive if homogeneous is 

additive its time invariant, right now I am concerned with its being additive, because it is 

additive, instead of applying the entire signal x n to the input of the system, I can just 

apply each component part namely each h k of n separately to the system, and see the 

respective outputs. Once I have all the outputs I can add them out, and what I would still 

get is the response that I would get if there sum that is x n and we applied directly, thus 

instead of applying x n to the system I will apply sigma overall k summation overall k x 

k delta n minus k. 
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So, here is my system I will make a lot of copies of this system, identical copies carbon 

copies if you like. So, that they all have the same lookup table, and then I will start 

carrying out my I have made lots of copies of this system, and here I will apply x minus 

k delta n plus k here I will apply x 0 delta n here I will probably apply x of x 1 delta n 

minus 1 here I could apply something like x k delta n minus k. 

So, I apply all these different signals each one this is x minus k of n, this signal is x 

minus k of n. Similarly this signal is x 0 of n, this signal is x 1 of n this signal is x k of n. 

So, I have applied each part separately to a copy of this system, since they are all copies 

of this system, they will produce the same output that the original system would have 

produced. So, here let me call the output, let me call this response to the application of x 

minus k of n, I will call this y minus k of n, this correspondingly will be y 0 of n, y 1 of 

n, y k of n. I have each respective output by the additivity property I can do the 

following, I can take each of these outputs, and add them all up, and when I add all these 

up I get a signal which should be the same that I would have got if I just got 1 copy of 

the system and I just applied to x n to it.  

So, here I should still get y n, which is to say that is entire experiment with so many 

boxes and components and connection over here is amount to the same as just having 

one single system applying x and the original un decomposed signal, and obtaining y n. 

This y n is the same as this y n by the additivity property right, this y n is the same as this 



y n by the additivity property. So, I could manage with one block representing the system 

instead of making an infinite number of carbon copies as I have done over here. So, I 

suppose you would still be wandering what I am getting at I have tried as seen to a only 

made the whole thing more complicated rather than more simple. Now, we have so many 

blocks, so many component signals to deal with, and then we have the business of adding 

them all up only to get the same signal that one would have got directly by applying x, 

but their sub points to all this. The point is the following consider any one of the 

component blocks that we had just used in constructing the big block diagram. 
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So, there is this component block to which I have applied x k of n equal x of k delta n 

minus k, this is what I have applied at the output, and I have got y k of n. The point is 

using homogeneity and the time invariance, I can actually find out what y k n is going to 

be instead of just leaving it as some kind of some unknown signal y k of n, I can exactly 

find out what it is in terms of surprisingly h n the impulse response. If we just go back to 

the 2 steps go back a couple of frames, then we will recognize that if we apply x k delta n 

minus k to the same system. Then using homogeneity and time invariant simultaneously, 

we find that the response to x k delta n minus k should simply be x k, which is the scale 

factor homogeneity use of homogeneity and by time invariance x k times, this should be 

h n minus k.  



So, in this particular component block, we have succeeded in expressing the response to 

x n minus x k of n namely y k of n, in terms of the impulse response, in terms of a scale 

and shifted impulse response shifted by k scaled by x k. So, that is it we have now the 

response at each component block, we now have to add all these responses remember 

that y n, evaluates to the summation overall k of y k of n, and by just what we have said 

above this comes to summation overall k of x k h n minus k. x k is the value of x n 

evaluated at n equal to k delta n minus k is the Kronecker impulse shifted to the point k, 

time shifted to the point k and this gives us an expression for the output signal y n in 

terms of the input signal, and the impulse response. 
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So, y n is let us go to the fresh page y n has been expressed, purely in terms of the input 

x n input signal x n. You want to know the input signal completely of course, and the 

impulse response. You just have the impulse response and the input, and we have 

evaluated the response to an arbitrary input, the response y n to this arbitrary input x n. 

Until now we required an entire lookup table to tell us what the output would be for each 

input, we had an infinite number of signals which we usually do, we have to have an 

infinitely long lookup table listing every input signal, which itself is generally a signal 

with infinite support, and against it you would have had to represent every corresponding 

output. So, we would have had a doubly infinite problem on our hands, instead now we 

have what can be called a formula a means of calculating the output without actually 

looking up in any table, this is a grass simplification. 



A simplification that has reduced a huge table to just this grand formula namely y k, 

sorry, y n equals summation overall k x k h n minus k. So, this one function, this one 

discrete time function called h n taken along with the properties of our system namely 

linearity, and time invariance enables us to collapse all the information, that is present in 

an infinite lookup table to just a simple calculation a simple formula using, which you 

can calculate the output, you can compute the output without actually trying it out 

experimentally. 

So, an experimental determination of y n has been replaced in some sense by a purely 

computational means of obtaining the output. So, as I said in order to get this result we 

have used all three properties that we have assumed of the system, in the very process of 

deriving this expression we have used a homogeneity, that is to say that a delta n must 

yield the output a h n. We have used time in-variance the property by which delta n 

minus k must give us h n minus k, and finally we have also used at the outer most level, 

we have used additivity or if you like you can just use the actual expression for the x k of 

n to get the output as the following sum of x k h n minus k.  
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So, this is the major step forward that we have now taken for linear tine invariant 

systems, discrete time systems a lookup table description may be replaced by a much 

more compact representation involving the signal called the impulse response. So, if I 

have a knowledge of h n for a certain system I can potentially calculate the response to 



any arbitrary input signal. I need no more information than the impulse response to fully 

know the system, if I know the impulse response, I know the system completely, I know 

its entire input output relationship.  


