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 So welcome again to my course Power Electronics Applications in Power Systems. In 

last three lectures, I was discussing the basic operation of a series connected power 

electronic based compensators that is TCSC which is used in power system for various 

applications or various reasons. So, in this particular lecture also, I will discuss or rather I 

will finish the discussion on the analysis of TCSC. So, let us proceed. So, in last lecture, I 

stopped at this point, deriving the expressions for voltage across the capacitor. As you 

know, the basic schematic diagram of this TCSC is something like this. 

 We have a fixed capacitor, this fixed capacitor and we have a variable reactor, we call it 

a TCR, whose reactance should be controlled by the firing angle control of the thyristors. 

So voltage across capacitor means voltage across this particular series unit and which is 

of course the voltage across this TCR unit as well. So the expression for voltage across 

the capacitor we derive. There are two equations when this TCR is conducting the 

voltage across capacitor is this when TCR is non-conducting that is I TCR is 0.  

 So, voltage across the capacitor is that. So, this is voltage across the capacitor that 

expression is when TCR is conducting and this is the voltage across the capacitor that 

expression when TCR is non-conducting. So, you can see, if you look at both the 

equations, this equation as well as this equation, you can see that these are not ideally 



sinusoid. So, this would be some kind of distorted sinusoid. So, therefore, some amount 

of harmonics would be there within the expression. And we will analyze this harmonic as 

well. So, in this particular lecture, basically, I will discuss TCSC reactance and 

harmonics. So, the goal of today's lecture is to discuss the TCSC reactants and the 

harmonics. Now, what do you mean by TCSC reactants? Already I explained one of my 

previous lectures, when I discussed this basic operating principle of TCSC, that this 

TCSC reactants is effectively Z-TCSC, which is a parallel combination of this Xc and 

Xtc. Now, it could be positive. When it is positive, then it is inductive. It could be 

negative as well. When it is negative, it is capacitive mode of operation. So, we have two 

Vernier control modes, which I already explained. So, for these two Vernier control 

modes, the TCSC reactants would be in different Or TCSC reactants will have different 

sign, one is positive when it is operating at inductive vernier control and it is negative 

when it is operating at capacitive vernier control. 

 So, these are the two operating modes of TCSC and we will determine the expression of 

TCSC in particular as a function of this parameter beta. As I explained this beta is the 

angle of advance, it is an important parameter for TCSC analysis. And this beta can be 

varied. Now, with the variation of the beta, what would be the impedance or what would 

be the expression of the impedance of the TCSC that we are trying to determine today. 

Now, in order to determine that, as I explained, the voltage across this capacitor is non-

sinusoidal. 

 

 So, therefore, we have to find out the fundamental component of the voltage across the 

capacitor. So, let us find out this. So, the fundamental component of the voltage across 

the capacitor can be obtained as. This is we can obtain from Fourier series analysis as you 



know. So, this is V c 1, 1 stands for the fundamental, V c stands for voltage across the 

capacitor. So, this is equal to 4 by pi integration of 0 to pi by 2 V c t sin omega t d omega 

t. Now, you know that why we keep this limit 0 to pi by 2 because we have some 

symmetry of this capacitor voltage as well. So, look at this voltage waveform. So, here 

basically we restrict our limit from this omega t is equal to 0 to omega t is equal to pi by 

2 for this two limit. Now, within this two limit we have these two different expressions 

for VCT. As we know that this VCT expression when TCR is non-conducting would be 

something else and rather than when TCR is conducting. 

 Now you can see that here TCR will conduct from the time interval 0 to beta. So this is 

the angle beta. So up to this, this TCR will conduct. And then in this particular interval 

that is beta to pi by 2, TCR will not conduct. So, TCR will be non-conducting. So, 

therefore, I can write, I can split this interval of this integration into two parts, one is 4 by 

0, 0 to beta VCT sin omega t d of omega t. Another is  4 by pi integration beta 2 pi by 2 v 

c t, v c of t that is voltage across the capacitor instantaneous voltage, of course, sin omega 

t d omega t. Now, you understand that in this particular interval, TCR is conducting. In 

this particular interval, TCR is non-conducting. So, therefore, this VCT expression 

whichever we will be using in this particular interval that is 0 to beta would not be 

applicable when we use the interval beta to pi by 2. 

 So, if I write the actual expressions for VCT for these two intervals, so it will be 

something like this 4 by pi 0 to beta. Now, if you go back and see what the expression for 

VCT was when TCR was conducting, TCR is conducting. So, this is the expression, this 

is the expression. So, let us copy it and write over here, it will be equal to IMXC divided 

by IMXC divided by lambda square minus 1 multiplied with minus sin omega t. minus 

sin omega t plus lambda cos beta divided by cos lambda beta lambda cos beta divided by 

cos lambda beta multiplied by sin lambda omega t multiplied by sin lambda omega t. So, 

this is the expression for VCT when TCR is conducting if you look at. So, this is what the 

expression of VCT is when TCR is conducting. So, therefore, we will use it and this 

would be multiplied with sin omega t d of omega t. So, this is one part of this expression. 

Another part would be 4 by pi integration beta to pi by 2. Now, in this particular interval, 

TCR is non-conducting. So, therefore, the expressions for VCT would be what when it 

was applicable for TCS, TCR is non-conducting, that means this expression, that means 

this expression. So I will write this directly. So this will be vc dash. Vc dash is some 

parameter which is independent of time. 

 You can look at this expression is time-independent. So this expression is time-invariant. 

So, therefore, this is something like a constant, you can find this value and put it over 

here directly. But this part, this part is a part which is time variant at the sin omega t 

component. So, therefore, this plus I m x e sin omega t minus sin beta this is the 

expression or I should use a different parenthesis for this, because already the square 

parenthesis is used. So, I will use this curly bracket. So, this is the expression for this 



VCT when TCR is non-conducting, right? This is already we determined in the last 

lecture. So, when we put this, then this has to be multiplied with sin omega t d omega t, 

ok. Now, this is a very big integration. I am leaving to you all the learners to do it by 

yourself. In fact, in my live classes, I usually tell my students to derive it and then I will 

match this result that I am having with them. Because this is a very long integration, you 

need to put considerable effort into solving this. Therefore, we will be coming up with an 

expression which will be also very large. Do not remember this particular equation, there 

will be no use of it. You have to understand the concept underlying this equation that is 

all. 

 I will never ask you to derive this expression in your examination or I will not set any 

questions regarding this particular explanation which you need to remember. So, there is 

no need of that, but this underline concept should be understood. Then this is the basic 

goal of this particular lecture. Now, I have the solution with me, I can directly write over 

here and I will leave it with you to match the solution with your solution. So, the solution 

that I have is Im multiplied by xc minus xc square divided by xc minus xl like this, 2 beta 

plus sin 2 beta divided by pi plus 4 x square x e minus x l multiplied by cos square beta 

divided by lambda square minus 1 multiplied by lambda tan lambda beta minus tan beta 

divided by pi. This is what the expression which you need to verify. Now, I will leave it 

to you to verify. Please verify this solution. So, I have this solution which I can show to 

you, but what you need to do is you need to verify it. 

 It is a very long equation. As far as this power system learners is concerned, because we 

do not have such a very big equations having so many you know components, so many 

things within this equation usually in power system. So, therefore, this is relatively a very 

long equation. You need to carefully verify it, but I think that you should be able to 

derive it even though you do not remember this, but you should be able to derive this 

equation whenever is required. So, this is something is the goal of this particular lecture. 

Now, what is this V c 1? V c 1 is the fundamental component of the voltage across the 

capacitor. And what was our goal? Our goal is to find out the TCSC reactance, right? 

Now, how can we find out this TCSC reactance? We can find out you by taking the ratio 

of the voltage across the capacitor and this Im, Im is the current flowing through this 

particular line, because we are interested to find out the  this impedance of the TCSC. 

Now, what would be the impedance of the TCSC? Obviously, the impedance of the 

TCSC would be the voltage across the TCSC and current flowing through the TCSC. So, 

voltage across the TCSC is V c 1, current flowing is basically this I and the maximum 

value of it is I m. So, that is why it is this Im is the Im is representation of the current that 

is the peak value of the current flowing through the TCSC and Vc1 is the representation 

of the voltage across the TCSC. Their ratio would be of course the representation of the 

overall impedance of the TCSC. 



 So, therefore the impedance or one may tell that this is also reactance because both are 

representing same thing because we are assuming that the TCSC is lossless. So, therefore, 

the impedance of TCSC is ZTCSC. And, this is, it is found out to be the ratio of this V c 

1 to I m. And, in, if you look at this expression that we derived right now, this is, the left 

hand side we have V c 1, right hand side we have I m. So, therefore, this ratio can be 

easily determined from that particular expression. And, this ratio is the representation of 

this impedance or reactance of the TCSC. 

 Now, if you find this and do some further simplification, then the expression we get of 

ZTCSC as a ratio of Xc. Now, what is Xc? Xc is the reactance of the fixed capacitor. So, 

this expression after doing some simplification is coming out to be 1 plus 2 by pi 

multiplied by lambda square divided by lambda square minus 1 multiplied by a bracket 2 

cos square beta divided by lambda square minus 1, then tan lambda beta minus tan beta 

minus beta minus sin 2 beta by 2. Now, what is that ratio? This ratio is the, this is 

basically representing, this is basically representing ratio TCSC impedance to the 

reactance of the fixed capacitor or capacitor of TCSC. Now, you know that at this point 

this TCSC you know schematic diagram is something like that we have a fixed capacitor 

in parallel to a TCR. 

 Now, if you consider the reactance of this particular fixed capacitor is Xc and overall 

impedance of this is ZTCSC. Then the ratio of this ZTCSC to XC is found out to be this 

and this we obtain from this previous expression, from this expression after doing some 

sort of simplification. We converted this XCXL in terms of lambda and wherever is 

possible that we convert all this parameter into lambda and beta. So therefore, this 

expression if you look at then you can see ZTCSC  to x e ratio is function of lambda beta, 

only function of lambda and beta. Now what is lambda, if I hope that you can remember 

it appropriately, this lambda already we derived in this one of this expression, it is the 

ratio of the omega R to omega, where omega R is equal to 1 upon root over LC, which is 

resonating frequency. So it is basically representation of that ratio of the omega R to 

omega that means omega R is what times of this power frequency that is what. So, 

basically lambda is a constant because it is a design parameter. It depends upon this 1 

upon L and C which are fixed. So, lambda is constant. Only parameter here is variable is 

beta. So, if we go back and see. So, therefore, lambda is design parameter and constant 

for a particular TCSC. So, therefore, this ratio is variable only with this beta. Now, what 

is beta? Beta is the angle of advance as I said this is a very important concept and we will 

derive all this later on parameter in terms of beta and the choice of beta is important for 

controlling the TCSC. So, this ratio is an important parameter which can be varied or 

controlled with the appropriate choice of the beta depending upon the requirement. 

 This is something one needs to understand. Now we will be doing some case study here. 

What is the case study? First case study is let us consider beta is equal to 0. Now what 

will happen? And second case study is let us consider beta is equal to pi by 2. Because if 



you look back and see the waveforms that I derived, this possible value of this beta can 

be 0 to pi by 2. When beta is equal to 0, that means TCR is non-conducting. When beta is 

equal to pi by 2, then that means TCR is fully conducting. So, that means beta is equal to 

0 means TCR is non-conducting or TCR is fully off. Now, what mode of operation it is? 

It is a fixed capacitor mode of operation. It is a fixed capacitor mode of operation because 

if your TCR is fully off that means this TCSC is nothing but a fixed capacitor. So, overall 

impedance of the TCSC should be equal to the reactance of the fixed capacitor or 

impedance of the fixed capacitor. 

 

 Does it happen? Let us see. Now, if we put beta is equal to 0, you look at this cos beta 

will be equal to 1. 10 lambda beta this part would be 0. So, 10 beta will be also 0. So, if 0 

multiplied with this would be 0. So, therefore, this would be also 0, this would be also 0. 

So, inside this bracket whatever term we will be having corresponding to beta is equal to 

0 will be 0. So, that means this ratio there Tc Sc by Xc will be equal to 1 plus  2 divided 

by pi lambda square divided by lambda square minus 1 multiplied by 0, which is equal to 

1. So, this gives that ZTCSC is equal to XC, which is the fixed capacitor mode of 

operation. So, this gives one indication that this expression is correct, but you need to 

also verify whether it is true or not. Now, the second case study is when beta is equal to 

pi by 2. 

 Now, what do you mean by beta is equal to pi by 2? At this case, TCR is fully on. So 

therefore, what mode of operation it is, if you look back at this waveform, which we had 

drawn earlier, this is what the, you know, this TCR current for this value of beta. Now, if 

beta is equal to pi by 2, then this current would be somewhere like this, up to  So, I can 

draw this by some other color, let us say here, when this beta, this will be equal to I TCR, 



this would be equal to I TCR of t corresponds to beta is equal to pi by 2. So, then this 

would be equal to the I TCR current. So, when it happens that means TCR is fully 

conducting. So, in that case there would be no harmonics of course, that is one of the 

advantages. But when it happens then what would be the value of this ZTCSC that is 

what something important to us. So, this is you know fixed capacitor mode and when 

TCR is fully conducting we have to find out what mode of operation it is. So, if we put 

beta is equal to pi by 2. Then what we will get? You can see this part would be equal to 0 

and now cos beta cos pi by 2 is what? It is 0. 

 So, this has to be multiplied with 0 multiplied this entire block. So, this would be 0, this 

would be 0. So, only this beta will remain. So, then this equation according to me will be 

equal to equal to Z T C S C divided by X C  is equal to or I should write it here ZTCSC 

divided by XC is equal to 1 plus 2 by pi lambda square lambda square minus 1 and then 

within this bracket it will be multiplication with pi by 2. Then, what we will get? This pi 

by 2 and this would be cancelled out. So, this will be equal to 1 minus lambda square 

divided by lambda square minus 1. So, this is lambda square minus this, this is minus 1 

divided by lambda square minus 1. So, this ZTCSC and XCSC will be this. Now, what 

we can interpret from it? Let us consider lambda is equal to 3. That means, this omega r 

is 3 times of the power frequency. So, then this ZTCSC to this XC ratio would be equal 

to minus 1 upon 3 square, that is 9 minus 1. So, that is minus 1 divided by 8. Now, minus 

1 by 8 is a fractional number, my point around 0.125 or something like that. 

 So, therefore, it is a fractional number, but negative. Now, what this negative sign 

signify? This negative sign signify that this overall impedance of T c s c would be minus 

of this x c. Now, x c is a capacitive impedance. So, negative of that would be an inductive 

mode. So, therefore, this is a inductive mode of operation. This is an inductive mode of 

operation. Now, there would be another you know value of beta which will be also 

important to us. This beta is the value of this beta c which is called the cutoff value of this 

beta for which this ratio that is ZTCSC to XC ratio would be infinite. That is why this 

resonance will happen. This is also an important case study that we can do. Now, from 

this, we can find out at what value of this beta, this ratio would be infinitely large. 

 In a practical sense, it cannot be infinite but it can be infinitely large. That means the 

resonance will happen which makes it this isolated from the system and that means this 

will create a discontinuity. The placement of this TCSC will cause a discontinuity at the 

point where it is placed in the transmission line. So, we have also this point is interest to 

us. Now, in order to find this, what we will do is, we have to do some more derivations. 

So, let us do some derivation to arrive at the conclusion that what could be the value of 

beta c to guess at least what could be the value of this beta for which this would be equal 

to infinite. Now, we can see this mode of operation is prohibited and this we have to 

identify before and we should control or tune the parameter of TCSC such that this 

situation or this case will never appear. So, therefore, to find this what we can do, let us 



do some derivations of ZTCSC to Xc. So, I am just rewriting this expressions once again. 

So, 1 plus 2 by pi lambda square divided by lambda square minus 1 multiplied by now 

you can see here we have two terms; one is lambda tan lambda beta; another is tan beta. 

 So, what we can write this is 2 cos square beta divided by lambda square minus 1 

lambda tan lambda beta minus 2 cos square beta divided by lambda square minus 1 tan 

beta. We did nothing but we just multiplied this multiplier, this multiplier one with this 

lambda tan beta and another with tan beta. Now, we write this minus beta as it is and 

minus sin 2 beta by 2 as it is. Now, what we will do? We will go ahead with this 

derivation once again. So, this will be lambda square minus 1. Now, this can be written as 

2 cos square beta lambda tan lambda beta divided by lambda square minus 1 minus. 

Now, you can see we can write this tan beta by sin beta by cos beta. So, if we write it, if 

we just write tan beta sin beta divided by cos beta, then this cos beta and this 1 cos beta in 

the numerator will be canceled out. So, in the numerator we will have 2 cos beta sin beta 

which can be written as sin 2 beta divided by lambda square minus 1 minus beta  minus 

sin 2 beta by 2. 

 Now, we have two sin 2 beta term, one is this, another is this. So, let us aggregate these 

two. So, 1 plus 2 divided by pi lambda square lambda square minus  2 cos square beta 

lambda tan lambda beta divided by lambda square minus 1 minus, if I take sin 2 beta 

common outside a bracket, then here we will have 1 by lambda square minus 1, here we 

have 1 by 2, right. Then minus beta we, I am keeping as it is. Now let us write it again 2 

by pi lambda square lambda square minus 1 multiplied by I will keep this as it is 2 cos 

square beta lambda tan lambda beta lambda square minus 1 minus the sin 2 beta I will 

write as it is. Now, if we just do this addition 1 upon lambda square minus 1 plus 1 upon 

2, then it will be equal to 2 plus lambda square minus 1 divided by 2 lambda square 

minus 1 minus beta. 

 So, again we write 2 by pi lambda square divided by lambda square minus 1, this portion 

as it is 2 cos square beta lambda tan lambda beta divided by lambda square minus 1 

minus sin 2 beta with the multiplication of this will be lambda square plus 1 divided by if 

I bring this two outside divided by lambda square minus 1 minus beta. So, this is the 

expression I wanted to derive. Now look at this particular expression. Here only 

parameter is varying, only variable parameter is beta. So, in this particular expression, so 

the only variable in this expression is beta. Apart from that, everything is constant. 

Lambda is a design parameter, it is constant. All other parameters are constant. So, only 

parameter which is can be varied is beta. Now, what is the range of the beta? Beta can be 

varied from 0 to pi by 2. Beta can be varied from 0 to pi by 2. Now, as you can already 

have seen neither beta is equal to 0 or beta is equal to pi by 2, two extreme limits gives 

the ratio ZTCSC to Xe infinite or infinitely large. Then what would be the value of beta 

for which this would be infinity? If you look at this particular expression, you can see 

this, if we vary beta from 0 to pi by 2, this minus beta, this component will never be 



infinite. There is no chance, it is a parameter. Now, sin 2 beta, so sin 2 beta cannot be 

infinite within this range, 0 to pi by 2. In fact, sin 2 beta can never be infinite, so as this 

cos square beta. So, what parameter can be infinitely large so that this ZTCSC to XC 

ratio will be infinite. So, if you look at then only this tan lambda beta is a parameter 

which can be infinite. Tan theta can be infinite. Under what condition tan theta can be 

infinite? You know when theta is equal to pi by 2. Then you know that this sin pi tan 

theta when theta is equal to pi by 2 that is tan pi by 2 is equal to sin pi by 2 divided by cos 

pi pi 2. 

 Now sin pi by 2 is equal to 1, cos pi pi by 2 is equal to 0, so this can be infinite. So 

therefore, in this particular expression, if this lambda beta is equal to pi by 2, then what 

will happen? Z T C S C by X C can be infinity. So, this is an important relation. This is 

an important relation and therefore, this beta C that is known as this cutoff value of this 

beta, which should never be appeared is equal to pi by 2 to lambda. This is an indirect 

way of determining it, but you can mathematically also derive this expression, this beta c 

is equal to pi by 2 lambda from this particular expression if you want to solve. Now what 

we will do next? We got these three important cases that at beta is equal to beta c, this is 

infinity and we find out this beta c is equal to pi by 2 lambda. 

 So, this what we derive. We know that what will happen beta is equal to 0, we also know 

that what will happen at beta is equal to pi by 2. Then what we can do is that we can plot 

this ZTCSC to XC ratio with respect to beta. Now, how would be the plot? Let us see. So, 

let us have this plot of this ratio ZTCSC to XC versus this beta. So, one axis I will write 

this particular ratio that is ZTCSC to XC. It can be positive, it can be negative as well. In 

another axis, we will keep beta. And beta can be varying from 0 to let us say pi by 2. And 

this is, suppose this beta is equal to beta C for which this resonance will happen. Now, as 

we know that when this beta is equal to 0, then this ratio will be equal to 1. So, this is 1. 

Let us say this is 2, this is 3, this is 4, and so on. And here also this is minus 1, this is 

minus 2. This is minus 3, this is minus 4, and so on. 

 Now at beta is equal to 0, this is our operating point. This is what would be that value of 

this ratio. Then what will happen if you take this particular expression and plot it by 

using any any coding language you know either in MATLAB or any C or C++, then this 

plot we will see something like this. This plot will be something like this. And as we 

know that when beta is equal to pi by 2, this would be negative, but this value would be 

something close to 0. So, this plot of this side would be something like that. So, the plot 

of this ZTCSC to Xc which is an important you know parameter would be something like 

this and when beta is equal to beta c their value will be infinitely large. So, that is why we 

keep it as a discontinuity there. So, this plot is also important for the application of TCSC 

in particular for controlling the TCSC parameters, so that our operation should be within 

this you know feasible range of these characteristics. Now the question is, we have two 



plots, one is this red, another is this. Which one is, what mode of operation? Now we can 

see that in this particular mode of operation, ZTCSC to XC ratio is positive. 

 

 That means ZTCSC is having same sign with XC. So therefore, it is a capacitive Vernier 

mode, capacitive mode of operation. Whereas, in this particular mode, when ZTCSC and 

XC ratio is negative, that means, the sign of this impedance, overall impedance of the 

TCSC is negative of the reactance of the fixed capacitor, which is eventually an 

inductive, you know, reactance. So, therefore, this would be inductive mode of operation. 

So, this is inductive mode of operation. So, in this Vernier control mode of operation of 

TCSC either the operation should be here or here. In general it is in capacitive mode. But 

this point has to be avoided. So, you should have a sufficient you know margin to avoid 

this state, where this ratio is infinite and this may cause a discontinuity in the 

transmission line, which is not acceptable at all. So, this is something I want to tell. In 

fact, what is actually happening over here is that, with the change, with the increase in 

this beta, what is actually happening is this ZTCSC is slowly moving from capacitive 

mode of operation to inductive mode of operation or inductive Vernier control mode of 

operation. 

 I am just writing in a short inductive mode of operation. Now, why it is actually 

happening if you look at this waveform once again which I have drawn. At the very 

beginning when I started the analysis, when beta is equal to 0 means, what does it mean 

actually? This TCR is non-conducting or TCR is fully off. When TCR is fully off, it is 

capacitive mode. Now, when TCR is slowly building its current like this, slowly building 

its current, then what is actually happening when this TCR current is 0, then the net 

reactance of the TCR is the voltage across TCR which is the voltage across this capacitor 



that is Vc divided by the current that is flowing through the TCR that is ITCR. That ratio 

would be infinitely large when it is operating, beta is operating near to 0. And therefore, 

in this particular, this interval when beta is very near to 0 and it is operating in capacitor 

mode. 

 So, basically what is actually happening is, since this impedance or reactance of this 

TCR is, because you can see as I show, show you that X TCR is basically equal to this 

voltage that is V CT divided by I TCR T. Now, when I TCR is T is close to 0,  then this 

will become very large, very large or infinitely large, whatever the value of VCT might 

be or infinitely large. Now, when you move this value of the ITCR from 0 to M1 value, 

still this XTCR is usually large. So, therefore, in this particular mode, Xc is lower than 

XTCR, this condition is getting satisfied and that is why, you know, the capacitive of 

mode of operation is taking place. Whereas, if we keep on this increase in the value of 

beta, then this xtcr, which is the ratio of vct divided by itcrt, when itcrt is sufficiently 

large, then xtcr would be lower. 

 So, therefore, this will be the case when xc is greater than this xtcr. That is why it is 

operating in the inductive mode of operation. So, at this happens, so this xtcr value is 

higher than higher near to beta is equal to 0, what I have shown over here, and xtcr value 

is lower to beta is equal to pi by 2, which is happening over here. And that makes these 

two conditions satisfied, which I discussed long time before, when I started this 

discussion on TCSC. And that is why it is actually happening. Now, so therefore, with 

the increase of this beta, TCS is slowly moving capacitive mode, because actually this 

TCR reactance, if you plot this TCR reactance, it is getting reduced. 

 So, if this, if you plot this TCR reactance, X TCR of t with respect to this beta, then what 

we will see, its value is getting reduced. So, that is what is actually happening and this is 

what the reason is and that is why these two modes of operation is taking place. Now, 

next if you remember I explained that this when I discussed this waveform I said that this 

VCT will not be sinusoidal, TCSC it will be only sinusoidal when TCSC operation at 

fixed capacitor mode. Then the question would be how would be the characteristics of 

VCT or how would be the waveforms of VCT. So, that is also an important to us. So, this 

you can eventually verify by taking an example. So, what I can show over here is that 

VCT waveforms for capacitive and inductive mode of operations. Now, how would be, 

let us see. So, let us start with this inductive mode of operation. So, what is actually 

happening in the inductive mode of operation or let us start with this capacitive mode of 

operation. 

 So, in capacitive mode of operation, if I draw at this waveform once again. So, suppose  

Suppose this is our line current is, this is our line current I t, I of t that is line  And, then 

this for this particular line current as you know when it is operating at this capacitive 

mode of operation. So, what we know is this would be if we go back and see. Suppose 



this is our line current and then this would be our, this green line is showing that this 

would be our, this ITCRT. So therefore ITCRT would be something like this. I T C R T 

will be something like this. This is minus beta, this is beta. So, this would be something 

like this. So, therefore, what would be the net, this current, as we know, if we just draw 

this, this schematic diagram of this, this is our fixed capacitor, that is the voltage across 

this is V c t, and this is our, this T c r unit, it is drawing a current, which is equal to I T c r 

t And, this is basically this I of t. Now, this the difference of this I of t, I of t minus this I 

TCR t is basically representation of current flowing through the capacitor. Now, how 

would be the you know this difference that you can see over here, if you have if you take 

the difference of this, then this would be something like this. Up to this it will be like this, 

then it would be something like this and then again this would be something like this. So, 

this green curve is basically representation of current flowing through the capacitor. And 

integration of this will representation of the voltage across the capacitor which would be 

you know that there would be a phase displacement of this pi by 2, but if you look back I 

already explained this, but this characteristics would be almost similar to this the current 

flowing through the capacitor. So, it will be having a phase displacement of this pi by 2. 

So therefore, so this is pi by 2. So therefore, this capacitor current, capacitor voltage will 

be something like this. It will be like this. Similarly, it will be like this. So this is what 

would be the capacitor voltage or V c of t. 

 Now, similarly, this will happen for the capacitive mode of operation. This is for the 

capacitive mode of TCSC operation. Now, similarly, we can also draw similar 

characteristics for inductive mode of operation, and similar waveforms. So, suppose this 

is what this line current that is I of t. Now, we know that we already explained at the very 

beginning, if you can remember that, for the inductive mode of operation, the direction of 

the line current and the direction of this TCR current would be different than this 

capacitive mode of operation. 

 Therefore, this current would be something like this, ITCR will be something like this. 

This will be ITCR or actually, I should draw it in a bigger way because here now ITCR 

will be the considerably higher magnitude, and there will be again this ITCR, this will be 

again ITCR. So, therefore, the net current, the difference of IT and ITCR which will be 

the current flowing through the capacitor would be something like this. it would be 

something it will be follow like this profile and then it will getting be reduced like this 

then it will have the same profile like this then it will follow this again then it will be 

again reduced it will be something like this. And accordingly this voltage across this 

capacitor or V c t will be something like this, it will follow it will there it will be. So, I 

although I have not written, but you understand this will be the expression for current 

flowing through the capacitor. So therefore, the capacitor voltage would be almost similar 

in nature. 



 So, it will be something like this or it will be something like that. So, this will be 

capacitor voltage. So, this will be the actual, you know, waveform for the capacitor 

voltage, which I told you that I will derive. So, and this would be this, you know, VCT 

waveform for inductive mode of operation, inductive mode of TCSC operation. Now you 

can see there is a difference of this waveforms in altogether and in between these two 

different modes of operation of TCS. Now one last thing that I will discuss in this 

particular lecture before I stop that is the harmonics in TCS. So you know that this 

harmonic is generated in TCSC because of the TCR operation. So I should write the 

harmonics in TCSC are generated due to the partial conduction of switches in TCR. This 

is very important to understand that it is because of because if TCR is responsible for this 

having harmonics in TCSC because and most importantly if the TCR is operated at 

partially conducting mode then this harmonics will be generated. But we need to find out 

this harmonics and we need to find out the mitigations of the harmonic as well. 

 

 But this harmonics will be less as compared to this normal operation of the TCR in 

shunt. But we need to analyze this harmonic. So, first we need to find out the 

fundamental TCR current which is ITCR, you can make it 1 to represent it is 

fundamental, it is equal to 4 by pi 0 to pi by 2 ITCR of t cos omega t d omega t. So, this 

is by using this Fourier series expression and you know that ITCRT expression already 

we have drawn, we have derived, this is what the expression for ITCRT. So, if I put it 

over here, then I will come up with the expression for this fundamental TCR current and 

that expression also you can derive, I ask you to derive and this expression of this is 

coming out to be 2 by pi lambda square divided by lambda square minus 1 I m peak value 

of this line current beta plus sin 2 beta minus cos beta divided by cos lambda beta. I am 



just writing whatever expressions I got, you also verify it, sin lambda plus 1 beta divided 

by lambda plus 1 plus sin lambda minus 1 beta divided by lambda minus 1. 

 So this expression I got, but please verify it. Similarly, this n-th harmonics of TCR 

current can be obtained as this I T c r of n-th is equal to 4 by pi integration 0 to pi by 2 I 

T c r t cos n omega t  d omega t, which is if you again I will ask you to verify it is coming 

out to be 2 by pi lambda square minus lambda square divided by lambda square minus 1 I 

m multiplied by sin n minus 1 beta divided by n plus 1 plus sin n minus 1 beta divided by 

n minus 1. So, let us use some different parenthesis. This is minus cos beta divided by cos 

lambda beta multiplied by sin n plus lambda beta divided by n plus lambda plus sin n 

minus lambda beta divided by n minus lambda. 

 Where n is equal to 3, 5, 7 all are harmonics. This is again I will ask you to verify. So, 

these are the different harmonics that we will have in the TCSC and we cannot do 

anything else in that we have to bear with this harmonics and but we should analyze it so 

that we can control this TCSC such that less harmonics would be generated in it. So, that 

is all about this TCSC analysis and its operation. So, in the next lecture, I will discuss the 

application of TCSC in power systems. So, till then thank you very much for attending 

this lecture. So, thank you very much for your attention, we look forward to see you in 

the next lecture. 

 

 TCSC Reactance and Harmonics 

As we know, the instantaneous voltage across the capacitor can be written as: 

𝑣𝑐(𝑡) =
𝐼𝑚𝑋𝐶 

𝜆2−1
[−𝑠𝑖𝑛𝜔𝑡 +

𝜆𝑐𝑜𝑠(𝛽)

𝑐𝑜𝑠(𝜆𝛽)
𝑠𝑖𝑛(𝜆𝜔𝑡)],  𝜔𝑡𝜖[−𝛽, 𝛽]  ⟸ TCR is conducting, 

𝑖𝑇𝐶𝑅(𝑡) ≠ 0 

𝑣𝑐(𝑡) = 𝑉𝑐
′ + 𝐼𝑚𝑋𝑐[𝑠𝑖𝑛𝜔𝑡 − 𝑠𝑖𝑛𝛽]    ⟸TCR is non-conducting, 𝑖𝑇𝐶𝑅(𝑡) = 0 

Where, 𝑉𝑐
′ =

𝐼𝑚𝑋𝐶 

𝜆2−1
[−𝑠𝑖𝑛𝛽 + 𝜆𝑐𝑜𝑠(𝛽)𝑡𝑎𝑛(𝜆𝛽)] ⟸ Time-invariant 

The fundamental component of the voltage across the capacitor can be obtained as, 

                             𝑉𝑐1 =
4

𝜋
∫ 𝑣𝑐(𝑡)𝑠𝑖𝑛𝜔𝑡. 𝑑𝜔𝑡

𝜋

2
0

                                                                (1)                                                  

=
4

𝜋
∫ 𝑣𝑐(𝑡)𝑠𝑖𝑛𝜔𝑡. 𝑑𝜔𝑡

𝛽

0

+
4

𝜋
∫ 𝑣𝑐(𝑡)𝑠𝑖𝑛𝜔𝑡. 𝑑𝜔𝑡

𝜋
2

𝛽

 

 

                                                 TCR is conducting          TCR is non-conducting 

                                



       =
4

𝜋
∫

𝐼𝑚𝑋𝐶 

𝜆2−1
[−𝑠𝑖𝑛𝜔𝑡 +

𝜆𝑐𝑜𝑠(𝛽)

𝑐𝑜𝑠(𝜆𝛽)
𝑠𝑖𝑛(𝜆𝜔𝑡)] 𝑠𝑖𝑛𝜔𝑡. 𝑑𝜔𝑡 +

4

𝜋
∫ [𝑉𝑐

′ + 𝐼𝑚𝑋𝑐{𝑠𝑖𝑛𝜔𝑡 −
𝜋

2
𝛽

𝛽

0

𝑠𝑖𝑛𝛽}]𝑠𝑖𝑛𝜔𝑡. 𝑑𝜔𝑡 

 

   ⇒ 𝑉𝑐1 = 𝐼𝑚 [𝑋𝐶 − (
𝑋𝐶

2

𝑋𝐶−𝑋𝐿
) (

2𝛽+𝑠𝑖𝑛2𝛽

𝜋
) + (

4𝑋𝐶
2

𝑋𝐶−𝑋𝐿
) (

𝑐𝑜𝑠2𝛽

𝜆2−1
) (

𝜆𝑡𝑎𝑛𝜆𝛽−𝑡𝑎𝑛𝛽

𝜋
)]                 (2)   

 

The impedance (Reactance) of TCSC is   𝑍𝑇𝐶𝑆𝐶      

𝑍𝑇𝐶𝑆𝐶 =
𝑉𝑐1

𝐼𝑚
   

⇒ 𝑍𝑇𝐶𝑆𝐶 = 𝑋𝐶 − (
𝑋𝐶

2

𝑋𝐶−𝑋𝐿
) (

2𝛽+𝑠𝑖𝑛2𝛽

𝜋
) + (

4𝑋𝐶
2

𝑋𝐶−𝑋𝐿
) (

𝑐𝑜𝑠2𝛽

𝜆2−1
) (

𝜆𝑡𝑎𝑛𝜆𝛽−𝑡𝑎𝑛𝛽

𝜋
)      

                      = 𝑋𝐶 [1 − (
𝑋𝐶

𝑋𝐶−𝑋𝐿
) (

2𝛽+𝑠𝑖𝑛2𝛽

𝜋
) + (

4𝑋𝐶

𝑋𝐶−𝑋𝐿
) (

𝑐𝑜𝑠2𝛽

𝜆2−1
) (

𝜆𝑡𝑎𝑛𝜆𝛽−𝑡𝑎𝑛𝛽

𝜋
)]      

                     = 1 − (
𝑋𝐶

𝑋𝐶−𝑋𝐿
) (

2𝛽+𝑠𝑖𝑛2𝛽

𝜋
) + (

4𝑋𝐶

𝑋𝐶−𝑋𝐿
) (

𝑐𝑜𝑠2𝛽

𝜆2−1
) (

𝜆𝑡𝑎𝑛𝜆𝛽−𝑡𝑎𝑛𝛽

𝜋
)                                   

                      = 1 − (

𝑋𝐶
𝑋𝐿

𝑋𝐶
𝑋𝐿

−1
) (

2𝛽+𝑠𝑖𝑛2𝛽

𝜋
) + (

4
𝑋𝐶
𝑋𝐿

𝑋𝐶
𝑋𝐿

−1
) (

𝑐𝑜𝑠2𝛽

𝜆2−1
) (

𝜆𝑡𝑎𝑛𝜆𝛽−𝑡𝑎𝑛𝛽

𝜋
)  

Now, λ =
𝜔𝑟

𝜔
, 𝜔𝑟 =

1

√𝐿𝐶
 

⇒ λ =
1

𝜔√𝐿𝐶
⇒ λ2𝜔2𝐿𝐶 = 1 ⇒ λ2(𝜔𝐿)(𝜔𝐶) = 1  

⇒ λ2(𝜔𝐿) =
1

(𝜔𝐶)
 ⇒ λ2 =

1

(𝜔𝐶)

(𝜔𝐿)
 ⇒ λ2 =

𝑋𝐶

𝑋𝐿
 

 ⇒ 𝑍𝑇𝐶𝑆𝐶 = 1 − (
λ2

λ2−1
) (

2𝛽+𝑠𝑖𝑛2𝛽

𝜋
) + (

4λ2

λ2−1
) (

𝑐𝑜𝑠2𝛽

𝜆2−1
) (

𝜆𝑡𝑎𝑛𝜆𝛽−𝑡𝑎𝑛𝛽

𝜋
)  

 

                         = 1 − (
2

𝜋
) (

λ2

λ2−1
) (𝛽 +

𝑠𝑖𝑛2𝛽

2
) + (

2

𝜋
) (

λ2

λ2−1
) (

2𝑐𝑜𝑠2𝛽

𝜆2−1
) (𝜆𝑡𝑎𝑛𝜆𝛽 − 𝑡𝑎𝑛𝛽)  

                     = 1 +
2

𝜋
 (

𝜆2

𝜆2−1
) [

2𝑐𝑜𝑠2𝛽

𝜆2−1
(𝜆𝑡𝑎𝑛𝜆𝛽 − 𝑡𝑎𝑛𝛽) − 𝛽 −

𝑠𝑖𝑛2𝛽

2
] 

 

  ⇒
𝑍𝑇𝐶𝑆𝐶

𝑋𝐶
= 1 +

2

𝜋
(

𝜆2

𝜆2−1
) [

2𝑐𝑜𝑠2𝛽

𝜆2−1
(𝜆𝑡𝑎𝑛𝜆𝛽 − 𝑡𝑎𝑛𝛽) − 𝛽 −

𝑠𝑖𝑛2𝛽

2
]                                   (3) 

      ⇓  

Ratio of TCSC impedance to the reactance of the fixed capacitor. 

  
𝑍𝑇𝐶𝑆𝐶

𝑋𝐶
= 𝑓(𝜆, 𝛽)                                 

𝜆 =Design parameter and constant for a particular TCSC 

 

Case study: 

 

(i) 𝛽 = 0 [ TCR is fully OFF]: Fixed capacitor mode of operation 



     
𝑍𝑇𝐶𝑆𝐶

𝑋𝐶
= 1 +

2

𝜋
 (

𝜆2

𝜆2−1
) × 0 = 1 ⇒ 𝑍𝑇𝐶𝑆𝐶 = 𝑋𝐶  

 

(ii) 𝛽 =
𝜋

2
 [ TCR is fully ON]: Inductive mode of operation 

𝑍𝑇𝐶𝑆𝐶

𝑋𝐶
= 1 +

2

𝜋
 (

𝜆2

𝜆2−1
) (

−𝜋

2
) = 1 −

𝜆2

𝜆2−1
=

−1

𝜆2−1
 

𝜆 = 3, 
𝑍𝑇𝐶𝑆𝐶

𝑋𝐶
= −

1

9−1
=

−1

8
= −0.125 

 

(iii) 𝛽 = 𝛽𝐶 for which 
𝑍𝑇𝐶𝑆𝐶

𝑋𝐶
→ ∞ 

From equation (3) : 

 
𝑍𝑇𝐶𝑆𝐶

𝑋𝐶
= 1 +

2

𝜋
(

𝜆2

𝜆2−1
) [(

2𝑐𝑜𝑠2𝛽

𝜆2−1
) 𝜆𝑡𝑎𝑛𝜆𝛽 − (

2𝑐𝑜𝑠2𝛽

𝜆2−1
) 𝑡𝑎𝑛𝛽 − 𝛽 −

𝑠𝑖𝑛2𝛽

2
]                                

 

                           = 1 +
2

𝜋
(

𝜆2

𝜆2−1
) [(

2𝑐𝑜𝑠2𝛽

𝜆2−1
) 𝜆𝑡𝑎𝑛𝜆𝛽 − (

2𝑐𝑜𝑠2𝛽

𝜆2−1
)

𝑠𝑖𝑛𝛽

𝑐𝑜𝑠𝛽
− 𝛽 −

𝑠𝑖𝑛2𝛽

2
]  

                                       = 1 +
2

𝜋
(

𝜆2

𝜆2−1
) [

2𝑐𝑜𝑠2𝛽 𝜆𝑡𝑎𝑛𝜆𝛽

𝜆2−1
−

𝑠𝑖𝑛2𝛽

𝜆2−1
− 𝛽 −

𝑠𝑖𝑛2𝛽

2
]  

 

                                    = 1 +
2

𝜋
(

𝜆2

𝜆2−1
) [

2𝑐𝑜𝑠2𝛽 𝜆𝑡𝑎𝑛𝜆𝛽

𝜆2−1
− 𝑠𝑖𝑛2𝛽 {

1

𝜆2−1
+

1

2
} − 𝛽]  

 

                                    = 1 +
2

𝜋
(

𝜆2

𝜆2−1
) [

2𝑐𝑜𝑠2𝛽 𝜆𝑡𝑎𝑛𝜆𝛽

𝜆2−1
− 𝑠𝑖𝑛2𝛽 {

2+𝜆2−1

2(𝜆2−1)
} − 𝛽]  

 

              ⇒
𝑍𝑇𝐶𝑆𝐶

𝑋𝐶
= 1 +

2

𝜋
(

𝜆2

𝜆2−1
) [

2𝑐𝑜𝑠2𝛽 𝜆𝑡𝑎𝑛𝜆𝛽

𝜆2−1
−

𝑠𝑖𝑛2𝛽

2
{

𝜆2+1

(𝜆2−1)
} − 𝛽]                                  (4) 

 

The only variable in the above expression is 𝛽 and 𝛽 ∈ [0,
𝜋

2
] 

𝑖𝑓 (𝜆𝛽 =
𝜋

2
) ⇒

𝑍𝑇𝐶𝑆𝐶

𝑋𝐶
≈ ∞  

⇒ 𝛽𝐶 =
𝜋

2𝜆
  

 

 

 

 

 

 

 

 

 

 



Plot of (
𝒁𝑻𝑪𝑺𝑪

𝑿𝑪
) 𝒗𝒔 𝜷 : 

(βC)max (βL)min
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 
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C TCRX X

C TCRX X

                   

 Fig..1 Variation of (𝑋𝑇𝐶𝑆𝐶 𝑋𝐶⁄ ) as a function of 𝛽 

𝑋𝐶 < 𝑋𝑇𝐶𝑅 : Capacitive operation 

𝑋𝐶 > 𝑋𝑇𝐶𝑅 : Inductive operation 

From Fig.1, it is observed that with the increase in 𝛽, TCSC is slowly moving from 

capacitive Vernier control mode of operation to inductive Vernier control mode of 

operation. 

𝑋𝑇𝐶𝑅 =
𝑣𝑐(𝑡)

𝑖𝑇𝐶𝑅(𝑡)
 

When, 𝑖𝑇𝐶𝑅(𝑡) ≈ 0 ⇒ 𝑋𝑇𝐶𝑅 = 𝑉𝑒𝑟𝑦 𝑙𝑎𝑟𝑔𝑒 𝑣𝑎𝑙𝑢𝑒 

When, 𝑖𝑇𝐶𝑅(𝑡) ↑ ⇒ 𝑋𝑇𝐶𝑅 ↓ 

The variation of 𝑋𝑇𝐶𝑅 with 𝛽 is shown in Fig.2. 

𝑋𝑇𝐶𝑅 value is higher near to 𝛽 = 0 

𝑋𝑇𝐶𝑅 value is lower near to 𝛽 =
𝜋

2
 

 



 TCRX t


 

Fig.2. Variation of 𝑋𝑇𝐶𝑅 with respect to 𝛽 

𝒗𝒄(𝒕) waveforms for capacitive and inductive mode of operations: 

L

C

sw

 TCRi t

Transmission Line i t  Ci t

 Cv t

 

                        Fig.3. Equivalent circuit diagram of TCSC 

From Fig.3, 𝑖(𝑡) − 𝑖𝑇𝐶𝑅(𝑡) = 𝑖𝑐(𝑡) = Current flowing through the capacitor 
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               Fig.4. Waveforms of  𝑖𝑐(𝑡), 𝑖𝑇𝐶𝑅(𝑡), 𝑣𝑐(𝑡) for capacitive mode of TCSC operation 
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 TCRi t
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Fig.5. Waveforms of  𝑖𝑐(𝑡), 𝑖𝑇𝐶𝑅(𝑡), 𝑣𝑐(𝑡) for inductive mode of  TCSC operation 

The waveforms of  𝑖𝑐(𝑡), 𝑖𝑇𝐶𝑅(𝑡), 𝑣𝑐(𝑡) for capacitive and inductive mode of TCSC 

operation are shown in Fig.4 and Fig.5 respectively. 

Harmonics in TCSC 

The harmonics in TCSC is generated due to partial conduction of switches in TCR. 

Fundamental TCR current 

(𝐼𝑇𝐶𝑅)1 =
4

𝜋
∫ 𝑖𝑇𝐶𝑅(𝑡)

𝜋
2

0

𝑐𝑜𝑠𝜔𝑡 𝑑(𝜔𝑡) 

(𝐼𝑇𝐶𝑅)1 =
2

𝜋
(

𝜆2

𝜆2−1
) 𝐼𝑚 [𝛽 + 𝑠𝑖𝑛2𝛽 −

𝑐𝑜𝑠𝛽

𝑐𝑜𝑠𝜆𝛽
{

𝑠𝑖𝑛(𝜆+1)𝛽

𝜆+1
+

𝑠𝑖𝑛(𝜆−1)𝛽

𝜆−1
}]                              (5)                          

𝑛𝑡ℎ harmonics of TCR current 

(𝐼𝑇𝐶𝑅)𝑛 =
4

𝜋
∫ 𝑖𝑇𝐶𝑅(𝑡)

𝜋
2

0

𝑐𝑜𝑠𝑛(𝜔𝑡) 𝑑(𝜔𝑡) 

(𝐼𝑇𝐶𝑅)1 =
2

𝜋
(

𝜆2

𝜆2−1
) 𝐼𝑚 [{

sin (𝑛+1)𝛽

𝑛+1
+

sin (𝑛−1)𝛽

𝑛−1
} −

𝑐𝑜𝑠𝛽

𝑐𝑜𝑠𝜆𝛽
{

𝑠𝑖𝑛(𝑛+𝜆)𝛽

𝑛+𝜆
+

𝑠𝑖𝑛(𝑛−𝜆)𝛽

𝑛−𝜆
}]                   (6)                 

𝑛 = 3,5,7, … …                                              

 


