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Hello students, welcome to lecture 12 of the online course on  Nanophotonics, Plasmonics 

and Metamaterials. In this lecture we will be covering dispersion relation and photonic 

band structure.  So, here is the lecture outline. So, we will introduce the eigenvalue problem 

on   dispersion relation and bloch modes. And we will discuss the matrix optics approach  

for solving you know eigenvalue problem and obtaining the bloch modes. We will also see 

how to obtain the dispersion relation calculating photonic band structure and obtaining 

phase and group velocities. 

 

 
  

So, eigenvalue problem and dispersion relation.  If you remember from the previous lecture 

that till now we have established the  mathematical form of the bloch modes as imposed 

by the translational symmetry of  the periodic medium. So, we were considering periodic 



medium where the refractive  index periodically alters and these are the bloch modes, ok. 

And this is the typical 1D periodic medium we have discussed in the previous lecture. 

  We have also seen that you know for this 1D periodic medium we are able to find  

dispersion relation. Dispersion relation in brief we can say it is basically  omega k relation 

and in this particular case we were also able to see that certain you know frequencies were 

not allowed to propagate. So, those actually gave you band gap 1, band gap 2 and so on. 

So, our objective here is to know how do we go to this particular dispersion relation starting 

from a 1D periodic medium.  So, our objective here would be to solve the eigenvalue 

problem described by the generalized Helmholtz equation for this 1D periodic system. 

 

 

So, for this there are two approaches one is Fourier optics another is matrix optics.  So, the 

first approach let us have a quick look that is called Fourier optics. Now this approach is 

based on expanding the periodic function say eta of z of the  medium, ok or you can say 

𝜼(𝐳) eta is the impedance or you can also talk in terms of refractive index, ok. And the 

periodic function  𝒑𝑲(𝐳) of the bloch mode.  So, you have to expand this in Fourier series, 

ok. 



 

  And then you convert the Helmholtz differential equation into a set of algebraic equation 

cast in the form of matrix eigenvalue problem and this you have to solve numerically.  So, 

that's what is known as the Fourier optics method.  The other method is called matrix optics.  

So, in this case this particular method is applicable to layered which are basically piecewise 

homogeneous like the previous example you have taken periodic alteration of refractive 

index a dielectric 1 2 1 2 1 2 and so on, ok.  And if you have those kind of layered media 

with planar boundaries you are able  to use matrix optics method. 

 Now, in this particular method instead of solving the Helmholtz equation we make direct 

use of the laws of propagation reflection and refraction that is more or less you know the 

transfer matrix formulation that you have studied couple of lectures back. So, you can use 

those you know laws of propagation, reflection, refraction at the boundaries, ok, which are 

basically the known  of the Maxwell's equation. And then you can use the matrix methods 

developed for  multilayer media, right. So, when you apply matrix optics method finally,   

you will get a 2 by 2 matrix eigenvalue problem from which you can obtain  the dispersion 

relation and the bloch modes. So, we will be mainly covering this particular matrix optics 

approach in this lecture and this course of course. 

 

  So, let's look into matrix optics approach. The complex amplitude of the forward and 

backward waves through the boundaries of  multilayered medium is facilitated by the use 

of matrix method something like this. So, here you can take an example of multilayered 

media, medium 1 2 3 4 and so on. So, just to make you understand how complex the system 

could be. So, you start with one particular wave that is partially getting reflected, some part  

is getting refracted or transmitted. 

 



 Now this light when it is in this particular medium, when it hits this particular interface  

between this medium and this medium, some part of this light is getting  partially reflected, 

remaining is getting transmitted. And again, this transmitted light when it encounters this 

particular interface, some  part is getting reflected back, some is getting transmitted.  Now 

what happens to this reflection? This basically a backward propagating light or wave. So, 

here again at this interface it has got two options, one is to transmit, one is to reflect and so 

on.  So, this is how things happen now in a multilayered medium. 

 

 So, you start with the single wave, but because of these boundaries you end up with getting  

you know numerous transmitted and reflected light beams.  Now in part b this particular 

figure what is shown is that in each layer the forward  moving waves can be named as plus, 

ok.  And backward ones can be denoted using this minus symbol.  So, when you are in say 

medium 1 you can say that it has got a you know all the  forward moving waves can be 

summed up together that can be called as  𝑼1
(+)

 and all the backward propagating waves 

means all these reflections they can be  summed up together or collected together and you 

can call them as  𝑼1
(−)

.  Same in layer 2 you can have 𝑼2
(+)

and  𝑼2
(−)

. 

 

 
  

Here you can have this is the incident medium and this is the final transmitted medium. So, 

we are just these are the two you know layers that actually form this multilayered  system 

in this case. Now there is a way this 𝑼1
(+)

and  𝑼1
(−)

 are kind of  correlated. So, the 

amplitudes of this forward and backward collected waves they can be represented using a 

column matrix.  So, if you actually consider this particular layer by a matrix M. 



 

 So, what you see here  is that there is incoming wave, there is a backward propagating 

wave and there is  a forward and again backward propagating wave. So, you can actually 

represent this interface using this matrix M. So, this is the column matrix. So,  let's correlate 

the coefficients. So, you can have on the right side you have 𝑼2
(+)

,  𝑼2
(−)

 and this M matrix 

can have four elements A B C D that are correlating  this amplitude to the amplitudes on 

the left hand side that is  𝑼1
(+)

and  𝑼1
(−)

. 

 

  So, the matrix M whose elements are A B C D this is called the wave transfer matrix  and 

it depends between depends on the optical properties of the layered medium  between the 

two planes. Now, how do you apply this for a periodic media? So,   in a periodic media 

you can actually see that this a unit cell is basically repeated right. So, if you have two 

alternating dielectric material say one is having high and another is having relatively low 

refractive index. So, the periodic media will be something like  high low high low high low 

and so on. So, you can actually represent each unit cell using one matrix and then you can 

repeat it like this ok. 

 

  So, this is the wave transfer matrix representation of a periodic medium right.  So, you 

can see that you know the periodicity is basically capital lambda.  So, here you can say this 

is m lambda and this is m plus 1 lambda.  What will be this one?  This is m minus 1 lambda 

like from here to here it is the period ok.  That is given by capital lambda. 

 

  So, between one period to the other there is a matrix that is correlating the parameters  of 

𝑼𝑚
(+)

, 𝑼m
(−)

 to 𝑼𝑚+1
(+)

and  𝑼m−1
(−)

. So, you are basically correlating the forward propagating 

waves and the backward propagating waves.  So, as you can see here a 1D periodic medium 

comprises of this identical segments like M O ok. They are called unit cells. They are 

repeated along one direction in this case we have considered Z is the direction of periodicity 

ok and they are separated by period capital lambda. 



 
 

  And unit cells contain repetition of lossless dielectric layers or you can say these are 

partially reflective mirrors. Why they are called partially reflective mirrors?  If you 

remember that any interface wherever there is a difference between the refractive indices 

ok there will be light reflection.  This can also be now discussed in terms of impedance 

mismatch.  So, if you take the impedance of the two different layers across the interface 

you will  see that there is some difference in the or there is a mismatch in the impedance 

and  that is why you will get some reflection of the incident wave from that interface.  Now 

forming a symmetric system generated by a generic wave transfer matrix. 



 

 
  

 So, you can actually make a generic wave transfer matrix which looks like this.  What are 

the elements here?  1 by t conjugate, r over t, r conjugate over t conjugate and 1 over t.  So, 

this is how you are able to write a generic wave transfer matrix where r and t are basically 

the reflectance and transmittance. This you have already seen from the Fresnel equation 

you know what is reflectance and transmittance. So, if you want  to calculate what is or 

you can this these are basically amplitude transmittance. 

 

  So, small t can be called as transmission coefficient or you can call them as amplitude  

transmittance, small r can be called as reflection coefficient or amplitude reflectance.  So, 

correspondingly you can find out what is the intensity transmittance and intensity  

reflectance. So, this is how you can calculate ok. t equals modulus t square, r equals 

modulus small r square. So, the electromagnetic wave traveling through the medium they 

will undergo numerous transmissions and reflections that we have seen in the previous 

slide and that will actually give you one  particular you know forward and one particular 

backward moving wave at each plane ok. 

 

 And the transfer matrix this particular matrix method not transfer matrix this is called  

matrix optics method this can be used to determine the block modes.  So, let's assume 𝑼𝒎
(±)

  

as the complex amplitudes. So, plus 1 correspond  to the forward and minus corresponds 

to the backward wave at any initial  position z equals m lambda. So, here this particular 

one.  So, what is m?  m is the number of the unit cell ok. 



 

 
 

 So, the amplitudes elsewhere within the cell can be determined by a straight forward 

application of the appropriate wave transfer matrices as discussed in the previous lecture. 

So, we have seen this already that you know if you know at one position you can add that 

phase and you can get the amplitude at any other location.  Now the dynamics of the 

amplitude varies from one cell to another which is  described by the recurrence 

relation.That means the amplitude 𝑼m
(+)

  and  𝑼m
(−)

   they will vary from one cell to another, 

but in a repeated pattern.  So, what is the pattern? That is kind of like this. 



 

 
 

  So, this is the initial amplitude and you multiply it by this particular unit cell matrix that 

is M0, you will get the next set of amplitude of the forward and backward moving wave. 

So, this relations are used to compute the complex amplitude at any  particular cell if the 

amplitude of the previous cell are known. Make sense? These are the amplitude of the 

previous cell, this is the cell matrix.  So, when you multiply this you get the amplitude of 

the current cell.  Now let us see how do you obtain eigenvalue problem and block modes 

from this. 

 



  So, by definition the modes of the periodic medium are self reproducing and  why so 

because they actually maintain a particular phase relation.  So, you can say that if you take 

the amplitude of the forward and backward moving waves for mth cell where m is 1 or 2 

or 3 or so …. anything. In that case if you multiply this by e to the power minus j phi that 

is the amount of phase accumulated while crossing this unit cell you can actually get the 

amplitude  of the forward and backward propagating waves of the next unit cell ok.  So, 

here what is important that you know this phi is basically the phase accumulated  over the 

distance of the period and the period is nothing, but capital lambda. 

So, there is a name to this phase. So, this phase are basically altered by a common shift phi 

and this phi is called as block phase ok.  So, there is a corresponding block wave number 

which is defined as K capital K  that is given by phi over capital lambda. So, obviously 

what is that then phi  which is block phase phi turns out to be K capital lambda ok. So, this 

is nothing, but block phase. So, finding the complex amplitudes  that is Um plus minus and 

the phase phi which is defined  as K capital lambda from the following equation which 

satisfy the self reproduction condition can be cast as an eigenvalue problem. 

 
 

 So, let us see how it looks like.  So, if you take this particular problem where you know 

you already seen this equation that this is the phase relationship between the amplitude of 

the next cell and  the previous cell and here if you put m equals 0 you get 𝑼0
(+)

,  𝑼0
(−)

 ok 

and  what you will have here basically 𝑼1
(+)

and 𝑼1
(−)

 right and 𝑼1
(+)

and 𝑼1
(−)

 you can go 

back and from here you can get that  𝑼1
(+)

and 𝑼1
(−)

 can be written as M0 𝑼0
(+)

and  𝑼0
(−)

 

right. So, if you bring this equation here.  So, on the left hand side you get M0 𝑼0
(+)

,  𝑼0
(−)

 



is equal to 𝑒−𝑗Φ  [
𝑈0

(+)

𝑈0
(−)

] .  So, this is an eigenvalue problem of this 2 by 2-unit cell matrix 

M0 right.  So, here if you look into this particular equation this is your eigenvalue. 

 
 

  So, the factor e to the power minus J phi is the eigenvalue ok and the vector with 

components  𝑼0
(+)

and  𝑼0
(−)

 are basically the eigenvector right.  So, how do you obtain the 

eigenvalues? The eigenvalues are basically obtained by equating the determinant of the 

matrix that  is 𝐌𝑜 − 𝑒−𝑗Φ times identity matrix (𝐈).  If you take this determinant and equate 

it to 0 you will get the values at which  you will get those solutions are basically the 

eigenvalues ok.  Now we already know that you know the reflect these are non-absorbing 

material.  So, amplitude of transmission amplitude transmission coefficient square plus  

you know square of the amplitude reflection coefficient square is equal to 1. 

 

 In that case you can actually find out the values which is e to the power minus J phi  ok 

can be given as this quantity. So, you have this transmission coefficient also its conjugate 

and this is the value that you obtain. And from this  you can write that you know if you 

separate it out to the real and imaginary part on  both sides you can find that cos Φ can be 

written as real of 1 over the amplitude transmission coefficient. So, real of 1 over t. 

 

So, keep this equation in mind.  So, now let us try to obtain what is the dispersion 

relationship.  Always remember dispersion relationship is basically the relationship 

between the  bloch wave number K and the angular frequency omega that is  we are looking 

for omega k relationship ok.  So, the previous equation that you have seen this one this 



equation.  So, this equation provides the eigenvalues which is exponential minus J phi of 

the  unit cell matrix. And this is basically the progenerator or the source of the  dispersion 

relation for the 1D periodic medium. 

 
 

 So, how it works?  So, we already know that phi that is the phase can be given as capital 

K that is the bloch wave number times the period.  So, phi phase is basically proportional 

to K ok and t the transmission is also associated with frequency at different different 

wavelength of frequency will have different transmission. So, t can be written as t omega 

right.  So, these two are related through the phase delay associated with the  propagation 

through the unit cell.  So, you can actually write that you know cos (2𝜋
𝐾

𝑔
) Φ is nothing 

but  Re {
1

𝑡(𝜔)
}  which is a function of omega. 

 So, this one directly correlates your K and omega and hence it can be named as dispersion 

relation.  Now, the question arises what is g here?  g is basically the fundamental spatial 

frequency of the periodic medium.  So, what is the period? Period is capital lambda.  So, g 

will be  
2𝜋

Λ
  right.  So, this particular function that you see here on the left side 

cos (2𝜋
𝐾

𝑔
)   𝑖s  nothing but a periodic function of this K which has got a period of g ok. 

 

  So, g is nothing, but  
2𝜋

Λ
  and this gives multiple solutions for  you know this equation for 

any given omega ok.  And that is how you are able to obtain that dispersion relation which 

is typically  shown in as in the photonic band diagram.  Now, but the solutions separated 

by the period g they are not independent.  They basically lead to identical block modes.  



So, the domain of the dispersion relation is typically limited with the values of  K ranging 

from interval of [−𝑔/2, 𝑔/2] . 

 

  That means, it is basically ranging from [−𝜋/Λ, 𝜋/Λ]  which is nothing, but the Brillouin 

zone.  So, that is where the concept of Brillouin zone comes on.  And that allows your 

phase ok phi to be limited to an interval of minus pi to pi.  So, once you know the phase 

variation from minus pi to pi you are basically covering the entire 2 pi right. 

 

 
  

So, after that it is just a repetition.  So, there is no point computing those ok. So, this range 

this interval  can give you the interval of phase starting from minus pi to pi.  Also, we need 

to keep in mind that this cos function is an even function of K. So, for each value of omega 

there are 2 possible values of K ok 2 independent values and they could be equal in 

magnitude, but opposite in sign within the same Brillouin zone ok or within the Brillouin 

zone. So, Brillouin zone is from minus pi to pi in terms of phase or you can say it is  from 

−𝑔/2  to 𝑔/2   in terms of K. 

 

 So, this actually gives us that  they are independent bloch waves. So, one solution is for  

you know forward propagating wave another solution is for the backward waves. So, 

dispersion relation gives you the photonic band structure. So, dispersion relation will also 

tell you the multiple spectral bands which can be  typically classified into 2 regions or 2 

regimes. 

 

So, one is propagation regime.  So, spectral band within which capital K that is the block 



wave number is real those are the propagating modes.  So, in those cases the real part of 1 

over t which is a function of omega ok that is less than 1 and these bands can be numbered 

as 1, 2 and so on starting from the lowest, make sense. And there could be other cases 

where in some spectral  bands this K is complex. That means, they correspond to 

evanescent waves ok.  It means these waves will get rapidly attenuated and they cannot 

propagate within that periodic medium. 

 
 

 So, in this case if you see they will give you ignore this particular sign it's only modulus 

of real 1 over t and that will come out to be greater than 1.  And these bands behave as stop 

bands of that diffraction grating.  So, they are also called as photonic band gap PVG or 

forbidden band gap  since no existing propagation mode are possible in this particular case. 

So, now let us look into the calculation of photonic band structure by taking  an example 

of periodic stack of partially reflective mirrors.  So, here is a stack of periodic stack you 

should say or partially reflective mirror  and the wave travelling along the axis of the 

periodic stack is in the direction of z. 



 
  What is the period here?  Capital lambda.  Now, let us see how we actually characterize 

this.  So, the dispersion relation for a wave travelling along the axis of the periodic stack 

of identical that is very important identical partially reflective lossless  mirrors which are 

separated by capital lambda.  So, in this case the power reflectance is modulus of r square 

and intensity  transmittance is nothing but what is not reflected is getting transmitted 

because  these are non absorbing case. So, you can say modulus of t square that is 

transmittance is nothing, but 1 minus modulus of small r square. Now, let us use the matrix 

optics approach to derive explicit expression for elements of the scattering matrix of the 

composite system in terms of the elements of the scattering matrix of the constituent system 

that is we will take the elements of the unit cell and we will try to get the matrix elements 

for the overall system. 

  So, the matrix M whose elements are say A B C D you can call them as wave transfer 

matrix which we have seen in this particular equation. So, they depend  on the optical 

properties of the layered media between the 2 planes, right.  So, we have already seen this 

particular case that you can obtain those equations  or those elements from Fresnel 

reflection coefficients. An alternative to the wave transfer matrix that relates the 4 complex 

amplitude of the  at the 2 edges of layered medium is a scattering matrix S matrix.  So, you 

can also have S matrix and S matrix are more popularly used in describing transmission 

lines microwave circuits and scattering systems ok. 



 

 
 

  So, in this case the outgoing waves are basically expressed in terms of incoming waves 

something like this. So, S matrix is used to  describe transmission lines microwave circuits 

and scattering systems.  So, in this case the outgoing waves are basically expressed in terms 

of the  incoming waves. So, here is a schematic representation of S matrix.  So, you see 

that you have the incoming wave 𝑼1
(+)

 and you have one outgoing  wave that is 𝑼1
(+)

 . 

 

 Now in this case this is a reflection, but you are actually  trying to represent it in terms of 

outgoing wave because the reflection is also outgoing.  So, you put it on the right side. So, 

you call it as  𝑼1
(−)

 and  the reflection from the other side becomes kind of incoming wave.  

So, you can actually take that  𝑼1
(−)

 as a incoming one.  So, in that case you can simply see 

that what are the 2 outgoing waves from  this particular system that is 𝑼2
(+)

and 𝑼1
(−)

. 

 

 So, 𝑼2
(+)

and  𝑼1
(−)

  are the outgoing and what are the incoming 𝑼1
(+)

and 𝑼2
(−)

.  So, 𝑼1
(+)

and 

𝑼2
(−)

 and you are trying to correlate this outgoing set of  waves with the incoming set of 

waves. So, what are the coefficients? So, 𝑼2
(+)

 as you know  𝑼2
(+)

 will be nothing, but 𝑼1
(+)

 

times the transmission  that is t12. So, t12 times  𝑼1
(+)

 also it will have another component 

coming   from this one. So, whatever is this wave whatever is getting reflected that will 

also contribute to 𝑼2
(+)

. 

 

  So, you can have this is 2 this is 1. So, you can this reflection coefficient will be called 



r21. So, you will have r21 times  𝑼2
(−)

 . Is it clear?  So, you will have 𝑼2
(+)

 that is given as 

t12 times 𝑼1
(+)

. So, t12 times  𝑼1
(+)

 this one. So, there is also one contribution coming from 

this  one some part of it will get reflected and add up to this outgoing wave. 

 

  That will be r21 times 𝑼2
(−)

. The other one also you can easily make it.  So, this one 𝑼1
(−)

  

is nothing, but r12 𝑼1
(+)

.  So, whatever is incidenting some part is getting reflected.  So, that 

reflection is this one r12 𝑼1
(+)

 and then whatever you are putting here  some part is getting 

transmitted and that also comes back as 𝑼1
(−)

.  So, that is t 21 times 𝑼2
(−)

.  So, this equation 

𝑼1
(−)

 is nothing, but r12 𝑼1
(+)

 plus t21 𝑼2
(−)

. 

  Clear? So, unlike the wave transfer matrix this elements here in scattering matrix  they 

have direct physical significance.  Something like you know if you take r12 and r21 they are 

basically the forward amplitude transmittance and reflection. That is, they are basically the 

transmittance  and reflection coefficient of the wave incident from the left side. On the 

other hand if you see t21 and t1 t 21 and r 21 they are basically amplitude  transmittance and 

reflectance in the backward direction that is for wave  that is coming from the right side.So, 

it is easy to  you know correlate physically what is happening in the case of S matrix. 

             Now, for a homogeneous layer of width d.  So, this interface we have seen that 

what happens with the incoming and outgoing  incoming and outgoing or you can say what 

is falling getting reflected and so on.  So, for a homogeneous layer of width d and refractive 

index n that is shown here  the complex amplitudes of the collected waves at the planes 

indicated by the arrow.  So, if you are looking about the complex amplitude at this 

particular planes.  So, you can call this as U1 ok. So, this is U1 forward one will be 𝑼1
(+)

 

backward  one will be 𝑼1
(−)

.  this will be U2 ok, the amplitudes here will be U2 the forward  

one will be 𝑼2
(+)

  and the reverse one will be  𝑼2
(−)

.  

 



 
 

 So, how they are related?  They are propagating or they are travelling this particular 

distance. So, they will add up a phase.  So, 𝑼2
(+)

  will be simply 𝑼1
(+)

  times 𝒆−𝒋𝝋 . What is 

phi? It will be n k naught small k naught and d ok, n is a refractive index k naught is the 

free space wave factor or wave number and d is the thickness of that layer.  

   

So, that is similarly you can also correlate what is  𝑼1
(−)

and 𝑼2
(−)

 .  So, that is how you can 

obtain the wave transfer matrix as well as scattering matrix for this particular case. So, if 

you see that wave transfer matrix M will look like  exp (−𝑗𝜑), 0, 0, exp (𝑗𝜑). Whereas, the 

scattering matrix  because scattering matrix will try to represent all outgoing  in terms of 

incoming not left and right ok. So, it will look like exp (−𝑗𝜑), 0, 0, exp(−𝑗𝜑)  ok. So, 

that's the only difference between the wave matrix where wave transfer matrix and 

scattering matrix. 



 
 

So, now let us consider a wave transmitted through a system which is described by S matrix 

which has got this elements t 12, t 21, r 12, r 21.  So, it these are easy to handle because we 

already know this transmission  and reflection coefficient from the Fresnel equation.  So, 

let's assume that you know this system has got two such separate  systems ok. And these 

are the S matrix for these two separate systems. 

 

  So, by multiplying the two associated M matrix. So, you can convert this into M matrix 

this one into M matrix you can multiply the M matrix and then convert it back to the 

scattering matrices ok. And you will be able to obtain  the overall transmittance and 

reflection. So, overall transmittance in this case will be t13 which is given by  
𝑡12𝑡23

1+𝑟21𝑟23 
 .  So, 

this is how you will be analyzing the multilayer system ok. 

 

 You can also find out what is the reflection coefficient for this overall system ok. So, one 

important thing is that the relationship between M and S matrix in this case. So, as I 

mentioned M matrix are having four elements a b c d and they are not directly  the reflection 

and transmission coefficient whereas, the S matrix are directly the  reflection and 

transmission coefficient.So, sometimes it is easy to deal with S matrices.  Now in this 

particular case the transmission of a plane wave through a cascade of two separate systems 

that we have seen which are separated by a distance of d ok.  



 

Now we have assumed that if the two cascaded systems are mediated by  propagation 

through a homogeneous medium it means the medium in between  is a homogeneous 

medium then the overall transmittance and reflectance will also have this extra factor 

adding up that is exp (−𝑗𝜑)  and 𝜑  is nothing  but n k0 d ok. 

 
  

So, that way the equations will also get slightly modified ok. So, as I mentioned here the 

phase phi is nothing, but n k naught d and d is the propagation  distance n is nothing but 

the refractive index of this particular medium inside.  So, with that what we learnt is that 



we understood the overall reflectance and  transmittance and for this periodic stack of 

identical partially reflective lossless mirrors.  So, using the equations this and this you can 

obtain what is the dispersion relation or you can find out that  cos (2𝜋
𝐾

𝑔
)  is nothing, but 

1

|𝑡|
cos (

𝜔

𝜔ℬ
) . 

 So, here a new term omega B has come. So, omega b.  So, g you already know g is 2𝜋/Λ 

that is the special  frequency spatial space related. So, spatial frequency and that you have 

𝜔ℬ, which is 
𝑐𝜋

Λ
 . So, this is particularly a plot of the dispersion relation for a set of periodic 

mirrors. So, here certain values have been assumed like modulus t square has been taken 

as 0.5 and they have been considered to have a separation of capital lambda. 𝜔ℬ = 𝑐𝜋/Λ, 

g is  2𝜋/Λ  those are all fine.  So, only important thing is the value of t is already assumed 

here and you can  see this red dotted straight lines they are basically the approximation of 

a  homogeneous medium. So, if you assume the entire medium to be homogeneous  in 

which omega by K equals c or you can carefully work this out and  see that omega by K 

will be omega B times g by 2 that  also comes out to be c. So, you will have this straight 

lines. 

 

  So, these are basically the homogeneous medium approximation. So, what it tells you that 

you know this graph tells you that because of the  periodicity how much the dispersion 

relation deviates from the homogeneous  medium and in homogeneous medium you see 

there is no band cap also.  So, all the bands are allowed all the bands are allowed means all 

the frequencies  have some k vector. It means at all frequencies  you have solution for 

waves which has got real propagation constants, ok. But here in this case you can see it 

starts with a band gap then there is some band which is allowed then again there is a band 

gap then again there is some band  where the propagation is allowed then again there is a 

band gap and so on ok.  Now, yeah this is what I have already discussed that here the 

photonic band  gaps there is no real solution. 

 



 

 

So, you do not have anything and all the band gap frequencies are basically centered around 

omega omega or you say 𝜔ℬ, 2𝜔ℬ and so on 3𝜔ℬ. So, the frequencies they this particular 

frequencies they do not permit any  propagating mode rather in that case if the wave is not 

allowed to propagate  inside the periodic medium what will happen? In terms of reflectance 

you will see that they have unity reflectance and this is a particular system where you also 

see that you know the lowest photonic band gap is at omega equals 0.  

  

So, if you take a real example with some values like n 1 equals 1. 5 and n 2 equals 3.5 and 

keep the thickness of the 2 layer similar.  So, this is one layer this is another layer and then 

you are repeating this unit cell. So, this is the period ok period of the unit cell.  So, if you 

take this and you try to calculate the dispersion relation you will see that  you know the 

photonic band gaps have center frequencies at omega B here also 𝜔ℬ and its multiples like 

𝜔ℬ, 2𝜔ℬ, 3𝜔ℬ and so on.  And they occur at either the brilliant zone center that is K equals 

0  or at the edges that is K equals plus minus g by 2. 



 
  So, this is the range of the brilliant zone.  So, K value starts from you know minus g by 2 

to g by 2 as we discussed before.  So, here you see that initially all frequencies are permitted 

at omega B you have a particular band gap again at 2 omega B you have a band gap and so 

on ok. And this is how it deviates from the homogeneous medium approximation.  So, 

these are the values associated with this particular band gap.  Now in this setup of partially 

reflective mirrors the frequency region surrounding  to  𝜔 = 0  does not fall in the band 

gap it has got some solution. 

 
 So, it’s good in this case ah there are some propagating modes possible here ok. Now 

dielectric materials with lower contrast they will have band gaps of smaller width. 



Now here you see the contrast is really good.  So, n1 is 1.5, n2 is 3.5. Now if you take 2 

materials, where the difference between n1 and n2 like you can say deltan is less this band 

gap will also become very narrow ok. So, if you want the larger band gap you choose 2 

materials which have higher contrast  between them ok. And this red straight lines we 

already ah mentioned that this is how light would have behaved if we have a homogeneous 

medium with refractive index of the mean of n1 and n2 fine. So, from this you also can 

derive the information about the phase and group velocities. 

  So, the propagation constant capital K it correlates to the phase velocity as well.  So, phase 

velocity will be omega over capital K. So, once you know the phase velocity you can also 

find out what is the effective refractive index that is small n effective ok  that is c naught 

over the phase velocity. So, you will get c naught capital K over  omega fine. So, this is we 

are taking only up to this one. 

 

  So, here you can see that clearly see what is the photonic band gap ok. And this is the plot 

of effective refractive index that is 𝑛eff = 𝑐o𝐾/𝜔  ok.  So, that is basically the effective 

refractive index.  You can also find out what is the group velocity that is 𝑣 = 𝑑𝜔/𝑑𝐾  ok 

which corresponds to the pulse propagation in the medium.  So, any pulse will have a you 

know frequency spread ok means it will not be monochromatic it will have certain 

frequencies. 

 
 

  So, you should calculate the group velocity in that case.  So, group velocity should be 

obtained by 𝑑𝜔/𝑑𝐾 .  So, accordingly you can also find out what is the effective index 

seen by that group or you can call it effective group index that is also defined as ah capital 

N effective and that can be given as c0 over this v.  So, you get 𝑁eff = 𝑐𝑜𝑑𝐾/𝑑𝜔   ok.  Now, 



these velocities can be calculated at any point of the dispersion relation curve  by deriving 

the slope 𝑑𝜔/𝑑𝐾 and you can also take the ratio of 𝜔 by K.  So, as shown here you can 

also you can calculate what is small n effective, what is your capital N effective, what is n 

bar n bar this is the mean value ok,  mean refractive index. 

 
  

So, the figure here the first one shows the dispersion relation of a long rotating layer of 

dielectric medium and this two shows the effective index of one particular frequency and 

this is the group index ok. So, here what you see  you are able to clearly see two frequency 

bands where the propagation is possible and there is a definite photonic band gap ok.  And 

for lower frequencies within the first photonic band you can see that this is how the 

effective index is. So, you can say that n effective is very close to the average effective 

index. 

 So, initially this dotted line and this blue line they are very much overlapping ok. So, here 

also you see they are very much overlapping, but as you keep on you know going further 

with omega or you can say with wavelength it is expected that at longer wavelength the 

material becomes homogeneous. So, K is reducing  means wavelength will be increasing. 

So, this is the case where you see more  homogenized picture of your periodic medium, 

but as K is increasing your wavelength is basically reducing. So, you will be able to see 

the definite structures and that  is where your you will be deviating from the line this 

particular red dotted line   which represents a homogenized medium ok. 

 

 So, here also  you can see with frequency increase. So, this way the frequency is increasing 

ok  this way the frequency is increasing. So, it is better to correlate with frequency and  

wavelength and this is the spatial period ok. So, you can correlate with the frequency here 



that at lower frequency wavelengths are high. So, you are seeing much  homogeneous 

picture whereas, when you go for higher frequency you have lower  wavelength you start 

deviating from the mean refractive index ok that is the crux of this particular thing. And at 

the second at the bottom of the second band  that is here you will see that you know the n 

effective is much smaller than the mean refractive index. 

 

 So, that is how it works that you know with the frequency increase initially n effective 

goes way above the mean value, but then suddenly it encounters a band gap and after the 

band gap at the bottom of the second band  you will see that the n effective starts from a 

value which is much slower or  much smaller than the mean refractive index. So, n effective 

increases at  higher frequencies and with approaching to n bar which is the mean value at  

the middle of the band, understood. Now this drop of n effective from a value above  

average which is just below the band gap to a value which is below average just  above the 

band gap is due to the significantly different spatial distribution of  the corresponding block 

modes. So, there is a band gap because of which the bloch modes which are propagating 

here and here are significantly different. So, we do not expect them to have you know 

similar kind of feature and that is  why there is a drastic change in this effective refractive 

index as well. 

 
  

 And this bloch modes are orthogonal to each other. So, there is no similarity basically 

between this bloch modes. Now, the bloch modes at the top of the lower band has greater 

energy in the dielectric layers with higher refractive index.  So, that the effective index is 

basically greater than the average. And if you look into the block modes at the bottom of 

the upper band it will be reverse. It means in that case greater energy is localized in the 



layers which are having lower  refractive index and that is why the overall effective index 

is lower than the average. 

 
  

So, these are like two different mode configuration for the two different bloch modes which 

is present here and here fine. Lastly let us also look into the frequency  dependence of the 

capital N effective which is the group effective index. And you see the group effective 

index increases at the edges of the band gap either from below or above ok. In both cases 

it is behaving the same way and that means the group velocity is much smaller. So, when 

index is larger the group  velocity is smaller. 

 

 It means when you are approaching a band gap you will see that  the waves are much 

slower. So, the optical pulses are significantly slow near band gaps edge. So, that way you 

can actually make different devices based on  this particular concept. So, with that we will 

stop here today. 

 

 Thank you.  Any questions you can drop an email to this particular email address and we 

will see you in the next lecture. Bye.  Thank you. 


