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Hello students, welcome to lecture 16 of the online course on Nanophotronics, Plasmonics  

and Metamaterials. We will be covering optical properties of metal in this particular course.  

Now here is the lecture outline as I mentioned we will be covering ah metal optics or 

plasmonics  very briefly ok. The relevant models to explain the properties of metal that 

will  also be covered. We will be discussing about the Lorentz oscillator model, we will 

discuss  wave equation and the wave vector k. We look into the optical properties of an 

electron gas like that is present in a model metal using Drude model ok. 

 
   

So, here is a picture of Paul Karl Ludwig Drude who was a German physicist and he has 

worked towards integrating optics with Maxwell's electromagnetics. And he has forced a 

theory  which is commonly known as Drude model that wasable to describe the behaviour 

of electrons  in metal. So, that was a very very important discovery and that is why the 

model is named  after him. We will also look into bulk plasmon and different dispersion 

relations. 



 

 

  So, let us move towards metal optics or plasmonics. We have discussed dielectrics  till 

now and we have understood that majority of the optical components are based on 

dielectrics.  Now there are couple of pros and cons with dielectrics. First thing is that you 

know  dielectrics allow high speed high bandwidth, but they have a problem that they do 

not scale  well or you cannot make them very much miniaturized and that restriction comes  

from the diffraction limit of light that you have seen in the initial lectures. Other problems  

would be like bending loss. 

 

 

 So, when you bend it so the modes can actually leak out from this sharp bends. And also, 

if you look here the diffraction limit allows you to focus  light only at a region which is 

lambda naught over 2 times the refractive index.   So, if you look into an optical fibre that 

the core size is kind of limited ok and  it is related to the optical wavelength that it is 

carrying and the optical mode in the waveguide will  be larger than this. So, there will be 

some kind of mode extended into the cladding as well. Now what is the solution going 

ahead? So, these are some problems we know of dielectric photonics. 

 

  So, going ahead we can move towards plasmonics or metal optics. So, plasmonics  forms 

a major part of the fascinating field of nanophotonics which explores how electromagnetic  

fields are confined over dimensions on the order or smaller than the wavelength. So, this 

is where you can go sub wavelength ok. Now in the past the devices were relatively  slow 

and bulky. So, we have not seen most of you have not seen this particular era. 



 

 

 
   

 We are people of the era of electronics as well as photonics. So, we have seen 

semiconductor  industry which has performed incredibly well to scale down the size of 

electronics component  to nanometer scale ok. So, and that is how all these electronic 

gadgets and  devices are becoming sleek, lightweight, compact and there are more and 

more electronic  devices that is coming to the market. So, miniaturization is very well done 

by semiconductor  industry, but there is a problem with the speed and we have seen that 

the interconnect  delays in the initial lectures we have discussed it in more details that the 

interconnect delays  typically restrict the speed of electronic devices to few gigahertz. So, 

how do you actually  go to larger speed? The way is to go for photonics. 

 

 Now photonic devices they have enormous data  getting capacity, but unfortunately this 

photonic components they are restricted in  miniaturization because of the fundamental 

diffraction limit of light ok. So, you  cannot scale them as small as the electronic devices. 

So, photonic devices cannot be scaled down  to nanometer scale because optical 

wavelengths are in the order of micrometers right.  So, we have to come to plasmonics area 

where we can have miniaturization as well as the  high speed of the photonics. So, this is 

where plasmonics offers us the best that is the  size of electronics and speed of photonics. 

 

 Now when we talk about plasmonics we have  to understand what is plasmon. So, 

researchers have developed that this plasmon  can squeeze optical signal into miniscule 

wires and how do you do it? So, you have to  use light to produce electron density waves 

which are called plasmons. So, they can be  compared like you can compare electron gas 

in a metal to a real gas of molecules ok and  the metals are expected to allow for this 

electron density waves which are called plasmons.  A simple analogy is like these are like 



 

 

sound waves. So, alteration of air molecules ok  the way it how the way sound wave 

propagates in air you can think of surface density waves  or electron density waves in metal 

that is nothing but plasmon. 

 
  

 Now bulk plasmons they are in the bulk metal in this case metals allow electromagnetic 

wave propagation above the plasma frequency ok. And there are surface plasmon where 

you they are also known as surface  plasmon polariton which shows very strong coupling 

to the electromagnetic field.  We have seen this briefly in the introduction lectures that you 

can have metal dielectric  interface and you can have surface waves propagating along this 

particular interface. And the field  extends more into the dielectric as compared to the 

metallic region.  Now how do you model this kind of behaviour? So, we can actually start 

modelling the behaviour  of electron in any material using a spring mass system. 



 

 

 
 

 So, we can assume that the lattice ions do not move so are like they are like big bulky 

nucleus ok. And the electrons are  connected using a binding force which behaves more or 

less like a spring and we assume that  the nucleus or lattice ions do not move if they move 

you have to use reduced or effective  mass ok. So, this is a kind of simplified assumption 

that we use.  Now if you take this spring mass damper kind of arrangement for this system 

you will see  that the damping force can be written as F(t)  which is Re{𝐹0𝑒−𝑖𝜔𝑡} ok. You 

can go for the viscous damping given as −𝑏𝑥̇ ok.  𝑥̇ is the velocity,  x is the displacement 

as you can see 𝑥̈ will be the acceleration. 



 

 

 

 
 So, this is  the force so overall force is nothing but −kx the spring force minus the viscous  

damping this one −𝑏𝑥̇ plus whatever is the driving force ok. So, that is the overall  force 

acting on this system. Now if you substitute the following that you define k/m as 𝜔0
2, 𝑏/𝑚 

as 𝛾  that is collision frequency and 𝑓0 that is the amplitude of the force driving force 

𝐹0 over mass (𝑚) or you can say per unit mass you can write in this equation takes this 

particular form ok.  So, if we assume that the time harmonic driving field then to obtain 

the frequency domain equation what you can do you can use Fourier transform ok with 

𝑒−𝑖𝜔𝑡  time dependence where  𝜔  is basically the angular frequency and if you take 

derivative  of 𝑒−𝑖𝜔𝑡 with respect to time you get 𝑖𝜔𝑒−𝑖𝜔𝑡. In few books they call it j𝜔. 𝑖𝜔, 

j𝜔 they are the same thing ok. 

  Thus, we can easily convert the time domain equation this is this is a time domain 

equation.  So, they are the first order partial derivative dot t can be replaced as 𝑖𝜔  and 

second  order derivatives can be written as this is basically 𝛿2/𝛿𝑡2 that  is nothing but 𝑖𝜔 

whole square. So, you get −𝜔2. So, with that  if you do this kind this apply this into this 

one and real part of this is nothing, but  the cos term. So, if you take x divided by cos term 

and if you take that as capital A  you can write this equation in this particular form ok. 

 

 So, I am not I am not going to show  each and every term here you can sit down and find 

out how it is done it is very simple.  So, finally, you can write 𝐴(𝜔) that is how the 

displacement or the amplitude ok of  the displacement is moving ok and this is in frequency 

domain. So, you have got  
𝑓0

𝜔0
2−𝜔2−𝑖𝛾𝜔

.  So, this is the equation you have obtained. Now, we 

can also write in terms of the restoring force what is the restoring force here. 



 

 

 

 
 

 So, restoring force is −𝑚𝜔0
2𝐱 that is the restoring force ok. You can write in terms of 

damping, the damping is nothing but −
𝑚

𝜏
 or you can say 

1

𝜏
  is basically the collision 

frequency. So,  𝜏 is the relaxation time. So, −
𝑚

𝜏
𝑥̇ or you can write −𝑚𝛾𝐱̇  ok. And when 

you equate this with the ok one more term is left that is the driving  force which is the local 

electric field. 

 

 Say if you have got an electric field in say  the electron will be polarized by this electric 

field ok. So, usually what happens when the  electric field is in the positive direction the 

cloud will be moved downwards, when the  electric field goes in the downward direction 

the electron cloud will be pushed upwards  because electric field will get tripled now the 

electron cloud will be get tripled by  the electric field ok. So, you can think it in that 

direction.  So, you can write F driving equals minus E is the electron charge and the local 

electric  field this you can convert into the time dependence you can write here. And finally, 

you can put  the equation of motion that is in this form you can write that ma this is the 

force. 

  So, ma acceleration is written as  𝑥̈ ok. What are the forces spring force then  damping 

force that was the viscous force in the previous case ok. Here you have seen viscous  

damping. So, there is a damping force. So, here also you have the damping force 

component and the driving force ok. 



 

 

 

 
 

 So, these are the three forces when you put them together ok in the presence of an electric 

field because here the driving force is from the electric field ok. So, when you do this you 

can find out  𝐱(𝑡) that is the displacement in time domain can be written as this one  

−
𝑒

𝑚

𝜔0
2−𝜔2−𝑖𝛾𝜔

  ok.  

And the localized electric field 𝐄loc(𝑡) is also time varying ok. So, with time it can change 

accordingly the displacement will  also change. So, from that you can actually find out 

what is the induced dipole moment P. 

 P is nothing, but −ex, e is the electron charge ok. And then if you have n number of  

electrons per unit volume you can write down polarization which is P as n of this induced 

dipole moment: 𝑛⟨𝐩⟩ = −𝑛𝑒(𝐱⟩ =
𝑛𝑒2

𝑚

𝜔0
2−𝜔2−𝑖𝛾𝜔

⟨𝐄loc⟩ and you can put this equation here x 

you can write in  terms of this ok and you can obtain this particular equation.  So, here what 

we can see that this polarization can be written as 𝜖0𝜒𝐄, what  is 𝜒? 

 𝜒  is a susceptibility of that particular material ok? Now, remember that in general  this 

local electric field is not same as the applied electric field because this local  electric field 

usually is an average over the different atomic sites not over the region  between the sites. 

So, there may be slight difference, but in  metals the conduction electrons are not bound 

ok. 

        So, they are they are allowed to freely  move around. So, you can feel a macroscopic 

field of E on average. So, in metal you can  safely take that these two things are equal ok.  

Now from that we arrive at a desired result we know that the value of permittivity  is 



 

 

nothing, but 1 plus susceptibility and this susceptibility is we is what we got from  here ok. 

So, this term we have correlated with 𝜖0𝜒. 

 

 
             

       So, you can find  out what is 𝜒 here and you put it in this particular equation. So, 𝜒 is 

nothing but  ne2, n is the number of electrons per unit volume, e is the electron charge, m 

is  the electron mass and 𝜖0 is the vacuum permittivity and this is what you have got. So, 

from this you can obtain what is the real part of the permittivity. So, there is an imaginary 

here. So, if you take the conjugate and multiply  it on top and bottom on numerator 

denominator you can get the denominator completely real  and then separate out the two 

parts. 

             So, bit of sorry a bit of algebraic maths here and  you will be able to find out what 

is the real and imaginary part of the permittivity.  With that if you try to plot this as a 

function of frequency normalized to 𝜔0 you  will see this particular graph. So, the red line 

here or the red curve corresponds to  the real part of permittivity and the blue one is the 

imaginary part and this is the  permittivity and this is the corresponding reflection curve.  

So, let us see region by region what happens. Let us look into the different regions. 



 

 

 

 
  

So,  first one is region 1 as you can see here where 𝜔 is considered much much lesser  than 

𝜔0 that is this particular region. So, in that region look at the blue  curve is almost 0 that 

means the imaginary part is almost 0. And what you see that that  ε1 that is the real part. 

So, epsilon this is called ε1 and this is ε2 in this particular plot. So, you can see ε1 is greater 

than 1. 

 So, it is behaving  like a transparent material. So, you here also you can see in the reflection 

transmission  regime you can see that this region is basically transmissive region. So, light 

can easily  pass through. Now, let us look into the second region which  is basically of the 

order. So, it is close to 1 it means 𝜔/𝜔0  is close  to 1 it means frequency is of the order of 

𝜔 0. 

 

 So, in this case what you see  that in this region your material is highly absorptive because 

the imaginary part of the  permittivity is very high. So, you can denote this region as a and 

what is the good thing  here you can see that gamma is the collision frequency or you can 

say damping constant  and this width of this region is basically 2 gamma.  In region 3 we 

are considering 𝜔 is much much greater than 𝜔0 that is this  particular region. Here you 

can see that again the imaginary part is much smaller,  but in this case you look at the real 

part the real part is basically negative. It means  in this region the material will be reflective. 

 So, you can see here it is showing reflection ok. And in region 4 you can actually see this 

is region 4 where 𝜔 is much much  larger than 𝜔0 and we have taken 𝜔 to be greater than 

√𝑛𝑒2/𝑚𝜖0 that will define this term what is this particular term. And  we have seen that 

in this particular region the imaginary part is almost 0 and the real  part is greater than 0 

that means the material again becomes transparent.  So, these plots are actually done for 



 

 

these values of gamma. 

 So, gamma is taken as 0.2  times 𝜔0 and 𝜔p where 𝜔p is this particular frequency where I 

know  this real part crosses 0 ok. So, this is taken to be roughly 2 ok. So, here it is  so 𝜔p 

over 𝜔0 is roughly 2. So, that is the case considered here.  Now, with that let us try to see 

how we describe the optical properties of an electron gas  in metal. 

 So, that is the generic model for electron in any material, but in case of metal  most 

electrons are free because they are not bound to any nucleus. In that case one important  

term that spring term or the restoring force term that becomes negligible. It means there  is 

no natural frequency of oscillation that was actually given by 𝜔0 ok. So,  you can take 𝜔0 

to be 0 in the case of metal.  So, Drude model is very simplified version of the Lorentz 

model where you can nullify this particular term omega naught. 

 

 
 

 So, if you simply remove this term what you are left with is called Drude model. I hope 

that is clear. So, Lorentz model actually tells you  the electron optical property of electron 

in any material and then if you put this approximation  that bound charges are not there in 

metal omega naught the natural frequency becomes  0. So, you can actually write 𝜖(𝜔) = 

1 − (
𝑛𝑒2

𝑚𝜖0
)

1

𝜔2+𝑖𝛾𝜔
 ok.  So, in this case this particular term is taken as 𝜔p

2 or the plasma 

frequency.  𝜔p can be written as √𝑛𝑒2/𝑚𝜖0 ok. 



 

 

 

 
 

 And in that case this equation looks like this. So, 𝜖(𝜔) = 1 −
𝜔p2

𝜔2+𝑖𝛾𝜔
 . So, again this 𝜖(𝜔)   

has got real and imaginary part. So, you can separate out the two components. So, real  part 

or real components are named as ε1 and imaginary part are named as ε2.  So, this actually 

tells you about the broadening at the loss or the absorption capability  of a particular metal 

ok. 

 

 So, you can also replace gamma by the time constant or the  collision time ok and you can 

replace gamma by 1/ 𝜏 and get this particular equation  as well. So, they basically cannot 

be the same meeting.  Now, this we have already seen that this is Drude model 𝜔p is given 

by this real  and imaginary are written like this. Now, let us try to see that in what region 

how  the metal is behaving. So, if you consider omega which is which is much much lesser 

than  the collision frequency ok. 

 

 So, 𝜏 is what? 𝜏  is relaxation time. Now, relaxation time how do you define it? It is the 

time for the electron between the two collisions when  it is roaming around in the lattice. 

So, inverse of the time is nothing, but the collision  frequency ok. So, if the frequency is 

much much lesser than the collision frequency in  that case you will see that your ε2 is 

much much larger than ε1 means the  imaginary part will dominate it means the metal 

behaves like absorptive metal ok.   It is it is a absorptive property of the metal in that case.  

Now, if you take frequency which is much much larger than the collision frequency, but 

lower  than the plasma frequency in that case you will see that your ε1  is much  much 



 

 

larger than ε2 . 

 

 

 It means it is the material or the metal is not absorbing that much ok. The absorption is 

minimal and if you find that ε1  is basically negative  it means the metal is basically 

reflective. And this also tells you why metals are shiny.  When you see something shiny it 

means it is reflecting very strongly. So, electrons in metal follow the oscillating electron 

field and basically it cancels it. 

 

 
 

 As a result, the electromagnetic fields are not able to enter the metal ok and gets totally 

reflected and that is why metals are always shiny. You can look at your silver or gold ring  

or any other any other metal for that matter and you will see that it is more or less reflecting  

in the visible wavelengths ok. Now, if the frequency is larger than omega  p we have seen 

what happens right. In that case your ε1  becomes much much larger  than ε2. It means 

again the absorption is minimal, but in this case because ε1 is positive it allows the light or 

wavelength to pass through that means it will become  transparent ok. 

        When the external field oscillates too fast that is when the frequency becomes larger  

than the plasma frequency of that particular metal. So, what is this frequency? This is the  

frequency of the electromagnetic field that is falling on that metal ok. And 𝜔p is the  plasma 

frequency of that metal. So, the metal loses its reflectivity it is not able to reflect  it back 

ok rather it gives up and it allows light to pass through. So, alkali metals such  as lithium, 

sodium they actually shows this kind of transparency and these are known as  ultraviolet 

transparency. 

 



 

 

 So, this high frequencies are typically in the ultraviolet range, but novel  metal they do not 

show this transparency due to inter band absorption. So, novel metal like gold,  silver, 

copper they will not become transparent at this wavelength because they actually absorb  

they do not let the light pass through ok. So, this is the diagram of permittivity versus  

frequency and you can see where it crosses 0 it is basically the plasma frequency. Now,  

we are actually discussing when the frequency is less than 𝜔p it means the metal will  retain 

its negative permittivity that is it will be reflective. 

 

 
 

 So, that is the metallic character.  Now, for large frequencies close to 𝜔p. we will see that 

the product of 𝜔𝜏 is much  much greater than 1 that leads to negligible damping ok. And 

in this case  𝜀(𝜔) will  be predominantly real because there is no damping is negligible 

means that imaginary part is also  negligible. So, you can simply write 𝜀(𝜔) as 1 −
𝜔p

2

𝜔2  and 

this is this particular graph. So, why it is crossing 0 at 𝜔 equals 𝜔p you can see  from here. 

 

 So, if you take 𝜔 equals 𝜔p this term becomes 1. So, permittivity will become  0 ok. So, 

this is basically the case as the dielectric function of undamped free electron  plasma 

because there is we are ignoring the damping term here gamma term here ok.  Now, these 

are certain values that is important to kind of remember that the relaxation time of  most 

metal that is 𝜏 is in the order of you know 10-14 second. So, from that if you find out what 

is gamma, gamma is basically 100 terahertz or in energy you will see it is around 0.4 eV 

ok. So, mass of electron charge of electron mass of electron charge of  electron density of 

electron in case of gold and silver is this one 6 into 10 to the power 28 per  meter cube you 

can see how many electrons are there in 1 meter cube of gold and silver.  Permittivity and 



 

 

all these values are already known to you. Now, what is this omega p turns out to be 10 

eV. So, it is typically in the ultraviolet range ok and you can see this  is much larger than 

the collision frequency ok. 

 

 So, you can actually see this approximation is  fine ok. Now, if we consider the regime of 

low frequencies it means where 𝜔 is much much  lesser than tau inverse or gamma. If we 

consider that particular case here you will see that you  know your imaginary part is 

becoming much much larger than the real part. That means, the real  and imaginary part of 

the complex refractive index are now also getting comparable.  So, from the imaginary part 

real and imaginary part of the permittivity you are also able to find out  the real and 

imaginary part of the refractive indices that can be written as n and kappa ok.  And you can 

see that they are more or less having equal values in this kind of case. 

 

 
 

  So, it is √
𝜀2

2
  and you can write it as √

𝜏𝜔𝑝
2

2𝜔
  ok. And in this region the metal is mainly 

absorbing because 𝜀2 the imaginary part is  much larger and it can be defined using a 

absorption coefficient  𝛼 that is given as  (
2𝜔p

2𝜏𝜔

𝑐2 )
1/2

. We are not going to the derivation of 

each of this because that will be time consuming. I just want you guys to understand the 

physics that in what region the metal is reflective in what region it is absorptive and that is 

how ok.  

    So, that will tell you the overall behavior of the metal in a particular electromagnetic 

field. Now, by introducing the DC conductivity 𝜎0  you can write 𝜎0  as  
𝑛𝑒2𝜏

𝑚
  ok. 



 

 

 And that can also be correlated to the plasma frequency by this  formula  𝜔p
2𝜏𝜀0 . So, once 

you know that you can put this  into your absorption coefficient formula and you can find 

out that 𝛼 is  √2𝜎0𝜔𝜇0  ok. Now, this 𝛼 actually allows you to find out the skin depth  ok. 

By application of Beer's law ok or Beer-Lambert law of absorption it implies that for low  

frequencies the field falls off inside the metal as e to the power minus z by delta. 

 

  So, that is happening in low frequencies. So, e to the power minus z by delta what is delta?  

Delta is the skin depth. So, skin depth delta is defined as 2/ 𝛼  and you can write it as  
𝑐

𝜅𝜔
 . 

So, kappa is this imaginary part ok in the refractive index and you can  finally write it as 

√
2

𝜎0𝜔𝜇0
  ok.   

Now, if you look at higher frequencies that is in the case when you know 𝜔𝜏 is  larger than 

equal to 1, but smaller than it could be smaller than equal 𝜔p𝜏. If this is the range of the 

frequencies, you will see the complex refractive index is predominantly imaginary ok. 

 

 
  

 It means in that case reflection coefficient R will be almost 1 ok. And sigma that is the 

conductivity part acquires more and more complex character and that will blur the 

boundary between  the free and bound charge ok. So, more or less you can actually use the 

same model for  both the cases. Now, our discussion up to this point has assumed that in 

ideal free electron  metal we will briefly compare the model with an example of real metal 

important in the field of  plasmonics. So, let us take one example. So, in the free electron 

model we know that  epsilon goes to 1 when your frequency is much much larger than 𝜔𝑝 . 



 

 

 

 So, you can actually  take noble metals like gold, silver, copper ok. An extension to this 

model is needed in the region  when omega is greater than 𝜔𝑝 ok. So, this is the region 

where the response is  mainly dominated by the free electrons. So, this residual polarization 

due to the  positive background of the ion cores they can be described by adding the term 

𝐏∞ ok.  So, that can be written as ε0(ε∞ − 1)𝐄 .  So, what is P here this is this represents 

solely the polarization due to the free electrons ok. 

 

  So, what you are finding out you are able to find out the contributions from  both free 

electrons and the background ok. So, the effect therefore, is described by  a dielectric 

constant of high frequency which is called epsilon infinity ok. And usually the value  of 

𝜀∞ is from 1 to 10. So, instead of 1 you can actually so 1 minus this was for the free 

electrons only, but the at high frequency there is a background because of that you will get 

this permittivity ok from the positive background. 

 

 
 So, you can write that as 𝜀∞ ok. So, this is the final equation that should describe the 

permittivity properties of  electrons in metal. So, this is the Drude model ok. So, you can 

see that the validity limits of  the free electron description in the case of gold. So, this 

particular curved line and these dots are  the experimental ones. So, you see after a 

particular frequency range ok this free electron  description which was with 1 minus this 

that fails very badly ok. 

 

 So, till here it is fine,  but after that the background plays an important role. Similarly, in 

the case of imaginary part  also up to this the free electron 1 means  1 −
𝜔p

2

𝜔2+𝑖𝛾𝜔
  ok that is 



 

 

doing descently well, but as soon as the region of inter band  transitions enter ok you are 

not able to see a good fit with the experimental data and the  free electron description. So, 

you should actually use this particular  model that covers the entire thing. So, these red dots 

are basically taken by experimental data  measured by Johnson and Christy in 1972. This 

is a very old paper, but this is one of the most  highly cited papers in this field because 

every they are the first one to measure the dielectric  constant of gold and silver and copper 

ok and this was the starting point of Plasmonics research.  Now, inter band transition limits 

the validity of this model at visible and higher frequencies that  you have seen. 

 

 So, higher the frequency this model will get increasingly bad. Now, clearly  at visible 

frequencies the application of free electron model breaks down due to the occurrence  of 

inter band transition and this inter band transition actually gives rise to 𝜀2 ok.  Now, with 

that let us move to the dispersion layer. So, now how to describe the  permittivity or the 

material property of any dielectric using Lawrence model and we have seen  how to do it 

for Drude metals ok. And now let us look at bulk Plasmon ok.  So, what are the dispersion 

relation of bulk Plasmon? So, the physical significance of the  excitation at 𝜔𝑝. 

 

 
 

 So, let us consider the collective longitudinal oscillation of the conduction electron gas 

versus the fixed positive background of the iron cores in a plasma slab. So,  this kind of 

slab you can think of where the electrons are kind of electron cloud is kind of  dislocated 

by u in that case sigma(𝜎) can be the charge density ok you can you can write  it as  ±𝑛𝑒𝑢 

ok. So, a collective displacement of the electron cloud by distance u leads to a  surface 

charge density sigma given as ±𝑛𝑒𝑢 at the slab boundaries. Now, the electric  field inside 



 

 

the slab can be defined as 𝐸 = 𝜎/𝜖0  ok. And the restoring  force applied to an electron is 

F and that can be written as minus e that is the charge  of electron and the electric field E 

that has been applied. 

 

 So, from that you can also write down  what is the equation of motion here it is ma is this 

particular force ok. So, 𝑚𝑥̈  can be written as −
𝑛𝑒2

𝜖0
𝑥   ok. So, resonance frequency is  

nothing, but 𝜔p that is the plasma frequency which is 𝜔𝑝 = √𝑛𝑒2/𝜖0𝑚  fine. Now, let us 

take time to describe the transparency regime which is 𝜔 greater than 𝜔p for the free 

electron gas model. 

 

 

 Now, the dispersion relation for the travelling wave can be obtained in this form. So, you 

have omega epsilon r omega square epsilon r equals  c k ok. So, what is this particular 

formula if anyone is able to guess this formula is nothing, but what is the dispersion 

relationship omega equals ck right in vacuum. Now, omega equals  c by or c by n into k 

that will be the relation in any medium with refractive index n.  So, instead of n you can 

also write it in terms of permittivity you can write square root of  epsilon right. So, in that 

case if you take square on both sides you can get this equation which is  omega square 

epsilon r equals c square k square. 

          And you also already know that in this region  there is this transparency region you 

can actually write epsilon r that is the relative permittivity  can be written as 1 −
𝜔𝑝

2

𝜔2  . So, 

when you put this one into  this equation you will get this is your dispersion relation of the 

travelling wave because this is  the transparency region ok. So, the region is plotted for a 

generic free electron metal.  So, you can see this is this particular dispersion relation. 



 

 

 

 So, this is the normalized frequency  curve. So, omega over 𝜔p and this is the wave vector 

K c over 𝜔p and this is basically  light line ok. Now, as can be seen when omega is less 

than 𝜔p that is in this region ok.  So, propagation of transverse electromagnetic wave is not 

allowed ok into the metal plasma.  And when it is above this particular region ok plasma 

supports transverse wave propagating  into the inside the metal and what will be the group 

velocity in that case?  It is vg which is d omega by dk and you can say that it is less than c. 

 

 

 So, it is all in this particular case. So, this is the plasma dispersion ok. So, it is clear that 

electromagnetic wave  propagation is only allowed for omega greater than 𝜔p this is the 

boundary. So, this is  where exactly omega equals omega p. So, anything above that the 

electromagnetic wave propagation  is possible. Now, the significance of the plasma 

frequency omega p can be further elucidated by  recognizing that in the small damping 

limit you can write that  𝜀(𝜔p)   for K equals 0 ok. 

 

 So, this is the case right. So, both are 0 in this case. This excitation  must therefore, 

correspond to a collective longitudinal wave. And in this case you can write  that 𝐃 = 0 =

𝜀0𝐄 + 𝐏. So, from that we will see that at the plasma  frequency the electric field is a pure 

depolarization field that is electric field will be  -P/𝜀0  ok. And that is the essence of plasma 

frequency. 

 

  Now, this was the dispersion relation I was talking about in the previous case.   So, for 

different dielectric like free space where you can take epsilon equals 1 these are basically  

epsilon r ok do not mistake it these are epsilon r ok. I am just writing epsilon here as a short  



 

 

form. So, 𝑘 =
√𝜖

𝑐
𝜔 . So, if you take epsilon equals 1 for air this is 𝜔 equals ck this is this 

particular solid straight line.  Now, if you consider silica and you want to see what is the 

propagation inside that ok and find out the dispersion you put epsilon equal to 2 here you 

get this particular dispersion relation ok. 

 

 

 

 So, omega is around 0.7ck that is this particular dotted line ok.  So, in this case remember 

that the permittivity or the dielectric function of silica is assumed  to be non dispersive 

means it is assumed to be a fixed value for all the wavelengths,  but actually it is not like 

that. However, the importance here is to show that if you  have a dielectric constant larger 

than air the slope of the dispersion curve is reduced.  And in the case of metal you can 

consider this one where 𝜖(𝜔) is 1 −
𝜔𝑝

2

𝜔2  ok. So, if you put this value here  you actually get 

this one you take square on both sides. 

        So, you will find  𝜔2 = 𝜔𝑝
2 + 𝑐2𝑘2 . So, this is the dispersion relation in metal. So,  

this is how the wave propagation has to satisfy this condition that you have seen before that  

𝜔  has to be greater than 𝜔p  for the plasma to be able to propagate ok.  So, slow group 

velocity obviously because you will get vg which is lesser than c you will also find 

wavelengths which are longer than the wavelength of light because you are able to get k 

values for the same one. So, you are getting k values larger than k naught and  

asymptotically this will approach the light line when 𝜔  goes to infinity. 

 So, somewhere down  towards infinity these 2 lines will kind of merge. So, what is 

important to remember here is that you  will get slow group velocity. How do you get group 



 

 

velocity? You take doh omega by doh k.  So, if you calculate that you will see that in this 

case it is c in this case it will be  smaller than c. So, metal will have or support a lower or 

slower group velocity  and for the same frequency it will also support long wavelengths 

because the wave number  is larger ok. 

 So, k is greater than k naught ok. k naught is the one in vacuum.  So, k will be the one in 

the metal ok. So, k is larger to check this looks like there is a typo but yeah.  So, it also can 

support a long wavelength ok. So, with that we will stop here. So, in the next  lecture we 

will look into the surface plus bond polar item fundamentals and if you have got any  query 

regarding this lecture you can drop an email to this particular email address. Thank you. 


