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Hello students, welcome to lecture 14 of the online course on Nanophotonics, Plasmonics  

and Metamaterial. Today's lecture will be on 2D and 3D photonic crystals. So here is  the 

lecture outline. So today we will first look into 2D photonic crystals. We will introduce  

this amazing engineering wonders. Then we will discuss about a square lattice of dielectric 

columns as an example of 2D photonic crystal. We will also discuss a square lattice of 

dielectric veins, a complete band gap for all polarization, how we are able to generate those. 

We will  look into localization of light by point defects, linear defects and waveguiding. 

We  will also discuss about 3D photonic crystals. We will introduce them. Then we will 

look  into Yablonovitch kind of crystals. We will look into Woodpile crystal. So, these are 

different  examples of 3D photonic crystals. And we will also look into a stack of 2 

dimensional crystals.  So that will also become a 3D photonic crystal. 

 

 
 



 So, for this wonderful engineering material, photonic crystals we are highly indebted to 

these two scientists Yablonovitch and Sajeev John. So, they are basically the co-inventor 

of photonic band gap. And he was the one Yablonovitch,  so this is the crystal named after 

him. So, he was the first one to made a photonic band  gap crystal to demonstrate this 

concept of photonic band gaps.  So, let us introduce 2 dimensional photonic crystals. 

 

 So as you understand a 2 dimensional  photonic crystal is basically periodic along 2 

dimensions or 2 axis and it is homogeneous  in the third axis. So, in this particular diagram 

this is the orientation as you can see. So, this is basically a square lattice of dielectric 

columns. So, you can think of you know chalks  or pencils like that, and these are arranged 

in a square lattice. So how we characterize them like the radius of each column is r and the 

period is a. 

      And you can see this particular red box it shows the unit cell, okay. So, it is basically a 

square lattice, right. So, if you look into the dimensions so x and y are the dimensions 

where the periodicity lies  and along the z axis it can be infinitely tall, okay.  Now for 

certain values of column spacing that is a you can actually see that this crystal  can actually 

gain a photonic band gap in the xy plane. So, when I say band gap in xy  plane it means it 

will not allow any light propagation through this crystal along xy  plane for certain 

frequency band and that will be known as the photonic band gap for  this crystal. 

     Inside this gap no extended states are permitted. So, if light propagation  is not permitted 

through this crystal at those particular frequency band what will  happen to light? They will 

simply get reflected, okay. So, the incident light gets reflected.  And unlike multilayer film 

this two-dimensional photonic crystal can prevent light from propagating  in any direction 

within the plane. So that is something very interesting that here when  we say about 

photonic band gap it means that the frequency of incident light it  can actually fall in any 

direction from any direction and it will have the same reflection  effect, okay. 

 

    It will not be able to you know penetrate into this crystal and propagate  through it. So 

that is the difference between multilayer  films. In multilayer films you are able to say 

restrict the light propagation in one  or two directions but here in photonic crystal it will be 

from any direction light can fall  on the crystal and the propagation will be prohibited if 

the frequency lies within the  photonic band gap, okay. So, we can use the symmetries of 

the crystal to characterize  its electromagnetic modes because the system is homogeneous 

in z. So, this is the z direction, okay, along the length of the dielectric cylinders, okay. 



 

 
  

We must we know that the modes must be oscillatory in this particular direction as there is 

no restriction on the wave vector that lies in this z direction that is kz. So kz is a wave vector 

which has got no limitation or restriction. So, the modes must be oscillatory in this 

direction.  However, the system if you look into the system from xy plane it has got 

basically the discrete  translational symmetry which we discussed in the previous lecture. 

So, in that case what  you can write that 𝜀(𝑟) will be simply  𝜀[𝑟 + 𝑅]  . 

 

 What is capital R? It is any linear combination of the primitive lattice vectors. So, in this 

case the primitive  lattice vectors can be 𝑎𝑥̂ and 𝑎𝑦̂ because it is a square lattice, okay. So, 

any combination  linear combination of this primitive lattice vectors will see repetition of 

the dielectric  property. So, what is the property here?  It will be same here, here, here, here 

and so on. If you actually look into this gap that is air filled, so if you look into the same 

after this distance r, so you will see there is a repetition in the property as well. 



 

 
 

 Now by applying Bloch's theorem we can focus our attention on the values of k that are 

within the Brillouin zone because from the last lecture we have understood that if we study 

the properties of the Bloch modes within the Brillouin zone or even better if we study it 

within only the irreducible Brillouin zone we will be able to know the entire characteristics 

of the crystal, right.  So, let us now use the level n, n is the band number to level the modes 

in order of the   increasing frequency, okay. So, indexing the modes of the crystal by kz, 

𝑘∥, so  kz you understand, the kz are basically those modes which are lying along the z 

direction.  𝑘∥ will be the modes lying in either x or y that is the parallel plane and you can 

use this level n, right. And when you put them they take the familiar form of the  Bloch 

states. 



 
 

 So, you can write 𝐇(𝑛,𝑘𝑧,𝐤∥)(𝐫) that can be written as  𝑒𝑖𝐤∥⋅𝜌𝑒𝑖𝑘𝑧𝑧𝐮(𝑛,𝑘𝑧,𝐤∥)(𝜌).  So, what is 

𝜌 here? This is basically the projection of r in XY plane. So 𝜌 is basically  the distance, so 

if you take its projection on the xy plane, so r is any vector, okay.  If you take the projection 

of r on the xy plane you will get 𝜌 .   So, u (𝜌)  is basically a periodic function. 

 

 So you  can write u(𝝆) basically equals to u(𝝆 + 𝑹), okay. And that is true for all lattice 

vectors capital R, okay. And as you understand this R is basically any combination of the 

primitive lattice vectors a x cap plus y cap, okay.  And what is 𝑘∥? That is restricted to the 

Brillouin zone, okay because that is  where the periodicity comes into picture. So, we will 

only study for the Brillouin zone. 

 

  However kz is unrestricted. Now any modes with kz equals 0 it means they will not be 

propagating along the z direction, it means they are strictly propagating along the xy plane, 

okay. So, they are invariant under reflections through the xy plane. So, they will not change. 

Invariant means they will be same under reflection, okay. 

 

  So now let us actually look into the TE and TM modes separately. Now transverse electric  

modes, so transverse electric I believe everybody knows what is TE and TM mode. So here 

the  electric field is perpendicular to the propagating direction, okay. So TE modes they 

have H normal  to the plane, okay. So, we can actually take H equals 𝐻(𝜌)𝒛̂, okay. 

 

 And E is in the  plane, okay. So, you can write that 𝐸(𝜌). 𝒛̂ is 0, okay.  And for TM modes 

you just have the reverse of it. So, you can write that E equals transverse  magnetic means 

there is no magnetic field in the propagation direction. So magnetic  field is basically 



transverse. 

 

 So you can write 𝐻(𝜌). 𝒛̂ is 0 and E equals 𝐸(𝜌)𝒛 ̂. So, with that let us consider light that 

propagates in the xy plane of a square array of dielectric with lattice constant a.  Now let 

us take some particular specific example. Say we are talking about this cylinders  made of 

alumina, okay. So, alumina rods are considered what is the permittivity of alumina?  So, 

epsilon equals 8.9. So, this epsilon is basically the relative permittivity. We are  just simply 

using epsilon here, okay. And the radius is normalized to the lattice period  and that is 0.2, 

okay. So, when you take this you can actually plot this particular band diagram. 

 

 
   

Now what are these points? Г, X, M, Г. As you can see here, so this is the square  lattice. 

This is how the rods are placed, okay. And if you think about the blue zone,  it will also be 

of a square shape. But in that you can actually find out that this blue  shaded triangle is 

basically the irreducible Brillouin zone. 

 

 And you can mark the key points  of that irreducible Brillouin zone as gamma X and M, 

okay. And bend diagram is basically  plotted when you traverse through this Brillouin zone 

boundary.  So, you can start with gamma, you move to X, then from X you move to M, 

then from M  you move back to gamma. So, these are the key points gamma x m gamma 

plotted here, okay.  So, after that you will also do the calculation for, these are basically 

the k parallel, okay. 

 

  And this is the frequency which is normalized. So 𝜔a/2𝜋c  is basically normalized  

frequency, okay. So, depending on your size, okay, you can find out what is the exact 



frequency.  Size in the sense, the lattice constant. You can find out what is the exact 

frequency  where the band gap is lying. 

 

 So here the blue bands, they correspond to  TM modes and the red bands correspond to 

TE mode, okay. So, as I mentioned the frequency  axis, this is basically the omega k 

diagram, the dispersion relation. But the omega or  the frequency is basically expressed in 

a dimensionless form which is given as 𝜔a/2𝜋c . And this axis is nothing but the in-plane 

wave vector that is 𝑘∥.  Now as you move from left to right, so 𝑘∥ moves from, you know, 

the triangular edge of the irreducible Brillouin zone. 

 

 So it will move from Г to X to M to Г  as I have already discussed. Now the reason why 

we have plotted k parallel  only along the edge of the Brillouin zone is that the minima and 

the maxima of a given  band that actually determines your band gap, they almost always 

occur in the, you know,  zone edges. So, there is no important information, okay, in the 

middle point of this particular  Brillouin zone, okay, region. So that is why we are always 

going across the periphery instead  of going inside. You can understand that if you start 

calculating all these points inside, okay, this will actually take a 3D shape, okay, and the 

computation time for the band structure will be really really high, okay. 

 

 
  

So, it is very obvious that a square lattice will have a square Brillouin zone as you have 

seen here, okay. But the  irreducible Brillouin zone is basically a triangular wedge which 

is shown here, okay.  And this is coming because of the rotational symmetry. So, you can 

rotate this by 45 degree,  you can get this one and then you can use the reflection symmetry, 

okay, to get this  box and then once you have the upper half you put a mirror here that will 



reflect back  the bottom half and you get the entire Brillouin zone, right. We have discussed 

all this in  the previous lecture. 

 

 Now when we take these three points gamma  X and M they correspond to some particular 

information. What is that information? So  𝚪 is basically telling you it is  𝐤∥ = 0, okay, 

that is the center point,  okay. X corresponds to 𝐤∥ = 𝜋/𝑎𝒙̂, okay. So, and obviously this 

M corresponds to  𝐤∥ = 𝜋/𝑎𝒙̂ + 𝜋/𝑎𝒚  ̂and that is how you can go to this  vector. So, 

these are basically the three important directions or that are marked by these three  

important points. 

 

 Now let us study the electric field and magnetic  field pattern but here particularly we will 

be talking about the displacement field pattern  D, okay, for the TM modes. Now one 

important thing is that here why do you see band gap?  So, if you consider the blue lines 

which correspond to TM modes, so you see that this is the first  band of TM mode and then 

this is the second band of TM mode, the second blue line. So,  there is a gap in between, 

nothing, no other possible TM modes are here. So, this is a TM  band gap and are you able 

to see a TE band gap in this structure? So TE mode, the first  band is here but it crosses the 

band 2 of TE. So, this is red lines, only focus on the  red lines, okay, and you will see that 

they are crossing each other. 

 

 So there is no TE  band gap here, okay. So, this particular structure has only got TM band 

gap.  Now let us study the dielectric field, okay  of the TM modes of the first band  which 

is also called as dielectric band and the second band which is called air band.  Now what 

are these dielectric band and air band? Now if you think of photonic bands above  and 

below the band gap, they can be distinguished by where exactly the energy of that particular  

mode is concentrated. So, energy of the mode can be concentrated in a high dielectric 

region  or a low or say you can say high refractive index region that is in this case the 

dielectric  cylinders or they can be in the air gap that is in the low dielectric region. So that 

is how you know you can actually say that the higher frequency band is called air band and 

lower frequency band is called dielectric band, okay. 



 

 
 

  So, this is band 1, so you can call this as dielectric band. These are the 3 points gamma  

X and M we are showing and this is band 2 for the TM mode, okay. This is also 

corresponding  to gamma X and M points, okay. Now for modes at the gamma point, the 

field pattern is exactly  same in each unit cell, you see there is no difference. The field 

pattern in each unit  cell is exactly same. 

    However, when you move to the X point, okay that is you have moved  from the center 

to the band edge, okay or you can say zone edge.  So, you can see that the fields are 

basically alternating in sign. So, this is the blue one  is negative, this one is red, so it is 

positive, then again blue and the same thing happens  here blue, red, blue, red and so on, 

okay. So, this is happening along you know for the  unit cell along the direction of the wave 

vector K X. So, forming wave fronts which are  parallel to the Y direction. 

    So you can actually see the wave fronts in the Y direction. So,  this is these are basically 

this is X, this is Y and up which is outside the plane of  this screen is basically the Z 

direction. So, you can actually see they are forming some  wave fronts parallel to the Y 

direction, okay. And for the M mode, okay the signs of the  field alternate in each unit cell 

along both X and Y direction. 

 

 So that is where it is  a corner point basically. And the fields in the air band here you can  

see that they are basically a pair of degenerate states. So here you can see you can get 

degenerate  states, degenerate states and so on. So, this is the difference between the 

displacement  field pattern. So, as you can see this we are only plotting the Z component 

here dZ, okay  for the TM modes, okay and at the three different important points we are 

able to see the patterns.  Now although X and M patterns may look like wave fronts of a 



propagating wave but they  are actually not wave fronts, okay. 

 

 In fact these modes at this particular K points they  do not propagate at all. They are 

basically standing waves with zero velocity, okay. So  that is something you should keep 

in mind. Now if you look into the field pattern of  the TE modes which are the red ones, 

okay. So, the TE modes you will see let us look into  the X point first. 

 

 This is the X point and you see we are actually showing it for the  dielectric one, this and 

this. So, this is dielectric band, the first one and this is  the air band, okay. And here you 

can see that the TE modes are basically lying in the X-Y  plane, okay. So, this is the top 

view. You can actually see these circles are basically your cylinders, right.  

 

 
 

 So, you are actually looking from the top. So TE modes are in the  X-Y plane and the 

columns positions are indicated by this dashed green outlines and the color  that you see 

red and blue they are basically the amplitude of the magnetic field strength.  So here for 

TE mode we are plotting HZ whereas for TM modes we plotted DZ, okay. Now since  D 

is largest along nodal planes of H the white regions are where the displacement  energy is 

basically concentrated. So, this is where the displacement energies will be  concentrated, 

fine. So, we understood that a square lattice of dielectric column can  give us TM band gap 

but not TE band gap. 

      

     But we understood how the modes look like and what are the important points like 

gamma, X, M in those cases.  Now let us look into another example which is a square 



lattice of dielectric vanes. So,  let us show the figure. This is like a grid, okay. 

    

 You can see mesh grid or something like this. So, this is basically dielectric vane, okay. 

So here what is happening we have considered the thickness of the vanes to be 0.165a and 

the permittivity is taken to be 8.9. And once you do that, okay, you can actually plot the 

same dispersion relation with normalized frequency and K, okay. 

 

 
 

 And you see the blue lines are corresponding to TM modes, the red lines are corresponding 

to TE modes. So, what you see in this case that, yeah, so first  of all this is again the 

irreducible Brillouin zone. So, if this is again a square lattice.  So, for square lattice you 

will find a square Brillouin zone. From that you can find a triangular  irreducible Brillouin 

zone which is marked in light blue, okay. 

 

  And then if you think of this structure, this structure is basically complementary to the  

square lattice of dielectric constant because this is a connected structure. In the previous  

case it was a disconnected structure. All the points dielectric rods were disconnected.  Here 

all the, you know, dielectric materials are connected. 

 

 So this is like a complementary  structure. So here the high permittivity regions they form 

a continuous path in the XY plane  instead of the discrete spots. That was happening, the 

reverse happened in the previous structure.  Now if you look into the band diagram here 

what you see TM modes, there is a band gap,  yeah, and TE mode also here you are able to 

see a band gap. But the band gap is not at  the same frequency for both TE and TM mode. 

So here you see one more time this is the  blue line is the TM mode 1, band 1, this is band 



2. 

 

 You see the band gap is around  a very narrow band gap. More or less there is no, if you 

draw a line here you will be  able to possibly see that there is no, yeah, there is no particular 

band gap, yeah. So,  you can say that, you know, the TM band gap is not here but you are 

able to see, so I  will actually remove this lines. But you are able to see if you look into the 

red ones  you are able to find a good amount of band gap. You see here the red ones, yeah, 

this  much and you can draw, okay, I am drawing it badly, yeah, this much is the band gap  

for TE modes. So, this particular structure can give you TE band gap and the previous  

structure could give you TM band gap, okay, keep this in mind. 

 

  So now let us do the, let us look into the electric field or displacement field pattern  in this 

case. So, looking at the TM field patterns in the first two bands, so first band is called  

dielectric band, second band is called the air band. We see that both modes are mainly  

concentrated within the high permittivity region, that is within those vanes, okay,  and that 

is what is clearly seen here, okay, and that makes sense also. And the field of  the dielectric 

band are confined to the dielectric crosses and the vertical vanes, whereas the  field in the 

air band here, they are concentrated mostly on the horizontal ones, not on the  vertical ones, 

okay, only. So here you see along the vertical vanes you have less field concentration 

whereas the field concentration is very strong along the horizontal ones, okay. 

 

 
 So, these are basically the vanes connecting the square lattice sites.  The consecutive 

modes both manage to concentrate in high permittivity region thanks to the  arrangement 

of the dielectric vanes. So, there is no large jump in frequency. So, they are  all connected 

by these vanes. So, there is no discrete jump and that is why you do not  see a band gap in 



this particular case of TM, the blue ones. But if you look into the  T band structure, they 

have a photonic band gap between the first band and the second  band, that is dielectric 

band and air band. 

 

 And in this case we will be plotting a jet  like before. The continuous field lines of the 

transverse electric fields can extend  to neighboring lattice sites without ever leaving the 

high permittivity region. So, you  can see that from the high permittivity region they are 

able to extend to the next lattice  site. The vanes provide high permittivity roads for the 

fields to travel and for n equals  1 the field almost stays entirely on them. So, this is what 

we are able to see here.  And since D field will be the largest for the nodal cases that is the 

white region,  the D field of the lowest band is strongly localized in the vertical dielectric 

vanes. 

 
   

So that you can also see from here. And the D field in the next T band for this one is  forced 

to have the node passing through the vertical high permittivity region. So, this  will be the 

vertical high permittivity region to make orthogonal to the previous band. So,  this is how 

you will get a band gap in these cases.  So, I hope it is clear that this kind of structures 

allow you to have very good TM band gap sorry  this one will have TE band gap but not 

TM band gap. But ideally what is required when  you look for band gaps you basically 

want band gap a complete band gap for all polarizations. 

 

  Now a complete band gap means for both TE and TM you are able to overlap the band 

gaps.  So irrespective of the polarization of the light, light should not be allowed to enter  

the crystal it should be completely reflected and that is what will be a complete band gap.  

Now in the previous two cases we have seen the field patterns as our guide to understand  



which aspect of the two dimensional photonic crystal leads to TM and TE band gaps. Now  

by combining our observation we are now in a position to design photonic crystals that  can 

give us band gap for both polarizations. 

 
  

So, this is one such structure okay. So, if  you think of a two dimensional photonic crystal 

of air columns so you are basically having  a hexagonal array or triangular array of air holes 

okay. So, in this particular system let  us consider the radius of the holes to be r and they 

are having dielectric constant  of 1 right. And this particularly shows you the triangular 

lattice or you can say hexagonal  lattice okay. And this is the unit cell or you can take this 

one as a unit cell okay  whichever way. 

 

 So you can call the lattice constant to be A. Now by adjusting the dimensions  of this 

particular lattice we can arrange the two band gaps of TE and TM modes to overlap  and 

that will give us complete overlap for all polarizations. So that is how it works.  Now what 

are the ideas here? The idea is to put a triangular lattice of low permittivity  columns inside 

a medium of high permittivity. So how does it help? So, you will see that  this particular 

connectors of the material they work as the veins okay. So, if the radius of the column is 

large enough that the spot between the columns look like localized regions of high 

permittivity material which are connected through narrow squeeze between the columns to 

the adjacent spots. 



 

 
 

 So, you have to make sure these spots are very narrow okay. And  how does it help? This 

will actually allow you to get the spots and veins of a triangular  lattice. So once again 

between the columns are the narrow veins. So, between two columns  you will see there is 

a narrow vein okay and connecting the spots surrounded by three columns  okay. So, when 

you have three columns this one is called a spot. So, you have to kind  of you know play 

with the size of the spot and vein to match your band gap of the two  polarizations. 

 

 So here is an example. So, this is a particular high symmetry 2D photonic  crystal you can 

say where you took a dielectric substrate of permittivity 13 and you have  drilled a 

triangular array of air holes okay. And if you can see that this particular structure  will have 

a hexagonal Brillouin zone and this particular triangular one marked with gamma  K and 

M this is basically the irreducible Brillouin zone. So once again if you want  to draw the 

dispersion relation you will have this normalized frequency on the Y axis  and along the X 

axis you have the wave factor. So, what are the important points? You will  start with 

gamma, gamma to M, M to K and back to gamma. 

 

 So gamma, M, K, gamma and so on.  So, once you do the calculation you will see that you 

know you get band gap for TE and  TM modes to overlap. So here you will see this is 

basically the TM band gap yeah. So,  it is not from the first band from the second band to 

third band you have a band gap okay.  Whereas for TE the red colors okay you see there is 

a band from here to here. So, the TE mode band gap is much wider whereas the TM mode 

band gap is not that wider because this is the valley and this is the peak. 



 

 
 

 So, this is the minimum one. So, if you take the  minimum of both TE and TM band gap 

so this is the photonic band gap for both polarization  that you can get from this particular 

crystal. So, these are the values which are considered here r/a was taken as 0.48, the 

material substrate material was taken to be 13 okay and it gave you 18.6% overall you 

know band gap or you can say complete photonic band gap. 

 

 
 



 Now let us look into localization of light by point defects in a photonic crystal.  So, I hope 

it is understood that this is the concept of complete band gap where  light from any 

polarization any direction will not be allowed to enter the crystal.  If you remove a single 

column from the crystal or replace it by another size shape or dielectric  constant then the 

original that is how you will be able to ah perturb that particular  site and that will ruin the 

translational symmetry of the lattice. And perturbing one  column in the bulk of the crystal 

which is like this one this is called point defect  whereas if you perturb the entire line that 

is called line defect okay. So as mentioned  here the perturbing one row in the bulk of the 

crystal or truncating the crystal at a  surface so here that is also possible you truncate it so 

these are basically line defects  whereas only one point if you change the material or change 

the size of the hole or the array  or the in this case it is a dielectric rod. So, if you change 

the rod material or the dimension that will introduce a point defect in your crystal. 

 

 
 

Now why these things are important because perturbing a single lattice site causes a defect 

along the line okay in the z direction.  But because we are considering propagation only in 

the plane of periodicity the perturbation  is localized at a particular point in the plane here 

okay and that is why this perturbation  is called as point defect. Now removing one column 

may introduce a peak into the crystals  density of states within the photonic band gap. If 

this happens then the defect induced  state must be evanescent. So, the defect mode cannot 

penetrate into the rest of the crystal  since it has got a frequency in the band gap. 

 

 So you can actually make it like a cavity  so if you are able to have some kind of modes 

kept there that will not be able to leak into  any of this surrounding crystal. So, any defect 

mode decay exponentially away from this defect  they are localized in the XY plane but 



they are allowed to extend in the z direction only  okay. So, we will reiterate the simple 

explanation for localizing power of the defects. The photonic  crystal because of the band 

gap can reflect light from certain frequency and if you use  point defect you are able to 

localize you know power at a particular point inside the  photonic crystal okay. So, if you 

just think of this particular crystal if you remove this rod from the lattice you are able to 

create a cavity okay and this cavity is now surrounded by all reflecting walls because 

whatever is the frequency that you want to of the mode that you want to be stored here 

okay that is not allowed to enter this crystal.  

 

 
 

     So, it is like a reflecting wall all around okay. So, if the cavity has proper size to support  

a mode in the band gap the light cannot escape and we can pin the mode to that particular 

defect.  So, it means we can use this point defects in photonic crystal to trap light this is 

light  trapping okay and if you if you introduce line defect using line defect you are also 

allowed  to guide light like this light will be allowed to propagate only along this particular 

defect  but then this frequency of light is not supported in the band gap it means you have 

to choose those  frequencies carefully so that they are in the band gap of that photonic 

crystal. So, light cannot  leak into the photonic crystal so it will be guided. So whatever 

shape you make for your wave  guide by introducing the line defect here it is like a line 

you can make it any curved shape okay  light will actually follow that particular shape 

because it has got no option it cannot leak out  into the photonic crystal because the 

frequency of that mode lies within the band gap of that  crystal okay. So, the basic idea is 

to curve a waveguide out of an otherwise perfect photonic crystal by modifying a linear 

sequence of unit cell as I have just discussed. 



 
     

  So, light that propagates in the waveguide with the frequency within the band gap of the 

crystal is confined to the defect and it can be directed along the defect so you can actually 

make any kind of waveguide bands using this particular concept okay. Now with that we 

somewhat concluded the  discussion on 2D photonic crystals now let us move on to the 3D 

photonic crystals. So here the  periodic alteration of the dielectric happens in all three 

dimension okay. So, the optical  analog to an ordinary crystal is basically a three-

dimensional photonic crystal right. 

 
 



  So, you can actually think of a lattice of air spheres within a dielectric medium okay. So, 

if  you make a lattice of air sphere means holes so if you have a hole in a 3D object in a 

periodic  pattern so this will be the band gap that looks like. So, what was the material? 

The material was  having permittivity of 13 and then you have prepared a 3D photonic 

crystal by introducing  a diamond lattice of air spheres in this material and you will see this 

is how beautiful  big photonic band gap you are able to obtain. Now to maximize the size 

of the band gap the sphere radius r was chosen to be 0.325a where a is basically the lattice 

constant. So how this happened you have to optimize your design and see in which case 

you get the largest band gap okay. 

 

 
 

  So, and one more thing you can see this band gap is between 1, 2 no it is between 2 and 

3 okay. So,  this is how you know sometimes you may not have a band gap between the 

first two bands but you  will be able to get the bands between band gap between band 2 

and 3 okay. Now as I mentioned  this is the FCC lattice so you can actually see this is the 

Brillouin zone which we discussed  in the previous lecture and this area is the irreducible 

Brillouin zone. So here the important  points are basically K, L, U, W and X. So, if you 

start from X okay and you go to U then you go to  L then you go to gamma then back to 

X, W, K you kind of traverse all the points. So that is the  whole idea of traversing through 

all the points of the irreducible Brillouin zone so that will  give you the band diagram okay. 

 

 Now let me show you the first ever laboratory realization of a 3D  photonic crystal. So, it 

was basically a dielectric media that has been drilled along the three lattice  vectors of the 

FCC lattice. So, this is how different way it was drilled. So, you  have to understand that it 



has to be material air not only in one direction along X, Y and Z okay.  So, this was done 

for FCC lattice and this was the first demonstration done by Yablonovite in 1991  after he 

discovered that photonic band gap was indeed possible and this particular crystal  was 

named after him Yablonovite, and he did the experiments in microwave domain to show 

that  there is band gap possible okay. So, like the diamond lattice of air spheres we can 

think of Yablonovite as two interpenetrating diamond like lattices one of which is 

connected region of dielectric and another one is a connected air region and those two 

regions are mixed and that is how you are able to get this particular crystal. 

 

 
  

So, this is how it was the drilling was very complicated to make this kind of a crystal. So, 

this is the method for constructing  Yablonovite. A slab of dielectric is covered by a mask 

okay consisting of triangular array of holes.  Each hole is drilled three times okay right at 

the angle of 35.26 degree away from the normal  and spread out at 120 degree on the 

azimuth and that is how the drilling was done and you will  be able to get FCC face centered 

cubic kind of crystal arrangement and that is repeating  everywhere. So, it is not very simple 

to imagine it is a very pretty complicated structure but  this gave a very very good band 

gap as you can see over here right. 



 
 

 So, drilling holes so what was the size the radius was taken as 0.234a and that could give 

you a photonic band gap of around 19% okay. Now the photonic band structure for the 

lowest bands of Yablonovite okay and the  wave vectors are shown here they are basically 

for the portion of the irreducible brilliant zone  right. So, we have already discussed this 

okay. So other structure was woodpile structure this is structure which is slightly easier to 

make this is like you know you have logs in this and then this and then this. 

 

So, this is how you know woodpile because this is how wooden logs are piled okay they 

are kept. So, this kind of structure as you can see so that is far less complicated than  the 

Evlonovite structure. So here the logs are made of the dielectric material with permittivity  

13 and they are kept in air. So, when you do that you actually get this kind of a photonic 

band gap.  Now what is the main advantage of woodpile is that woodpile can be fabricated 

as a sequence  of layers deposited and patterned by lithographic techniques which are 

developed for semiconductor  electronics industry. So that way this kind of fabrication of 

this kind of photonic band  gap crystals are much easier and they can be commercially done 

okay. 



 
 The only thing is the  irreducible brilliant zone is larger than that of the FCC lattice. So, 

we have to now look for a  wider band here not band like directions okay because the 

irreducible brilliant zone size is  larger. So, in that case what will happen you will require 

more time to compute all these points and  come up with this band diagram okay. And this 

is the other one this is basically a stack of two  dimensional crystals. So, if you take two-

dimension crystal one is this kind of rod layer so you just have layer of rods okay which 

are placed in a triangular lattice okay. 

 

 
 



 So, this rods are made of high dielectric and they are in air so this is one and another one 

is a whole layer like this.  So, it is a triangular lattice of cylindrical holes in a high dielectric 

substrate. So, you  are just drilling holes in a triangular lattice or hexagonal array whichever 

way you want to call it  and then you mix them together you blend them together. So, once 

you do that okay you will for  a dielectric contrast of 12:1 okay so if you take the material 

in this case the dielectric rod  material permittivity to be 12 and surrounding is air in this 

case the holes are air permittivity  is 1 and the other material is 12. 

 

 So if you take that case you are able to get 21% complete band  gap. So, this is also another 

structure that is possible. So once again complete band gap means  for both TE and TM 

polarization you should get the same band gap okay. So, with that we will stop the  

discussion about 2D and 3D photonic crystals in the next lecture we will look into some 

emerging  applications of photonic crystals and if you have got any query regarding this 

lecture you  can drop me an email to this particular email address mentioning MOOC on 

the subject line.  Thank you. 


