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Hello students, welcome to lecture 31 of the online course on Nanophotonics, Plasmonics  

and Metamaterials.  Today's lecture will be on Transformation Optics and Invisibility 

Clocks.  So here is the lecture outline.  So Transformation Optics, we will discuss about 

the basis of it, the fundamentals and  what are the principles and mathematical forms in 

this particular field of science.  And then we will take up some example of 

Transformational Optics and we will see how  this helps us achieve some features which 

are not naturally seen.  Something like you can actually make materials that give you 

refraction without reflection  and then you can also think of refraction at normal 

incidence which is something not  naturally occurring in the materials that we deal in day 

to day life. 

 
  You can also think about cylindrical focusing from a planar interface.  So we will look 

into all of this and then finally we will discuss about Invisibility Clocks.  So let's 

introduce Transformation Optics to you.  So the first thing that should come to your mind 

is that this is coming from some  sort of coordinate transformation. 

 



  So the requirement for Transformation Optics comes from the fact that you want to band  

light in a particular way depending on your will.  So you may argue that there are graded 

index optics which allows you to do the same thing.  So yes, graded index optics can be 

considered that determines how light can propagate in  a medium with particular 

dielectric and magnetic properties.  When you take it further you will be able to make 

light to do anything.  So we will look into those examples today. 

 

  So let us first start with graded index material and see what happens there.  In graded 

index materials or GRIN graded index green, they allow optical rays to follow some  

curved trajectories which are basically governed by the profile of the refractive index ny  

and that is considered to be constant along x and z but it only varies along y.  So you can 

think of something like this.  So here the refractive index basically varies only along the y 

direction.  So, in this case there is a gradient along the y direction and as you can see a 

ray can  get band from this interface at a different angle. 

 
  So the incoming angle was θ which was function of the position y but then it changes.  

So this happens because this banding basically happens because the refractive index 

along  y is also changing.  So you can say that at a height of y it was ny and at a different 

height, here the refractive  index changes to ny plus the slope of this refractive index 

profile.  So that is dn over dy and then how much you have changed along y that is delta 

y.  So, this gives you the new refractive index at this particular point. 



 
  So this graded index materials allow you to direct light and you can actually make light  

to take any band path.  Now for isotropic materials with graded electric permittivity εr 

and magnetic permeability  εr, Maxwell's equation will give rise to generalized Helmholtz 

equations which were  solved for layered and periodic structures such as photonic 

crystals.  We have seen this already before.  Now the synthesis problem of this graded 

index materials is more challenging than the analysis  problem in two respects.  First they 

will require much advanced mathematical tools as you can understand the refractive  

index continuously varies along one direction or the other. 

 
  And also the physical implementation of this kind of graded medium will require the use  

of metamaterials constructed from the components that are available or which are 



basically  configured in a particular spatial arrangement and they should be supported by 

the current fabrication technology. So these are the kind of requirements or you can say 

limitations getting imposed onto the  graded index materials because of the current 

technology status.  So both mathematical you require advanced mathematical tools so the 

analytical study  is difficult as well as the fabrication of graded index materials will be 

challenging as well.  Now to overcome these limitations you can think of 

transformational optics.  Now transformational optics acts as a mathematical tool that 

facilitates the design of optical  materials which can guide light along any desired 

trajectory. 

 

  So you are able to achieve the similar functionality of the graded index optics but here 

also you  can do a lot of new stuff, okay, lot of new cool stuff I should say.  The 

underlying concept here lies on a geometrical transformation that converts simple 

trajectories  into desired ones, okay.  So in order that Maxwell's equation will remain 

valid and the optical parameters associated  with the transformed equivalent system must 

also be modified and this establishes the  character of the required optical material.  So 

you require new kind of material to do this trick for you, okay.  So as a simple example 

of such equivalence you can think of a local compression of the  coordinate system by a 

scaling factor which is equivalent to the local increase in the  refractive index by the same 

factor, okay. 

 

  So it is like if you compress one coordinate system by a scaling factor, okay, in one case  

you can and another case you increase the local refractive index by the same factor, what 

will happen ?  The optical path length in both the cases will be similar, okay.  And how 

optical path length is defined?  It is the physical length multiplied by the refractive index, 

okay.  So in one case the physical length is coming down, refractive index is remaining 

same.  In other case the physical length remains same but the refractive index is scaling 

up.  So, their product remains same, okay. 



 
  So that is the optical path length.  So a local compression of the coordinate system, so if 

you are compressing any material along  z direction by a factor of a that can be also 

assumed to have similar effect as  if you have the same dimensions along z but the 

material now have a refractive index NA,  N was the previous refractive index now it will 

have NA refractive index.  Now, Transformational Optics, let us see how you do the 

design.  So there is a three-step design procedure which will provide the guidance.  So 

you first begin with a pilot physical system for which the optical trajectories are known  

such as a homogeneous and isotropic material and then you find a coordinate 

transformation  that convert these trajectories to the desired ones, okay. 

 

  And then you determine the transformed physical parameters of the equivalent material.  

So this is the third step and with this new material you will be able to obtain the desired  

optical trajectories in the original coordinate system.  So this is what you are looking for, 

okay.  So you want the features to work in the original coordinate system.  So using this 

kind of transformational optics you transfer the desired configuration you  can say onto 

the material properties, okay. 

 

  And then you put that new material into the previous coordinate system.  We will take 

examples, it will become more clear in the subsequent slides.  So since geometrical 

transformations generally involve changes of directions and introduce  direction 

dependent scaling, the transform parameters are generally both anisotropic  and spatially 

varying, okay.  So this is how you will get the transform parameters.  So, let us consider, 

εij as a tensor, this is the permittivity tensor  and μij as a permeability tensor of the 

original material in the original coordinate system. 



 
  So original coordinate system has the three axis x1, x2 and x3, okay.  Now the elements 

of the permittivity and permeability tensors of the equivalent material, okay.  So that can 

have a superscript of e that is the equivalent material that will bring  the desired 

functionality, okay.  And this will be in the transform coordinate system u1, u2 and u3, 

okay.  And then related to the original elements of this one by these equations. 

 
  So you can obtain what is the equivalent materials, permittivity and permeability tensor.  

So you can see here that you require a matrix A and this matrix A is a 3 by 3 Jacobian   

transformation matrix, okay.  So and what are the elements of this matrix?  So, the matrix 

elements Aij is nothing but doh ui over doh xj where i and j are basically 1, 2, 3.  So the 

matrix elements are basically partial derivatives, u is basically the transformed  



coordinate system and xj is basically representing the original coordinate system.  So 

once this, this matrix A which is a Jacobian matrix, you can find out what  is the 

equivalent materials permittivity that is A transpose, then you have this epsilon  A 

divided by the determinant of this matrix A. 

 
 Similar equation is used also for permeability, okay.  Now this you have seen the 

Jacobian transformation matrix, these are the elements.  Now when you have this A 

transpose, okay, this actually is required to calculate this  equivalent material properties 

and epsilon and mu they are also 3 by 3 matrices whose  elements are this one, okay.  So, 

you can represent the elements as εij and μij, fine.  Now since the Jacobian matrix A is 

generally dependent on x1, x2 and x3, the equivalent  material that you will see will be 

generally inhomogeneous even if the original material  that you started with was 

homogeneous, okay. 

 

  Now in a special case when the original material is both homogeneous and isotropic 

something  like free space, okay, in that case you will see that epsilon and mu, these 

tensors are  basically or these matrices are basically diagonal and they have equal 

diagonal elements  mu naught and epsilon naught, okay.  So in those case you can 

simplify the equation and you can write epsilon naught inverse epsilon  e that will be 

equal to mu naught inverse mu e equals this, okay.  This is the determinant of A inverse 

A transpose A, okay.  That is basically coming from those previous equations, there is 

nothing new here.  Just that here things got simplified because you have only the diagonal 

elements and another  important thing is here mu and epsilon are similar, okay. 



 
  So the tensors εe and μe are then identical, okay, except for a scaling factor, okay.  So 

only the scaling factors are different, other than them they are similar.  Now under these 

conditions the impedance, okay, so what happens to the impedance?  The impedance 

depends on the ratio of the permittivity and permeability, okay and they  will remain 

unchanged, okay because both of them got a factor, okay and so the ratio will  remain 

same and that actually helps you because when the ratio remains unchanged for all the  

polarization you can consider this equivalent medium will have no reflection at any 

boundary  with the free space.  So it becomes a reflection free boundary, okay.  So let us 

see a number of examples now to understand the transformation principle. 

 

  So this is the first example that we will be discussing today.  Let us try to create 

refraction without reflection.  So usually if you have seen that refraction and reflection 

both come together  but you are able to make some material here which can actually give 

you only refraction  and no reflection.  So the optical material shown here, okay, shows 

the ray trajectory where it only refracts.  So these are the rays incoming angle is theta 1 

and the refracted angle is theta 2, okay. 

 

  So this is the geometrical transformation that implements the refraction without  

reflection kind of feature.  Now how do you begin designing this kind of a system, okay?  

So let us first start with an initial homogeneous medium, say free space, okay where the 

lines  will follow the straight parallel trajectories at angle theta 1, something like this, 

okay.  So this we need to design the material for this one that does this kind of bending, 

right?  So this is our desired optical trajectory.  Now we are starting with by assuming 

that this part is basically free space.  So if it is free space what will happen?  There will 

be straight line optical trajectories, right?  There will be no bending or anything. 



 
  Now it is our time to apply the geometric transformation.  Now if you apply geometric 

transformation in the form of stretching the coordinate system  by a scale factor of s 

along x3, x3 direction for the part where x3 is greater than 0.  So only this positive half, so 

this part is x3 less than 0.  We will do nothing to it, okay because this is the part that we 

want.  We only want things to change here on the right side, okay of this particular line. 

 

  So we want to stretch this portion which is where x3 is greater than 0.  And when you do 

the stretching you actually get something like this.  So you see you just stretched the 

entire coordinates by a factor of s.  So all these lines they got stretched, okay.  So, 

stretching the coordinate system by a factor of s for x3 greater than 0, okay this one  will 

cause the rays to change their slope. 

 

  And now they will be able to follow the desired trajectory, understood?  So we started 

with free space where the lines were simply going straight.  Then we stretched this axis 

so that you acquire the slope that you want to be in your desired  optical response, okay.  

So the desired refraction is achieved by choosing s as a ratio of the initial and the desired 

slope. So, you can choose 𝑠 = tan𝜃1/tan𝜃2.  This is how you can find out the stretching 

factor. 

 

  And once you have that you can find out the relationship between the transformation.  

So this is where the transformation is coming.  So this is the transformed axis.  So, as you 

can see in other two, so this is the plane is basically the x1.  So x1 axis is coming out of, 

so sorry the plane is x1 equals 0, right. 



 
  So x1 is coming out of this screen.  So u1, the new coordinate system u1 is same as x1.  

There is no change in this one, this direction.  Similarly, you are not stretching along x2 

so that also remains same.  So y2 equals x2.  Only thing has changed is u, this is sorry u2 

equals x2 and only thing that is changing is u3. 

 

  So 𝑢3 = 𝑠−1𝑥3.  So that is how you are stretching it, okay.  So this type of scaling of the 

coordinate, Cartesian coordinate system in which the direction  of the axis does not 

change.  So what they will do, they will basically convert a cube into a cuboid, right.  So 

now you have known the transformation.  Let us find out what is the Jacobian matrix for 

this. 

 

  So Jacobian matrix aij can be calculated as doh ui over doh xj.  So that way you can fill 

up all these partial derivatives and using this relationships shown  here you can calculate 

all this and they boil down to a very simple equation, simple matrix  that is this one, 

okay.  So, 1 0 0 0 1 0 0 0 s-1.  So this is the Jacobian matrix.  So here you can see the 

Jacobian matrix is basically a diagonal one where the diagonal  elements are 1 1 s-1, okay. 



 
  And you can also calculate the determinant of this matrix A that will come out to be s 

inverse.  Now once you know all these parameters you can easily find out that what will 

be the  effective permeability of the new medium, okay.  So you can go back to this 

particular equation, okay and you can now see what happens because  this all factors are 

known, okay.  You can do the computation and you will see that 𝜀0
−1𝜀𝑒 = 𝜇0

−1𝜇𝑒 =

[
𝑠 0 0
0 𝑠 0
0 0 𝑠−1

] . 

 

  So the elements are s s and 1/s, okay.  Now since the matrices that permittivity and 

permeability of the equivalent material they  are diagonal, okay, the anisotropic material 

has principal axis pointing along the axis  of the coordinate systems, okay.  That is clear.  

And the values in this case are 
𝜀1 = 𝑠𝜀0, 𝜀2 = 𝑠𝜀0, and 𝜀3 = 𝑠−1𝜀0

 with 𝜇1 = 𝑠𝜇0, 𝜇2 = 𝑠𝜇0, and 𝜇3 = 𝑠−1𝜇0
 

 

  So this is basically the requirement of the new material which has to be replaced on  this 

right side, okay.  So we understood that the parameters of the equivalent material may be 

obtained by batching this, okay.  So what are the requirements we are fulfilling here?  

The phase shift that is encountered when a plane wave crosses the stretched free space  

segment with the phase shift encountered when the wave is transmitted through a 

unstretched  segment filled with this new material.  And this new material will have all 

this property, okay.  So the whole idea is the phase shift that will be there for the light 

should be equivalent  in both the cases. 



 
  And then only you will be able to, fill the unstretched segment with the new  material 

and that is how you will be able to bend the light without any reflection,  So to determine 

the parameters we considered three waves in turn, each with the electric  field along the, 

along one of the coordinates, okay.  So let us consider one wave that is wave 1, okay.  So, 

wave 1 is a plane wave traveling along the x3 direction, okay.  So, this is x3 direction with 

electric and magnetic fields along x1 and x2 directions respectively.  So, in that case the 

appropriate permittivity and permeability are basically ε1 and μ2. 

 

  And what is the relationship?  So 𝑘 = 𝜔√𝜀1𝜇2 = 𝜔√𝑠𝜀0𝑠𝜇0 = 𝑠𝑘0.  So, you can take 

out s and this thing actually gives you sk0, okay.  So, the wave vector is basically s times 

the k0 in this new material, okay.  Now this actually implies that the refractive index is 

basically s in n1 direction.  In the original material, stretched material, the refractive index 

was 1. 

 

  So here it is s. So, the phase shift that will be accumulated over the distance d can then  

be written as sk0 into d.  And you can find out what is the impedance.  Impedance will be 

𝜂1 = √𝜇2/𝜀1 = 𝜂0.  Now this is what was mentioned before that there will be a scaling 

factor, okay.  So if you see that the scaling factor appears both places, so they will 

basically cancel  out and you will get the impedance to be same as the free space. 

 

  So in that case what happens?  There is no reflection.  So that is for one particular wave.  

Now if you consider another wave, wave 2 that is also traveling along x3 direction, but  

the electric and magnetic field directions are now changed.  So now electric field is 

considered to be along x2 direction, okay, and magnetic field  is along minus x1 direction.  

So, this is x1, so you can understand which one is minus x1, okay.  So, in this case the 



wave again travels with a refractive index n2 = s and you can  find out the impedance eta 

2 will be same as eta 0. 

 
  It is the same calculation as the previous one, so we are not repeating it.  Then you can 

also think of the third wave, so this is wave 3.  Now wave 3 travels along this direction, 

x2 direction with the electric field along x3  and magnetic field along x1 direction.  So in 

that case what happens?  You can see that the approximate permittivity and permeability 

are basically ε3 and mu, okay.  So, it should be actually mu 1 because it is along x1 

direction, so consider this as  mu 1 and you can then calculate what is the k. 

 

  So k will be omega square root of ε3 mu 1 and ε3 can be written as s inverse  epsilon 0 

and mu 1 can be written as s mu 0.  So s inverse and s they cancel out each other you get 

the same wave vector, okay.  In that case the refractive index along n3 direction is also 1, 

okay.  So we have figured out all the cases, okay.  So, you can calculate the phase shift 

along this direction that will be simply k0d and  this is similar in the unstretched case 

because there is actually no stretching along the x2 direction. 

 

  So let us calculate what is the impedance here.  The impedance will be eta 3 equals 

square root of mu 1 over ε3 and that will  come out to be s eta 0, okay.  So you can see 

that there is a change in impedance in this particular direction.  Now using these results 

you can conclude the design that the final design is basically  a piecewise homogeneous.  

So this material is one material, this is another material that is why they are shown  in 

different colors, okay.  And the left half of the free space is basically, sorry left half is 

basically free space and  right half is basically an anisotropic material and this is also if 

you see this is basically  a2 axis are same and third one is different so you say uniaxial 

material, okay. 



 
  And this anisotropic material as I mentioned it is birefringent because along two 

direction  it has got the same refractive index but along the third direction it has got a 

different  refractive index, okay.  Now the boundary in the boundary along the free space, 

okay the interesting thing what  is the boundary along free space that is along x1 and x2 

these are the boundary  along the free space.  So you see the impedance in those direction 

eta 1 and eta 2 is same as eta 0 it means  there is no impedance mismatch with the 

boundary with the free space.  So there will be no reflection so you can only have 

transmission, okay.  So, the two factors that distinguish refraction at the boundary of this 

synthesized anisotropic  medium from the conventional refraction at a boundary of a 

homogeneous anisotropic medium  is that here the refraction that you are getting does not 

come with a reflection, okay. 

 

  And second thing is that the relationship between the angle of incidence that is theta  1 

and the angle of refraction theta 2 is different here.  Here it is s tan theta 2 equals tan 

theta 1.  So this is different than Snell's law.  So you can actually define your own law if 

you have your own material, okay.  So this is how you can get your desired refraction 

without any reflection if you are able to  realize this anisotropic uniaxial material, okay. 

 

  So now let us move on to the next example that is refraction at normal incidence.  Now 

normally there is no refraction at the normal incidence, okay.  So here we are trying to 

design that as well.  So, consider the design of an optical material that implements 

refraction at an angle theta  at normal planar surface. 



 
  So this is what is the desired optical trajectory.  So this is the interface, okay and light is 

falling normally but then still you want a angle theta.  So this type of refraction cannot 

occur at the boundary between two isotropic dielectric  material but they can occur at the 

boundary between one isotropic and another anisotropic material.  So this possibility is 

there, okay.  So we will start in the same process with a pilot system of free space where 

the rate  rejected is along the horizontal parallel straight lines something like this, okay 

and  then we will try to implement the coordinate transformation.  So, first thing is so this 

is where the right side is basically a free space and that is  where you are able to see 

straight line, okay. 

 
  These are parallel straight lines but then what you want?  You want this to bend at an 



angle of theta.  So, you can actually think of this kind of transformation that u1 the new 

transformed  coordinate u1 = x1 but x2 there has to be some change, okay.  So, the new 

coordinate system 𝑢2 = 𝑥2 + 𝑠𝑥3  and u3 = x3.  So, you can use this kind of a 

transformation and you are only applying this transformation  for the positive x3 and what 

is s? s is basically tanθ. 

 
  So, this is the angle theta at which you want this refracted rays to go.  So you can use 

this over here.  So once you know that this is this will be obtained when you apply this 

particular transformation, okay.  So, this transformation will deflect the trajectories as 

desired and this is done by shearing   along the x2 direction.  So, you are actually 

changing the coordinates along the x2 direction.  So, shearing the coordinate system along 

x2 direction for the positive half will reflect  the trajectories as shown here, okay. 

 

  So this is what you want.  So it will become like this because you are shearing it.  So 

along x2 things will change and that change is basically bringing this angle theta, okay.  

So how do you do now?  So now we have to find a material that does it for us, okay.  So, 

we have to again go back to find out the permittivity and permeability tensor of the  

equivalent anisotropic material and you can use the same formula that is 𝜀0
−1𝜀𝑒 = 𝜇0

−1𝜇𝑒 

should be equal to that determinant of A  inverse then A transpose and you have A, okay. 

 

  So that is the equation.  Once you do it you will get only the diagonal elements they are 

1, 1, okay.  Now here you get also some off-diagonal elements, okay.  So, you get 1, 0, 0, 

0, 1, s, 0, s, 1 + s2 .  So this represents a homogeneous but anisotropic medium, okay.  So, 

once you are able to replace this new material which is in blue color, okay  with this 

which will have this kind of property then you can go back to the previous coordinate  

system, okay and you will get the same effect. 



 
  The third example shows cylindrical focusing.  So again here you have a planar 

interface but this is the desired optical trajectory.  So you want to achieve a cylindrical 

focusing functionality.  So what you have?  You have parallel straight line trajectories on 

the left side that needs to be refracted  from a planar boundary so that they meet at a focal 

point say capital F at a distance  of small f from the boundary, okay.  So first what you 

will do?  You consider this as a free space, okay.  So, you start, so when it is a free space 

there will be all parallel straight line optical  trajectory and then you have to apply the 

coordinate transformation here so that this  kind of feature is obtained. 

 
  So in this case we will be using this particular feature that will focus at a point.  So, 

again there is no changes along x1 direction so u1= x1 and u2 and u3 will be  changed as 

this equation.  So, one will be sine function of x2 over f, another one is a cosine function.  



So, this will actually change the right side into a cylindrical coordinate system, okay  and 

this centers at u2 equals 0 and u3 equals f, okay.  So this particular transformation 

converts the right side into a cylindrical coordinate  system so that you are able to get this 

focusing effect.  So what is happening?  This particular transformation basically converts 

a line that is x2 equals a, okay in the plane  x1 equals 0 that is this particular screen you 

can think this screen is x1 equals 0 in  the original coordinate system into a line that is 

𝑢2 = (𝑓 − 𝑢3)tan(𝑎/𝑓)  in the new coordinate system. 

 
  So this is how they are getting focused or they will meet somewhere and you will get 

this, okay.  And if you consider x3 equals b that is this particular lines that you see here 

because  of this coordinate transformation all these lines will be now converted into 

circles and  I will not go into the mathematics of it but I will just tell you that they will 

get converted  into circles and these are the equations of the circles 𝑢2
2 + (𝑓 − 𝑢3)

2 =

(𝑓 − 𝑏)2.  So,, this tells you that the radius will be f minus b and the circle will be 

centered  at 0f that is basically u2 and u3 coordinates.  So with that you are able to do this 

particular focusing.  Now once the coordinate transformation is fixed now how to obtain 

your values  of epsilon e and epsilon mu e they can be done using this formula, okay. 

 

  So you do the calculation again in the same manner you will be able to find out what is  

this matrix they are again diagonal matrix.  So epsilon naught inverse epsilon e will be 

equal to mu naught inverse mu e that is s  00, 0 s inverse 0 and 00 s. What is s here?  s is 

basically f over modulus of x3 minus f.  So, with that you can understand that the 

permittivity and permeability tensors of the equivalent  medium they have the same 

principal axis along x1, x2 and x3 axis, okay.  But the principal values of the permittivity 

and permeability tensors are dependent  on the position x3. 



 
  So this is important because s is basically all dependent on this particular position, okay.  

That is the equivalent material is basically graded along the x3 direction with larger  

anisotropy near the focal line.  So when this goes to very close to the focal line this value 

will be very large, okay.  So this is a kind of larger anisotropy that is what they are 

discussing, okay.  So here these parameters are basically function of x3 and that is why 

they are all graded, okay. 

 

  So you can understand that creating such material could be challenging but this 

particular tool  of transformation optics can allow you to think of this kind of materials 

which can  do all this unusual optical transformations.  

 



 With that let us move on to the next topic that is invisibility clocks which is basically  an 

application of this transformation optics.  So an invisibility clock is a device that can 

guide light around an object such that  the object appears transparent and therefore it is 

invisible.  So here is an example say you have an object here, okay.  But the trajectory 

shows that you are basically avoiding this sphere A and you are allowing  the light to go 

through in this shell and they will exit this at the same point where  this was so all these 

four points will be in the straight line with these four points. 

 

  So it will look like as if there is nothing in between this.  So this is how clocking works.  

So anything any object that you can put in between will not be seen, okay.  So this is that 

desired optical trajectory in this case.  So again how do you design this kind of a system?  

You can start with a free space Cartesian coordinate system which has got all parallel  

straight line kind of optical trajectories, okay.  And then you have to bring in the 

coordinate transformation.  So, you can convert to a coordinate system which has got u1, 

u2 and u3 such that the  points of the sphere with radius r, okay. 

 

  So you can think of radius r, r is having 𝑟 = √𝑥1
2 + 𝑥2

2 + 𝑥3
2 .  They are basically 

mapped onto a sphere of radius u which is greater than a.  So that you know this all these 

points are basically mapped outside.  So coordinate transformation mapping points inside 

the sphere to points within a spherical  shell outside the sphere will allow you to get the 

desired response.  So, what you are doing basically all the points that is inside this sphere 

of radius a has  to be moved onto this shell, okay. 



 
  That way there will be no light inside, okay.  So this is accomplished for all the points 

where r the radius is less than b, okay and  b is basically greater than a.  So this is what 

you want to do.  All these points has to be mapped here, okay.  So, you can actually use a 

transformation like this 𝑢 = 𝑎 +
𝑏−𝑎

𝑏
𝑟 . 

 
  So you can see what happens to the point over here, okay.  You can put r equal 0, you 

can put r equals a, okay and you can find out what is happening  to this transformation.  

So this is the transformation that allows you to do that and when r varies to b, okay  you 

can see that as r varies from 0 to b, u will vary from a to b, okay.  So the entire thing from 

0 to b is the entire space.  So, the entire space in the real coordinate system is basically 

now mapped onto the new  coordinate system which has got u and in that case everything 



falls within a to b. So, what you are doing?  The entire system including this thing is 

mapped onto this shell now, okay.  So this mapping can also be written as u equals sr 

times r where sr is basically, okay like  this a over r plus b minus a over b.  So you are 

just bringing r in the denominator.  So this becomes a position dependent scaling factor.  

So, if you try to think of this in terms of scaling, so you can think that this is position  

dependent scaling factor, okay. 

 
  So now it is your task to apply this.  So when applied isotropically the scaling factor will 

bring this particular coordinate transformation.  So, all the coordinates x1, x2 and x3 will 

get transformed, okay by this coordinate by  this scaling factor and what will be the 

result?  The points on the straight line say x2 equals f in the plane x equals 0, okay of this 

one.  So x2 equals f is say this one, okay.  Will now get mapped into the curve trajectory, 

okay one of these trajectories in u2, u3 plane. 

 

  So this is how all of them will now go around.  So all the straight lines will now take 

this particular curved trajectories, okay.  So this one you can think of like this going 

around.  The top one you can think of like this because of this transformation.  So, you 

can also write 𝑢2
2 + 𝑢3

2 = 𝑎2 [
𝑢2

𝑢2−(𝑏−𝑎)𝑓/𝑏
]
2

, okay. 

 

  So this is the trajectory that you are seeing here.  So the red curves are computed using 

this one and these are the four values.  You can also see these are two and two.  So these 

are the four values.  So, this is how the top two goes to this two curved red lines, the 

bottom two and the bottom  two red curved lines, okay. 



 
  So that is how you are able to do it.  The grid that is shown in this figure within the shell 

that where u is like in between  a b and you can actually obtain this using this particular 

relationship.  So there is nothing here.  So the entire space of radius 0 to b has been 

moved on to this shell.  So now you can put anything here, doesn't matter.  That will 

never enter this, it will go around and it will exit from this side, but these  two points will 

look there as if coming straight without any deviation. 

 
  So that is how your cloaking will work, okay.  So, you can also think of similar kind of 

mapping for x3.  So x3 equals f is this one, okay and you can think of putting this on this 

plane.  So that is how you are getting this curved grids.  Now once you know the 

parameters, the transformation, the parameters of the equivalent material  to be placed in 



this shell, spherical shell will be now determined by these equations, okay. 

 

  So these are the equations we started with.  This is the Jacobian matrix, this is the 

transformation, okay.  This is the relationship of the transformation scaling factor, okay.  

This is how the transformation has finally come up from straight lines to this kind of 

curved lines.  Once you know all these things, you can find out that you require the 

material equivalent  permittivity and permeability to have these values, okay, where v 

square is basically  u to the power 4 over 2au minus a square where u is basically ranging 

from 0 to, sorry,  a to b. So, this is how this shell has to be replaced by this kind of 

material that will  do this trick for you. 

 
  So as you can see this is bit mathematically intensive but this kind of things are 

possibility.  So what is understood here is that the dielectric and the magnetic properties 

of this kind of  materials in this spherical shell are both inhomogeneous and anisotropic.  

For example, if you take at points on the x1 axis, okay, that is u00, you will have  this 

kind of a value, okay.  And if you, at all these points, the principal axes are anyways 

aligned to the three coordinate,  Cartesian coordinates u1, x1, x2 and x3.  And you can 

think of the principal value u1 that varies from 0 to epsilon b minus a over  b. 

 

 So this is the range over which epsilon 1 will vary because u is varying from a to b.  

Similarly, the values of, however, you can see here there is no variation.  So ε2 and ε3 will 

be simply b over b minus a times epsilon 0.  So the values along 2 and 3 direction will be 

same but along epsilon 1 it will change.  The similar result will apply for mu as well.  

And with that you can see that if you go to the implementation at optical wavelengths,  

the implementation of invisibility clocks via metamaterials will require the use of  

advanced nanofabrication technology, something like electron beam or focused ion beam 



lithography. 

 
  We will look into the details of these different techniques in the subsequent lectures.  

But you can also see because there is change gradient graded one in the graded values.  

So you have to think of constituent dielectric and magnetic elements to be of various 

shapes  and dimensions and they must be intricately designed and precisely laid out.  So 

that makes this thing very challenging.  So, such elements will be highly resonant and the 

electromagnetic properties of the material  will depend strongly on the wavelength. 

 
  So such devices will typically work over a very very narrow spectral bandwidth.  And I 

hope you are able to understand the challenge here that you require metamaterial  to 

realize this kind of special functionalities like anisotropy in the permittivity and 



permeability  and after that also it will work only over a very narrow bandwidth.  So with 

that we come to an end to this lecture.  So we will be discussing carpet clocking and other 

transformation optics metamaterial devices  in the next lecture.  So if you have any query 

you can drop an email to me mentioning MOOC in the subject line.  Thank you. 


