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Hello students. Welcome to Lecture 5 of our online course on Nanophotonics, 

Plasmonics, and Metamaterials.  Today's lecture is on Electromagnetic Properties of 

Material.  In this lecture, we'll see a quick recap of Maxwell's equation, and then we'll see 

the derivation of wave equation and the boundary conditions.  We'll then introduce the 

electromagnetic properties of materials, such as dielectric permittivity, magnetic 

permeability, and conductivity. 

 
  And then we'll look into the classification of materials by anisotropy, by linearity, 

magnetization, and conductivity.  So, in the last lecture, we have seen the Maxwell's 

equation  can be written in these two forms, the integral form and the differential form.  

Also, we have seen that in electrostatics or magnetostatics,  the electric and magnetic 

fields are independent of each other,  but in the dynamic or time varying nature,  this 

electric and magnetic fields are getting coupled to each other.  The first law that we have 

seen is basically the Gauss law. 



 
  The Gauss law tells us that the electric flux through any closed surface is equal to the 

charge enclosed by the surface.  So, it actually describes the relationship  between an 

electric charge and the electric field it produces.  This is often pictured in terms of 

electric field lines originating from a positive charge and terminating on negative 

charges.  And it also indicates the direction of the electric field  at each point in the space.  

The second equation is this one, which is the Gauss law of magnetism. 

 

  So, the magnetic field flux through any closed surface is basically zero.  And this is 

equivalent to the statement that magnetic fields are continuous  and they have no 

beginning or end.  Any magnetic field line entering the region enclosed by the surface  

must also leave the surface.  It means that there is no magnetic monopole where the 

magnetic lines can terminate.  And that is why we say that surface integral B. 

 

ds is zero.  The third law is the Faraday's law.  So, you can see the difference in the 

Faraday's law  in electrostatics and in electrodynamics.  So, there it says that a changing 

magnetic field  induces an electromotive force (EMF), and hence an electric field.  The 

direction of the EMF opposes the change and that is why  this negative sign comes into 

the picture, and this is called Lenz's law. 

 

  So, the whole thing is basically the Faraday's law of induction plus Lenz's law.  Electric 

field from a changing magnetic field, so when you have the time derivative,  it means the 

magnetic field is basically changing with time.  So, it has field lines that can form closed 

loops  without any beginning or end.  And the last law is this one, which is also known as 

Ampere Maxwell law.  So, here also you can see the difference between electrostatics 

and electrodynamics  And you can see the blue terms which are basically the difference 

between   the static and the dynamic fields, all these blue terms. 

 



  So, we are just focusing here at this moment. This is the integral equations.  The same 

thing can also be written in terms of the differential equations  which you have described 

in the previous lecture.  So, what you see here is that the magnetic field,  that is basically 

generated by either moving charges i.e-current or changing electric field  d dt of 

displacement field is basically change in electric field. 

 

  So, these two can actually give you magnetic field.  So, this is the fourth Maxwell 

equation, it actually encompasses the Ampere's law.  So, only this part up to the I 

enclosured is basically the Ampere's law.  And this is the contribution to this law done by 

James Maxwell.  And this is where he has got all these electric and magnetic fields  

coupled to each other. 

 

  So, this adds this magnetic field term  which is coming from change in the electric field 

lines.  So, d is nothing but the electric displacement field.  When you say d dt, it means 

time rate of change, means it's a time varying field.  And that can also give you magnetic 

field.  So, with that, let us look into how the wave equation is derived. 

 

  So, we understood that the electric and magnetic field gets coupled to each other  and 

they can propagate through any region as electromagnetic wave.  So, it can be described 

by wave equation.  Now, the electromagnetic wave equation is basically a second order 

partial differential equation  that describes the propagation of electromagnetic waves 

through a medium or in vacuum.  Now, how to derive it? We'll see.  So, this is how the 

electric and magnetic fields in an electromagnetic wave. 

 
  The wave is propagating along this x direction.  And you can see the electric and 

magnetic field.  They are basically oscillating along, electric field is along y and  



magnetic field is oscillating along z direction here.  So, this is also another diagram that 

tells you that a current has got a magnetic field   involved around it, magnetic fields 

generated, that also generates electric field and so on.  So, this is how the electric and 

magnetic field lines are getting coupled  and the electromagnetic wave is basically 

propagating in this particular direction. 

 

  So, you can see the homogeneous form of the equation.  It is written as  

∇2𝑬(𝑟, 𝑡) =
1

𝑣2

∂2𝑬(𝑟, 𝑡)

∂𝑡2
 

 Now, our goal is here to determine how the wave equation is basically derived from 

Maxwell's equation.  So to start with, let us look into this vector identity.  That curl of a 

vector is nothing but the gradient of the divergence of that vector minus the Laplacian of 

the vector. 

 
  Now, with that, we can always say that the gradient of a vector, in case it's a source-free 

region, means there is no current or charge in that region.  So, we can take the divergence 

to be zero.  So, this particular curl of curl of a vector  will be simply minus the Laplacian 

of that vector.  And Laplacian operator we have seen in the previous lecture.  So, you can 

write this for both magnetic field and electric field. 

 

  So, the equation for electric field looks like this.  
2    = −E E .  Now, in the 

Maxwell's equation, do you have this particular term, curl of E? Yes, we do. So, 

t t

 
 

 
 = − = −

B H
E  



 
  And then, let us take curl on both sides.  So, you have  E ,  that is this left-hand 

side you are able to get from here.  And on the right side also, you do the curl.  So, you 

have  H coming here.  Now, what next? You already know one identity for H . 

 

  So,  H can be given by
t




+

D
J . So, in the equation, if you go back, so 

2    = −E E .  So, let us put it there. So, the left-hand side becomes 2− E .  And the 

right side has got ( )
t


 


− H . 

 

 H  you can substitute from here.  So, that is 
t




+

D
J .  Now, what is J? J is basically 

the current density.  And we have assumed that it is a source free region,  so the current 

density term can go to zero. 

 

  So, this term goes to zero.  You simply have ( )
t


 


− H and D can be written as εE.  

So, once you do that, you have basically  
2

2

2t


 


− = −

E
E .  Minus term you cancel out 

from both sides.  So, you simply get this as your vector wave equation. 



 
  Here E is a vector.  So, you can think of the three scalar wave equation in x, y and z 

direction.  Now, it is evident from the wave equation  that the connection between the 

electromagnetic optics and wave optics.  We have seen that the wave equation is 

basically obtained from electromagnetic theory only.  So, we can say that the speed of 

electromagnetic wave  is hence related to the electromagnetic constants mu and epsilon.  

So, let us look into the speed of electromagnetic wave. 

 

  So, this is what we have got from the previous one.  You have got 
2

2

2t


 


=

E
E .  Here 

also you can write the same thing.  Just that when we assume the light is in vacuum, we 

take µr as the permeability and µ0 is the vacuum permeability. 

 

  And if there is a medium, we incorporate that medium also here.  That medium relative 

permittivity, εr is the relative permittivity that is also included.  So, this term is equivalent 

to 
2

1

v
.  So, if you equate these two things, you can simply write  

2

0 0

1 1

r

v
  

= .  And this 

0 0

1

 
, that is basically 2

0c . 

 

  c naught is the speed of light in vacuum.  And final relationship
2

2 0

r

c
v


= .  So, I think all 

of you know this constants µ0 and ε0 in a vacuum.  And that also gives you c naught, that 

is basically the speed of light in vacuum.  And that comes close to 3 ×108 m/s. 



 
  Now, let us look into boundary conditions.  Now, at the interface of two medium of 

different optical properties,  the optical field components must satisfy certain boundary 

conditions.  And these boundary conditions become very important because they will tell 

us  about the behavior of electromagnetic fields, such as electric field, electric 

displacement field,  magnetic field at the interface of the two materials.  Now, let us first 

consider the case when there is no source in the interface.  So, now let us look into the 

boundary conditions. 

 

  So, at the interface of two medium of different optical properties,  the optical field 

components must satisfy certain boundary conditions.  So, as you can see, this is medium 

one and this is medium two.  And this is the normal vector showing the normal of this 

interface.  So, these are the normal components of the B and D fields,  which is basically 

the magnetic flux density and electric flux density.  And these are basically the tangential 

components of electric field at region one and region two, or you can say medium one 

and medium two. 



 
  Here it is showing the tangential component of the magnetic field in medium one and 

medium two.  So, these conditions are basically derived from Maxwell's equation.  From 

the curl equations, so these are the two curl equations,  we have seen them couple of 

times.  So, from here we can say that the tangential component of the field  at the 

boundaries must satisfy.  So, you can actually calculate n̂ , which is nothing but the vector 

marking the normal to the interface, cross with E1. 

 

  So, you have
1 2

ˆ ˆn n = E E .  Similarly,
1 2

ˆ ˆn n = H H .  In simple words, you can say 

that the tangential magnetic fields, so you can also say Ht1 = Ht2 and Et1= Et2.  And if you 

look into the divergence equation,   one important thing that here no surface charge, so 

it's a charge-free region. 

 

  The conditions will slightly modify when there is some surface charge,  we'll see in the 

subsequent slides.  So, here you can see that these are basically charge-free region.  And 

from the divergence equation, you can write that n, because they are in the same 

direction, you can write
1 2

ˆ ˆn D n D =  .  It means the normal component of the electric 

displacement field should be continuous.  Similarly, the normal component of the 

magnetic flux density should also be continuous. 

 

  So, this is what is the summary of the boundary conditions  that you can derive from 

Maxwell's equation, when there is no surface charge.  Now, in the presence of surface 

charge or any current density,   the boundary conditions will slightly modify. And the 

concept of surface charge density will have practical usefulness.  So, here let us see how 

it can be obtained.  So, it is convenient in particular mathematically, to define region 



where magnetic  and electric fields are zero. 

 

  So, let's assume in this particular figure, there is a plane boundary surface.  So, this is 

the boundary surface.  This is exactly at z =0, separating region one and region two.  And 

we can derive the boundary conditions for H by using a small pillbox, which is having a 

height of Δz . 

 
  So, here you see in region one, it is Δz /2.  So, in the other side of this particular 

boundary, this pillbox is also having a height of Δz /2.  So, overall the height is Δz and 

we will see that Δz  can go to zero.  So, the media that is occupying such region are 

called perfect conductors.  And these are idealization for any media where the fields 

inside are vanishingly small. 

 

  In conductors, the field will lie on the surface.  So, inside there will be no field.  So, we 

can assume that all fields in region two are basically zero.  So,
2 2 2 2 0E H B D= = = = .  

So, now the electric charges and the currents are primarily located  on the thin layer on 

the surface of the perfect conductors.  Thus, on the surface of the conductors, we can 

assume that, rho is at basically infinite contained in a zero thickness. 



 
  Okay, because we will make this thickness to be almost zero.  So, your charge density 

can go to infinite.  So, if that is the case, you can also write that surface charge density

0
lim Δs
z

z 
→

= .  It is basically Δz . 

 

  And the unit will be C/m2.  So, we have seen here our assumption tells us that there is 

nothing in the second layer region, so D2 =0.  So, we can write,
1

ˆ. sn =D .  Okay, that is 

the charge towards the region one.  So, this is the difference that you see in the presence 

of a surface charge density.  So, here the difference in D components normal to the 

boundary surface  is basically equal to the surface charge density at the boundary surface. 

 

  So, here the normal components of displacement field are not same.  There is a 

difference and the difference is basically the surface charge density.  Similarly, when you 

assume that the surface current density  along x and y are infinite. To create a surface 

charge density Js when the Δz , the thickness of this field box goes to zero.  So, again, 

you can write
0

lim[ Δ ]
z

z →
→

=s JJ J  

  And that tells you that the tangential component of the magnetic field in region one, that 

is
1

ˆ
sn H = J .  Whereas H2 in the region two, it is basically zero.  So, there is a difference 

between the tangential component  of the magnetic field in region one and region two.  

And that the difference is given by this surface current density. So, in a tabular form, if I 

want to show this, you can see this column shows the vector form and this writes the 

scalar form of the same equation. 



  
  So, as you can see, the difference in the tangential components of the electric field along 

the interface is zero.  However, the difference in the normal component of the 

displacement field is equal to the surface charge density, ρs.  And you can also see the 

difference in the tangential component of the magnetic field is Js, that is the surface 

current density.  However, the normal components of the B,  that is the magnetic flux 

density, is also continuous.  So, you can simply remember these equations that when 

there is surface current  density or surface charge density, only these two factors are 

getting disturbed. 

 

 So this will be the boundary conditions in that case. So the normal component of the 

electric displacement field will be  altered and the tangential component of the magnetic 

field will be altered.  So, with that, let us now move ahead and discuss about  the 

electromagnetic properties of material.  So, why we need that? Because when any 

material interacts with an electromagnetic field, there are certain parameters in that 

material that quantifies that interaction,  and that can be given as the constitutive 

relations. When the field actually interacts with any material, there are a couple of 

fundamental parameters. 

 

  One is electric permittivity, that is ε.  then you have magnetic permeability, that is µ and 

then there is electric conductivity, σ.  These are the three parameters that more or less,  

quantifies the interaction of any material with an electromagnetic wave.  So, if you look 

into the constitutive relations,  the first one is basically describing the electric response.  

So, by electric response, I would like to mean here is that the permittivity is basically 

giving you the relationship between the applied electric field and the displacement field 

that is being generated. 



 
  So, it also tells you how much is the polarization the material is going to experience 

under the influence of this applied electric field.  Similarly, magnetic response is 

characterized by the permeability.  So, here also it tells you that what will be the 

magnetic flux density  in the presence of a magnetic field given by H. The last one is also 

known as Ohm's law, where J =σE. It tells you that, when in the presence of an applied 

electric field,  how much will be the current density in that particular material. 

 

  So, that actually tells you about the electrical conductivity in that material.  So, σ stands 

for this conductivity. So it describes how much this material is able to conduct electricity.  

Now, let us slightly go into the details. 

 



  We have seen this couple of times, but just that to give you a quick recap.  Permittivity, 

epsilon is basically the ratio of  the displacement field over the applied electric field.  

And it tells us that, how much interaction an electric field has  with the medium it resides 

in.  So, this is a particular diagram.  I have shown this before as well.  So, this is for an 

unpolarized material, where you can see all the  atoms and the electron clouds are in the 

same place. 

 

  So, when there is no electric field, there is no polarization,  there is no displacement 

field as well.  As soon as there is an applied electric field, this electric field will try to 

push the electron cloud away.  So, the nucleus and the electron cloud will get slightly 

separated.  So, that will create the polarization. So, you can see the polarization is 

basically proportional to the applied electric field, of course, and it can be given as 

epsilon minus epsilon naught times E. 

 

 So overall, you can find out the displacement field
0D E P= + .  I think it's given here.  

So, the displacement field or electric displacement can be written as epsilon naught E 

plus P.  And if you take this equation for P, you will get D equals epsilon E.  So, ε0 is 

basically the vacuum permittivity, but epsilon is basically the permittivity of this 

material. 

 
  Now, we'll define the constitutive relationships for linear, homogeneous and isotropic 

media.  So, whenever I say linear media, it means the properties of the material  do not 

depend on the strength of the field.  And something like here that, polarization P  is 

basically linearly proportional to the electric field applied. 

 



  So,
0 =P E .  What is χ, χ is a scalar constant. It is called also electric susceptibility.  

So, when you write the equation of electric displacement field,  

0 0 0   = + = +D E P E E .  And you take ε0E common, you will see 1+χ.  And this one 

plus chi is nothing but your εr , that is the relative permittivity.  So, simply you can say 

relative permittivity is nothing but1+χ,  and all other parameters are already known. 

 

  12

0 8.8541878176 10 F / m −=  .  Now, inside a material medium, the permittivity is 

determined by its electrical properties.  and permeability is determined by the magnetic 

properties.  So, whenever you say permeability, that is µ,  it is basically a measure of how 

well a medium stores magnetic energy.  So, when exposed to an applied magnetic field, 

the collection of individual magnetic dipole moments within most materials will attempt 

to reorient themselves along the direction of the field. 

 
  Now, this reorientation will induce magnetization, which contributes towards the net 

magnetic flux inside the material.  And the degree to which this induced magnetism 

impacts  the magnetic flux density depends on the material's magnetic permeability.  So, 

we'll see that soon that magnetic permeability is also defined as the ratio  of the magnetic 

flux density within the material and the applied magnetic field.  Provided that both the 

fields are sufficiently weak and we are talking in terms of a non-magnetic material here. 

 

  So, if you take this M=0, B H= .  So, this is a generic formula. You can write 

0 0 = +B H M .  But usually in optical field, we talk about materials  which do not 

contain magnetic properties. 

 

  So, you can take magnetization as one or zero. You can remove this.  Rather, µr =1. So, 



you can remove this and you can simply write B= µH.  What is µ?  µ is the permeability 

of the free space and that is given by 74 10 H / m − .  And the third one we have seen 

that is conductivity. 

 
  So, conductivity describes the degree to which a material can conduct electricity.  And 

what happens when an electric field is applied to a material?  The free charges which are 

inside, these are not bound charges,  the free charges inside the material, they will  

experience an electric force that is basically the Coulomb force.  And this force will cause 

the free charge to  move through the material in the direction of the applied electric field.  

So, electric field is applied in this direction.  So, all the positive charges will move from 

left to right. 

 

  Whereas, the electrons will move on the other side.  So, the ease at which an electric 

current or electrical charges  can move through a material under the influence of an 

electric field,  that depends on the material's electrical conductivity.  So, if you denote 

this by sigma, electrical conductivity, it is basically J equals σE. So, what is σ?  σ is 

basically J/E, that is the current density over the applied electric field. If you take that 

ratio, you will get electrical conductivity. 

 

   And inverse of sigma is also known as resistivity.  So, sigma can be written as one over 

ρ, and the unit is ohm meter.  Now, let us try to find out the velocity of electromagnetic 

waves.  To do that, we can go back and revisit the wave equation.  So, this was the wave 

equation we derived. And in these two formats, if you equate these two formats, you will 

see that this particular term,
2

0 0

1 1

r

v
  

= . 



 

  From that you can find out what is v2,  
2

2 0

r

c
v


= .  Now, why I am actually showing this 

slide again?  Because this slide actually gives a very important parameter  in optics and 

photonics domain, which is called the refractive index of material.  So, if you take the 

square root on both sides, you will get 
2

2 0

r

c
v


= .And you will see that that is basically 

nothing but square root of epsilon r is nothing but n, that is the refractive index of the 

material.  In other words, you can say n=c/v.  So, from that, you can also define refractive 

index as a ratio of the speed of light in vacuum over the speed of light in that particular 

medium, which has got the refractive index of n. 

 

  What are the other relationship? rn = .  You can write εr as 1 +χ, so you can write  

1n = + .  So, refractive index is a very, very important optical property of any 

material  and it is defined as the ratio of the speed of light in vacuum  over the speed of 

light in that particular medium.  So, now let us do a quick classification of materials by 

its anisotropy.  So, first, if we see if any material is isotropic, it means the properties of 

that material does not depend on direction of the fields. 



 
 

  Something like that, we can write it like this,   

D E

B H

J E







=

=

=

. 

 So, they are not ε, µ and σ are not dependent on the direction of the field, they are scalar 

quantity, so these are isotropic.  And here you can simply mean that because they are  not 

having any direction, so E field and D field, they are parallel,  H and B will be parallel, E 

and J will be also parallel.  So, that is isotropic case.  Now, coming to the anisotropic 

case, obviously it means that the  properties here, epsilon, mu and sigma, depend on the 

direction of the fields. 

 

  It means you can no longer say that  E is parallel to D or H is parallel to B and so on.  

You have to compute whatever is the actual direction for each of these fields.  So, in that 

case, when a material becomes electrically anisotropic,  it has to be described by a tensor 

and we call this as permeability tensor  and it will also have a scalar permeability.  

Whereas, when a medium becomes magnetically anisotropic,  it is described by a 

permeability tensor, that is this one,  and it will have a scalar permittivity.  So, these are 

like a different notation of writing the same thing. 

 

  Permittivity tensor can be written as, this can be the tensor notation.  So, this is how in 

anisotropic media, the constitutive relationships look like.  



 

 So, 

[ ]

[ ]

[ ]

D E

B H

J E







=

=

=

. 

 

 Now, the properties are independent of the direction of the field and the crystals are 

described in general by symmetric permittivity tensors.  There always exists a coordinate 

transformation that  would like to transform a symmetric matrix to a diagonal matrix.  

And in this coordinate system called the principal axis,  the permittivity tensor will 

typically look like this.  So, this becomes a diagonal matrix. From a symmetric matrix, 

you can get a diagonal matrix by doing some coordinate transformation. 

 

  So, here you can see, there is εx, εy and εz .  It means there is a permittivity along x 

direction, a different one along  y direction and different one along z direction.  So, three 

direction, you have three different permittivity.  So, this is how the principal axis for any 

anisotropic medium will look like.  So, this is how the permittivity tensor looks like, it is 

a diagonal one. 

 

  So, all non-diagonal elements are zero.  So, this helps in doing the computations.  And if 

you take example of a cubic crystal  where x, y and z are all equal, then this tensor also 

becomes isotropic.  But in the case of other crystal types, something like tetragonal,  

hexagonal, rhombohedral, two of the three parameters are equal.  Say, any two, let's 



assume that epsilon x and epsilon y are equal.  So, these kinds of crystals are called 

uniaxial crystal. 

 
  For the case of uniaxial crystal, the permittivity tensor can be written as this.  So, you 

have the tensor where εx =εy .  So, you can simply write them using epsilon.  And this is 

different, εz is different.  So, it means that along x and y, they have the same permittivity,  

but along z, they have a different one. 

 

  So, you can take z as the optic axis.  And you can call this particular crystal, a positive 

uniaxial crystal,  if the permittivity along z is larger than the permittivity along x and y.  

And you can call it negative uniaxial if it is other way,  that epsilon z is less than epsilon.  

So, as such, you can actually think of an index ellipsoid kind of situation where εx, εy and 

εz are basically giving you an ellipsoid. 

 

  So, when is εx and εy are same, that means the cross section is same.  So, this is 

becoming a circle.  And then on top, you can think of, this is εz.  So, if εz is larger than 

this one, then it is called positive uniaxial.  If epsilon z is smaller than epsilon, it is 

negative uniaxial crystal.  Now, there are other types of crystal as well which are called 

biaxial crystals, something like orthorhombic, monoclinic and triclinic, where all three 

crystallographic axes are unequal. 

 

  In that case, is εx, εy and εz, all are different.  And this kind of medium is also called 

biaxial medium, okay.  Understood.  So, now we can also classify materials by linearity.  

So, when you say linearity, it means the property of the material does not depend on the 

strength of the field. 



 
  So, we can take like electric polarization, which is P  and that is linearly proportional to 

the electric field E.  There is a mistake in the equation, 
0 =P E ,  this term is not there. 

okay.  So, this χ is the electric susceptibility.  So, from that, we can, we have seen this 

equation couple of times, that
0= +D E P . 

 

  So, when you put P, P is only this term, not this term, this one, you simply cross, I will 

just cut it here.  This term is not there, okay.  So, you can simply take, 
0 =P E  this is a 

typo.  So, when you put it back here, you get 
0 r  E  

  So, you can write
0 r =D E .  So, this is for the linear materials.  Now, obviously, 

nonlinear materials, the property depends on  the intensity of the field.  That means, in 

nonlinear medium, the electromagnetic response  can often be described by expressing 

the polarization  as a power series of the field strength E.  That is, you can write the 

polarization in terms of (1) ( )E t , (2) 2( )E t + (3) 3( )E t and so on.  You can look for other 

higher order terms as well.  So, here, it was only the first order, but here you can see,  you 

have got second order, third order and all other orders possible. 

 

  So, the chi square and chi cube, these are called the  second and third order nonlinear 

optical susceptibilities respectively.  So, there are materials which show this nonlinear 

susceptibilities as well.  Now, materials can be also be classified by magnetization 

properties.  So, we can have magnetic properties where, the constitute relationship 

becomes B =µ H.  Now, a magnetic material can be of roughly three types. 



 
  One is diamagnetic, that is, when the permeability  o  , that is, the relative 

permeability is less than one.  For example, bismuth, copper, zinc, etc.  So, in this kind of 

material, diamagnetic material,  it is caused by the induced magnetic moments.  They 

tend to, oppose the externally applied magnetic field.  So, when a diamagnetic material is 

placed in an external magnetic field,  the external magnetic field is partly repelled and the 

magnetic flux density  inside the material slightly reduces. 

 

  And that is how they reduce then the permeability in the surrounding or vacuum.  So, 

that is how it is,
0/ 1r  =  .  So, on the other hand, there are paramagnetic materials.  

So, in that case, paramagnetism is basically  due to alignment of the magnetic moments.  

So, when a paramagnetic material such as platinum, chromium, aluminum, manganese, 

these are placed in magnetic field, they become slightly magnetized in the direction of the 

external field. 

 

  In that case, you will have µr ,  that is 
r o/ 1  =  .  You can also have material which 

are called ferromagnetic.  So, if the relative permeability is not constant and it is very 

large,  such as in the case of iron, cobalt, nickel, these are called  ferromagnetic material 

and they do not have any constant relative permeability.  As the magnetization field 

increases, the relative permeability also increases,  it reaches the maximum and then it 

decreases.  So, further we can classify materials based on conductivity.  This we all know 

that this is basically on the basis of the relative values of electrical conductivity or you 

can classify based on resistivity, which is the reciprocal of conductivity. 



 
  So, there are three types of materials or solid can be described as metals, which have got 

very high conductivity or very low resistivity.  You have semiconductors, which have 

intermediate conductivity between  metals and insulators and insulators are those which  

are having very high resistivity or very low conductivity.  So, this is typically the scale of 

the properties.  So, for conductor, semiconductor and insulator, you can see resistivity is 

in the order of 10-8 to 10-6 ohm cm.  Whereas in the case of insulator, it is somewhere 107 

to1018 that's huge difference.  Similarly, the conductivity, you see the conductivity for 

conductors are basically 106 to 108 mho/m.  mho is basically the opposite of ohm.  And 

whereas in insulator, it is 10-8 to 10-6.  You can think of the currents,  in conductor, it is 

mainly because of the free electrons. 

 

  In semiconductor, you all know it is due to both electrons and holes.  Whereas in 

insulator, there is no current.  There is no band gap in conductors.  There is a band gap 

from 0 to 1 electron volt for semiconductors.  And for insulators, it is mostly more than 6 

electron volts.  And these are the examples of the common semiconductors,  conductors 

and insulators, you all know. 

 

  So common insulators are wood, plastic, diamond, mica and all this.  You have metals, 

conductors and germanium, silicon, gallium arsenide,  these are the common 

semiconductors.  So with that, we will stop here and in the next lecture,  we will see the 

propagation of electromagnetic waves in dielectric medium.  And in case you have got 

any query, as I mentioned before,  you can drop me email at this particular email address.  

Thank you. 


