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Hello students, welcome to lecture 11 of the online course on Nanophotonics, Plasmonics  

and Metamaterials. Today we will be covering the topic of 1D photonic crystals.  So first, 

let us start the discussion of photonic crystals by giving a brief overview.  Then we will 

look into the analogy of semiconductors and then we will see that  photonic crystals are 

like semiconductors in optical domain.   And we will study photonic crystals and solid state 

physics, how they are correlated, the timeline of photonic crystal, how photonic crystals 

are found in nature, then the Bloch waves to analyze photonic crystals and then we will go 

into the details of 1D photonic crystals by studying their different Bloch modes and 

dispersion relation.  Now when we discuss the topic of photonic crystals, two particular 

gentlemen are very  very important. 

 
 

 One is Bloch, another is Yablonovitch. So, Felix Bloch,  he has developed a theory that 

describes the electron waves in the periodic structure of solids. So, that same theory can 

also be hired and brought into the optical domain and you will be able to explain how  



photons are behaving in a or light wave is basically behaving in a periodic crystal.  And 

this is the picture of Eli Yablonovitch. 

 

 So, he co-invented the concept of photonic  band gap. Just like semiconductors have band 

gap, photonic crystals also have band gap.  So, he is the one to invent or co-invent this 

particular band gap, photonic band gap  concept and he made the first photonic band gap 

crystal to demonstrate that.  So, a photonic crystal, when we discuss about photonic crystal, 

we have to   understand that this is basically a material, man-made material that has been  

structured to possess a periodic modulation of refractive index. So, that the structure can 

influence the propagation and confinement of light within it.  

 

   So, periodic modulation of refractive index. So, photonic crystals are nothing but periodic 

optical structure that are designed to affect the  motion of photons  in a similar way the 

periodicity of semiconductor crystals affect the motion of electrons.  So, there is a direct 

analogy you can draw between semiconductor electrons and  photonic crystal and photons. 

So, the periodicity when we are saying the periodicity   can be in three dimension, one 

dimension or two dimension.  So that way you can have 1D photonic crystal, 2D photonic 

crystal and 3D photonic crystal and each of them will have very unique and interesting 

optical properties.  

 
 

 So, here you can see you know different colors they represent different materials. So, you 

have material 1 and material 2 you can take slabs and repeat them and repeat them. So, that 

way it is like the periodicity is in one dimension.  So, we call this as 1D photonic crystal. 

So, two materials are involved here. 



 

 So, n1, n2,  n1, n2 and so on. It is not shown here. So, usually it is a periodic structure   and 

we are just showing a small portion of it. Similarly, if we think of the periodicity  in two 

dimension that is you think of you know columns of two different material.  So, this dark 

light, dark light usually the dark material represents a larger refractive index  lighter 

material represents a lower refractive index that is typically the analogy, but not  always 

the case. 

 

 But let us assume that that helps us in understanding. So, there is the  periodicity is now 

along say X and Y both. So, this kind of crystal can be called  2D periodic crystal. The 

third one will have periodicity in three dimension that  means you are basically modulating 

the refractive index high, low, high, low, high, low and so on in all X, Y and also along Z 

direction. So, this becomes a 3D photonic crystal. 

 
 

  So, what we are gaining out of this gaining out of this you will see that basically with the 

periodic modulation of the refractive index you can control how light will travel in this 

particular medium and how you will be able to you know confine or propagate light through 

this particular medium. So, let us look into the details of 1D periodic  crystal or periodic 

structure. So, here you can see that these actually includes stacks  of identical, parallel, 

planar, multilayer segments. So, these are these two will form  a period and we will now 

repeat this period. So, here how many periods are shown three  periods are shown. 

 

 So, refractive index you can number them as n1, n2,  n1, n2 and so on.  So, these are often 

used as grating. So, when you see 1D periodic array is nothing but a  grating. So, what does 



grating typically do? It reflects light at certain angles or you  can say you can use this as a 

filter that can selectively reflect light waves at certain  frequency. There is one very 

important filter called break grating filter based on this  photonic crystal concept that is 

used in optical communication. 

 

  So, here also you can see along the Z so this is the Z direction that is the grating vector  

or along which the periodicity is lying. So, if you take that direction Z and if you plot the 

refractive index profile and x. So, you will see that you are basically getting low,  high, 

low, high and so on. So, this is one period and you are repeating this structure  over many 

periods. So, that will give you the 1D periodic grating or you can say 1D  photonic crystal. 

 

 Now, if you see the 2D as I have already discussed these are nothing but sets of you know 

parallel rods. So, they can be have the you can have rods or you can take a solid material 

and drill holes in a you know linear shape or linear fashion that will also if you do that in 

only one axis say along Z.  You are drilling holes along a particular solid material you will 

get a 1D photonic  crystal. Now, if you take a slab and drill holes along X as well as Y you 

will get a  2D photonic crystal. So, you can either have the periodicity by different materials 

put  together or you can actually take a solid slab and drill holes. 

 

  So, holes will be made of air. So, you have that material then air then material then air  

and so on. So, that way you are also able to create a periodic alteration of the refractive  

index along this material. So, one such example of having holes like parallel cylindrical 

holes is to is used to modify the characteristics of optical fibers which are called also holey 

fibers. So, there are holes in those fibers. 

 

 So, these are like photonic crystal fibers.  So, you can actually have this kind of periodic 

holes in them.  And 3D periodic crystal again you can either have 3D array of cubes, 

spheres or holes  of different shapes. And the important thing is that they should be 

organized in lattice  structures much like they are found in natural crystals. So, this is how 

1D, 2D and  3D photonic crystals will look like. 

 

 So, let us look into this 1D photonic crystal  in more details. So, as you see that there is a 

periodic variation of refractive index.  So, n is varying along the length of this crystal. Now, 

as in normal crystals the periodic  structure have a unit cell. So, here what is the unit cell? 

This n1 and n2 the whole thing these two together gives you the periodic cell. 



 

 
  

So, you can define   what is the period that is capital lambda and you have to repeat this 

period   over the length. So, that you can get a 1D photonic crystal.  Now, optical waves 

when it will encounter with this particular periodic variation of refractive index they will 

do something. So, optical waves they themselves are inherently periodic and when they 

interact with periodic  media they do it in a unique way particularly when the periodicity 

of those material are  of the order of the wavelength of light. So, if you recall our lecture 

from the metamaterial introduction I have shown you that when lambda is equivalent to a, 

a is the lattice period. 

 

 

   

In that case wavelength of the light is able to see each of this scatterers individually.  So, 

the way it interacts with the crystal is completely different than when it sees  the crystal as 

a homogenized medium. So, this is where you know things   become interesting and light 

matter interaction here also becomes very interesting.  So, we will see that spectral bands 

will emerge in which light waves cannot propagate  through this medium without severe 

attenuation. Means if you take this particular crystal  and shine light you will see that at 

certain frequency band there is very severe attenuation and there is no transmission of that 

particular light. 



 
 It means whatever light is being  incident is coming back and that happens only over a 

certain frequency band and   we can call those frequencies lying in that forbidden band as 

photonic band gap.  And they behave in a very similar way like you know total internal 

reflection, but you know total internal reflection also there is no transmission everything 

gets reflected back. But you know total internal reflection happens say at a certain angle, 

but here you have to  make sure that over those frequency band or band of wavelengths 

you can say the light may incident on the crystal at any direction, but it will have the same 

effect.  It is not at all permitted to enter inside the material. So, there will be no transmission  

of that light beyond that material or through that material you will get all reflection only. 

 

  So, that is the concept of photonic band gap.  And this comes the dissolution of the 

transmitted wave is basically a result of destructive  interference among the waves scattered 

by all the elements of this periodic media in  the forward direction. So, you can actually 

consider this periodic lattice let it be 1D,  2D or 3D the concept remains same. So, one light 

is falling on them they are scattering  waves in the forward direction. So, those waves those 

are the basically transmitted  waves and when they destructively interfere with each other 

they are they all cancel out  ok. 

 

 And this is the case when we say that there is no propagation allowed through   this crystal 

it means those frequencies are lying within the photonic band gap.  So, this effect extends 

over finite spectral band as I told rather than occurring over  just a single frequency and 

this is where it becomes different to the normal you know  total internal reflection. So, now 

let us look into photonic crystals as if they are  basically semiconductors of light. So, this 

phenomena is already seen in  semiconductor crystals ok. So, if you look into the electronic 

properties of crystalline solids such as semiconductors, you will find similar  kind of you 



know features where you have energy band gap right. 

 
   

All of you must have studied this in your school days that there are metal conductors there 

are insulators and then there are semiconductors.  and semiconductor there is a band gap it 

means that particular   energy is not supported in that particular semiconductor crystal.  So, 

in that case a periodic wave associated with an electron travels in a periodic crystal lattice 

and the energy band gaps often materialize. So, because of this analogy  the photonic 

periodic structures can also be called as photonic crystals just like semiconductor crystals 

you can call them as photonic crystals.  So, 1D, 2D, 3D photonic structures can be called 

as 1D, 2D or 3D photonic crystals. 

 

 So, here is an exact analogy as you can see on the screen. Semiconductors are nothing but 

periodic array of atoms. Here the periodicity is in the atomic length scale. These are natural 

structures whereas photonic crystals are artificial structures and if you compare the length 

scale here also the length scale is comparable to the wavelength of incident light. And here 

you have periodic array of atoms. 

 

  Here you basically have periodic variation of dielectric constant. So, this is 1D, this  is 

2D you see these are like dielectric rods. Rod, air, rod, air, rod, air this is how we  actually 

can achieve this particular 2D photonic crystal and this is 3D photonic crystal.  There are 

different ways of making 3D photonic crystal we will come to that in  the next lecture. So, 

these are the direct analogy or you know comparison between   semiconductors and 

photonic crystals. 

 



 Now semiconductors allow you to control the electron flow whereas photonic crystals 

allow you to control the flow of light.  And in 1950 it has actually revolutionized electronics 

by bringing in semiconductors  as you can as you know that we have all these industries 

now electronics industry based on semiconductors. Now photonic crystals is relatively new 

and they are the new frontiers in modern optics. So, photonic crystals also enjoy a whole 

draft of application including use of say waveguides, filters, fibers, resonators, lasers, 

routers, switches,  gates and sensors and other applications also. So, this is why photonic 

crystal itself is a very very interesting topic to study because you can actually make a lot 

of   kind of lot of practical devices using photonic crystals. 

 

 One of these would be like waveguiding like we will see there are different types of 1D, 

2D waveguides you can make and you can make cavities, you can make fibers.  So, lot of 

applications, filters as I already mentioned. So, the similarity between  the physics of 

photonic crystals and solid state physics has given us  an possibility to draw the analogy 

between some properties and computational  methods being applied to both solid state 

physics and photonic crystal physics.  The most important similarities between photonic 

crystal and solid state physics are the  following that periodic modulation of refractive 

index in case of photonic still forms  a lattice similar to the atomic lattice of solid state. So, 

the lattice structure becomes  more or less equivalent. 

 
 

 Then the behavior of photons in photonic crystal is similar or analogous to electrons and 

hold behavior in atomic lattice. And due to this lattice periodicity both photonic crystal and 

solid state  they provide band gap and the range of energies which are not basically 

supported by that particular structure. And you can do different type of you know band gap 



engineering and explore different possibilities of using these materials for different 

applications.  From theoretical point of view determination of the eigenfunctions in a 

photonic crystal  is very similar to the way of calculating the particle wave functions in the 

solid state.  So this similarity is also used to obtain photonic band structure. 

 

 So there you have  electronic band structure here you have photonic band structure. But 

there are  some important differences between photonic crystals and solid state physics.  

The main difference is that you know the particle energy distribution is different in both 

cases. The electrons they obey Fermi Dirac distributions I believe all of you know about 

this that is been taught in basic electromagnetic theory as well.  So electrons they obey the 

Fermi Dirac distribution whereas the photons they obey Bose Einstein distribution. 

 
 And besides electrons are affected by the intra crystalline fields  which leads to the 

necessity of taking into account while photons are not affected by this intra crystalline 

fields. And the most important property rather which determines the practical significance 

of photonic crystals is basically the existence of photonic band gap. And as I mentioned 

photonic band gap is nothing but the frequency range or  wavelength range or you can say 

the energy range where light propagation is prohibited inside the photonic crystal. It means 

when such a you know when a radiation within such frequency band will fall on the 

photonic band gap crystal or you can say photonic crystal it will be completely reflected. 



 

 
 

So here is a brief timeline of photonic crystals. So first prediction of photonic crystals was 

made in 18 sorry 1987 as you can see it is relatively new field which were mentioned in 

these two papers research papers. In 1990 the computational demonstration of photonic 

crystal was done.  Computational demonstration means you were able to compute the 

photonic  band structures and you can identify that there are photonic band gap possible 

where  light can fall on the crystal from any direction and it will get reflected. So there is 

a possibility of photonic band gap and that is what was computation is shown there. And 

then in 1991 experimental demonstration of microwave photonic crystals were done by 

Yevlonovitch.  

 This is where his contribution comes into picture. So he was the first one  to predict it as 

you can see and then in 1991 he was able to demonstrate this concept.  So he was able to 

do it using a microwave range analogy for photonic crystals.  In 1995 large scale 2D 

photonic crystals in visible range was made by this group and in  1998 3D photonic crystals 

operating at infrared wavelengths were fabricated or  designed in this particular laboratory. 

And in 1998 also in University of Bath England  they demonstrated photonic band gap 

fibers. You can actually make optical  communication fibers using photonic band gap. 

 So we look into all of these different applications and the fundamentals how things are 

working using photonic  crystals in this two three lectures which are dedicated for photonic 

crystals.  Now when you take a 2D photonic crystal they can have a comparatively large 

variety of configurations because in 1D photonic crystal it is pretty much you know high 

low high low high low and that is how you are basically varying the refractive index.  There 

is nothing much variation you can bring in. So typically the Bragg grating that you have 



seen those are the examples of 1D photonic crystal or you can as I mentioned you can take 

a solid slab and you can drill holes in a linear fashion. 

 

 
 

 That also becomes a  1D photonic crystal. But when you come to 2D photonic crystals 

they have  comparatively large wide variety because it possesses periodicity of the 

permittivity along two dimensions. So you have more room to play.  Well the third 

dimension the depth dimension is maintained uniform.  There is no variation in refractive 

index in that particular direction.  So, we can take an example say porous silicon with 

periodically arranged pores, which is represented by you know silicon substrate with etched 

holes. 

 

 So you take  a silicon substrate a 2D or a 3D structure like this and then you drill holes 

you make a  2D array of holes drilled into it or etched into it. So that becomes a you know  

that becomes a 2D periodic crystal. Another example is to have periodically arranged  

system of dielectric rods in air. So I believe all of you have seen chalks in your school days  

or even in colleges. So if you take the bundle of chalk that is like you know  a periodic 

array of chalk. 

 

 These are like dielectric rods you can think of and they are  actually in surrounded by air. 

So chalk air chalk air and so on and that happens  in you know both X and Y direction. So 

just have them a little spaced. Usually the bundle of chalk will be all packed together. So 

if you allow some  spacing between the two chalks you will have chalk air chalk air and so 

on and  that will happen in both the direction. 



 

 So this is also another type of structure that is having a 2D variation of refractive index. 

So there are two types of structures possible  as you have seen here. One is you take a solid 

silicon slab which is a 3D material and  then you drill holes in a 2D array of holes. So this 

structure is also a 2D periodic crystal and that array of or bunch of chalks as I told you that 

is also another 2D periodic crystal. 

 

  Now this 2D periodic crystals are also found in nature. So if you take the you know 

morpho butterflies wing under microscope you will see that they actually have this  kind 

of 2D periodic lattice. You see they are also having some whole kind of structure  in X and 

say Y direction. So it is a 2D periodic variation so you are having 2D photonic  crystal. 

And based on that what is happening why this color looks blue. So when white  light falls 

on this this is basically a 2D photonic crystal which has got a band gap that  lies in the blue 

frequency range. 

 

 It means the blue color is not allowed to pass through it. So what will happen to blue color 

it will be all reflected. So you can look into it from  but the blue color will actually come 

back to your eyes and that is why it looks blue.  There is 3D photonic crystal also found in 

nature. So in this case the periodic variation of refractive index happens in all the three 

dimensions X, Y and Z. And the most  commonly known natural 3D photonic crystal is the 

stone opal. 

 
 

 So when you take the opal gemstone and turn it in different direction you will see that it 

plays different colors. It looks different. Different different colors are reflected out of it.  



And because of this such you know amazing or strange behavior you can say  ancient 

people used to believe that opal possesses some kind of magical powers. But later on they 

could understand when when the scientists put this opal into a microscope and they could 

see the microstructure of the opal they figured  out that you know this consists of a number 

of microspheres which are placed at the  nodes of FCC lattice. 

 

 FCC is face centered cubic lattice. And because of those they  are able to reflect light at 

different angles. Or you can say you know the reflectance of the structure is very strong 

dependent on the incident angle. So when  someone turns it around it starts to reflect the 

radiation with a different wavelength. So that is the speciality of this particular photonic 

crystal. 

 

 So these are 3D photonic crystals. So as discussed the optical properties of photonic 

crystals are determined by the  existence of periodic modulation of permittivity or 

refractive index in the of the medium. So these are natural objects.So that also gives us the 

opportunity and flexibility to make this kind of modulation in our laboratory and 

manipulate light in a different way. So that is how photonic crystal gained so much of 

popularity that it gives you the ability to engineer light matter interaction in many possible 

ways.  Now while we understand this better we need to go to the Bloch waves  concept. 

 
 So let us assume this particular structure here which shows the 1D photonic  crystal which 

we have seen in our previous slides. Here the periodicity of the photonic  crystal implies 

that the property at any location z will also be repeated. How? They will be  same at (𝑍 ±

Λ) that is the period (𝑍 ± 2Λ) and  so on. That is there is a translational symmetry along Z 

means this way it is 1D.  So there is a translational symmetry because the same feature is 

repeating after lambda ( Λ ). 



 

 Now EM waves that are allowed to propagate along Z through this periodic structure are 

called the modes of the photonic crystal. Now they have a special waveform that must bear 

the periodicity of the structure and these are called the Bloch waves. So this  is what 

happens like when a plane wave will propagate through this periodic medium there  that 

plane wave will also have this kind of periodicity of the medium and that we will  try to 

see here mathematically. So such a wave for the field Ex for example has the  form 𝐸x(𝑧, 𝑡). 

So Ex is what electric field along X direction, Z is the propagation direction,  t is the time 

dependence. 

 

 So that will have A(z). What is A(z)? That is basically the amplitude  function of this wave 

that has the periodicity of the structure. So the amplitude will be  like this high low high 

low depend and what is the variation in the amplitude that is  from the periodicity of the 

structure that is lambda.  What is exponential minus j omega d? This is how it oscillate and 

propagate along the Z direction with a wave factor of k. So I believe it is clear. So a plane 

wave when it interacts and it propagates through a periodic medium the amplitude function 

picks up the  periodicity from the medium. 

 

 So whatever is the periodicity here that you can see lambda your amplitude of the plane 

wave will also get modulated with that periodicity. And we have seen that A(z) depends on 

the periodic refractive index function that is n(z). So when you look into 1D photonic 

crystals they are basically dielectric structures whose  optical properties vary periodically 

in one dimension. So here we can define the axis of periodicity. 

 

 



 And these variations they are constant in other orthogonal direction.  So along the plane 

of this paper or inside like this or this way or along X it is same.  So this variation only 

takes place along the Z direction. Now let us first consider a homogeneous medium which 

is invariant to any arbitrary translation  of the coordinate system. And for this medium an 

optical mode is nothing but a wave that  is also unaltered by a translation. So it changes 

only by a multiplicative constant  of unity magnitude or a phase factor. 

 

 So let us show how it looks like.  So if you take a plane wave 𝑒𝑥𝑝⁡(−𝑗𝑘𝑧) so this has got 

a fixed amplitude. So, this one is such a mode since upon translation by distance d it will 

only become 𝑒𝑥𝑝⁡(−𝑗𝑘𝑧 + 𝑑) . So that is the distance it has propagated. There is no 

variation in amplitude  we can take that as fixed. So we said that you have a multiplicative 

constant here so  you can see it is you can actually split this exponential into two parts. 

 

 So it is 𝑒𝑥𝑝⁡(−𝑗𝑘𝑑). 𝑒𝑥𝑝⁡(−𝑗𝑘𝑧) and in this case this term 𝑒𝑥𝑝⁡(−𝑗𝑘𝑑) is a  phase factor 

and that turns out to be the eigenvalue of this translation operation. So when you consider 

a 1D periodic medium which is invariant to the translation by distance capital lambda along 

the axis of periodicity invariant you understand that you know after  one period the property 

is again repeating so the property is remaining same. So lambda then next lambda it is 

similar. So that is how you are able to define this you know on axis Bloch modes. So its 

optical modes are basically waves that maintain their form upon such translation changing 

only by a phase factor depending on the distance they are travelling and these modes have 

the form U(z). 

 
 



Now U can be anything Ex, Ey or Hx, Hy so U is a generic representation 𝑝𝜅(𝑧), 𝑝𝜅(𝑧) is 

nothing but a periodic function pk is a periodic function which is having a period of capital 

lambda that is what we are seeing here that there is you know periodic variation of 

refractive index and the period is capital lambda.  So this term comes here because this will 

be the amplitude variation also for the bloch mode of the wave that is traveling and times 

exp⁡(−𝑗𝑘𝑧). So this is the  you know propagation of the wave. Now this form satisfies the 

condition that a translation lambda alters the wave by only a phase factor that is 

exp(−𝑗𝑘𝛬)⁡since the periodic function is unaltered by such translation. So you can take 

you know z equals lambda and you will see that the wave is actually repeating itself  or the 

conditions you can see that they are repeating. 

 

 So this kind of optical wave is called bloch mode and the parameter k that satisfies you 

know the mode and its  associated periodic function which is 𝑝𝜅(𝑧) is also called the bloch 

wave number.  So bloch wave is nothing but the wave that is propagating in a periodic 

medium. So here also we are saying the same thing the Bloch mode is thus a plane wave  e 

to the power minus jkz with propagation constant of k modulated by a periodic  function 

𝑝𝜅(𝑧). So that is very important the amplitude of the Bloch wave will get the  same pattern 

of the periodicity of that particular medium. 

 

  So we can say that it is getting modulated by the periodic function 𝑝𝜅(𝑧). And this is this 

has the character of a standing wave. So you know  how standing waves form so there is a 

traveling wave when it goes into any crystal   or something it will get reflected. So when 

these two waves will you know combine they form the standing waves. So you can see 

here this is how the standing wave will form the blue one is the traveling wave. 

 

 So you can see the periodic variation  of the refractive index. So these are like the periods 

or you can consider from here to here is a period or you can say from here to here is the 

period same thing. And this  is way the mode is propagating. So if you take a reflected 

version and you add this up you will get this kind of you know dashed line pattern which 

shows you the  standing wave pattern. Now since the periodic function of period given as 

capital lambda can be expanded into its Fourier series as a superposition of the harmonic 

components of the form exp(−𝑗𝑚𝑔𝑧)⁡where m is nothing but ⁡0, ±1,±2,⁡and so on. 

 

 So what will be g that will be the inverse of this period so 2𝜋/Λ. So you can actually draw 

the spatial spectrum of the bloch mode  in this form. So this is spatial frequency. So you 

have K, K+g, K-g you will have K+2g, K-2g, and so on. So we are able to convert this 

from you know time domain to spatial frequency domain. So it allows it follows that you 

know the Bloch  mode is basically a superposition of plane waves of multiple spatial 

frequencies that  can be given as K+mg, m can be 0,±1, ±2,⁡ and so on. 

 



 So this is  how the bloch mode is comprised of. It is not only a single plane wave it is 

basically a plane wave or you can say it is a superposition of plane waves with multiple 

spatial frequencies. Now the fundamental spatial frequency will be this one corresponding  

to the bloch wave number k. So that will have the strongest contribution also as you  can 

see from this spectrum. So the fundamental spatial frequency is g small g  of the periodic 

structure and its harmonics which are mg, m is 0, ±1,±2,⁡ and so on. 

 

 

  



Added to the Bloch wave number capital K constitute the spatial spectrum of the bloch 

wave. So this is the spatial spectrum of the bloch wave as we have discussed. The spatial 

frequency shift that you see here there is  a shift in the frequencies by the periodic medium 

is analogous to the temporal  frequency Doppler shift that is introduced by reflection from 

a moving object. So it is this kind of analogy you have also seen in Doppler shifts.  So let 

us take two modes with Bloch wave numbers one is k another is k prime which is nothing 

but, K+g and let us assume that these two modes are equivalent since they correspond to 

the same phase factors. So you can actually write down so exp⁡(−𝑗𝐾′Λ) will be same as 

exp⁡(−𝑗𝐾Λ)exp⁡(−𝑗2𝜋) because from here to here it is 2 pi and then also here it is another 

2pi. 

 
 

 So you can add that extra phase and you will see you will land up actually to this so you 

can say these two are having same phase factors.  It is also evident since the factor 

exp⁡(−𝑗gz) is itself periodic and it can be lumped with a periodic function which is 𝑝𝜅(𝑧). 

You can say that for a  overall or you say complete specification of all modes we need only 

to consider the  values of K in a spatial frequency interval of width g equals 2𝜋/Λ. So  if 

you consider only this width that will tell you about all the you know spatial frequencies 

because whatever is happening here is getting repeated in all other intervals which are  also 

periodic. So if you take the interval from⁡[−𝑔/2, 𝑔/2] this is a frequency  spatial frequency 

interval or you can say that this is [−𝜋/Λ, 𝜋/Λ] . 

 

 We can identify that as the first Brillouin zone and Brillouin zone if you remember the 

concepts from lattice, Brillouin zones are the you know small portion of the lattice that can 

be reproduced replicated to form the actual lattice. So this is a commonly used construct in 



kind of periodic crystals. So, now that we have established the mathematical form of the 

modes we know how the modes look like as imposed by the translational symmetry of the 

periodic medium. The next step would be to solve the eigenvalue problem described by the 

generalized Helmholtz equation. 

 

 
 So you take Helmholtz equation dou square u plus k square u equals 0 you can be Ex, Ey, 

Hx, or Hz. And then you will see that you know for a mode with Bloch wave number K the 

eigen values provide a discrete set of frequencies omega. And these values will be used to 

construct the 𝜔 − 𝐾 that is the dispersion relation. So if you try to plot the dispersion 

relation curve so  this will be your 𝜔 this will be your K and you know the eigen functions 

will help us to determine the bloch periodic function that is 𝑝𝜅(𝑧) for each value of 𝜔  

associated with each K. And that is how you are able to calculate this particular thing. The 

𝜔 − 𝐾 relation or the dispersion relation in a periodic multivalued function of K  with the 

period g in the spatial frequency the fundamental spatial frequency of the periodic  structure 

right g is the fundamental spatial frequency of the periodic structure it is  often plotted over 

the Brillouin zone that is why you try to plot over [−𝑔/2, 𝑔/2]  right. 

 

 And when visualized as monotonically decreasing function of K so here you can see that 

you know one particular part is monotonically increasing this one the dark line so you can 

actually see the plots here.  So as you start from 0 the central point and you add half g or 

g/2 you get this point and then there is a discrete jump ok. And again you monotonically 

increase you go up to another g again then there is a discrete jump and so on. So these 

discontinuities are nothing but the band gaps it means this particular frequencies there is 

no solution  to the you know Helmholtz equation. So you are looking for the bloch modes 



which are able to propagate and you could not find any solution of bloch modes it means 

wave propagation there for this particular frequencies are not possible ok. 

 

 
 

 So again you have seen here also this particular wavelengths or frequencies are not 

allowed.  So these discontinuities they correspond to photonic band gaps which are nothing 

but  you know spectral bands and not crossed by the dispersion lines so that you know no  

propagation modes are existing in those. The origin of the discontinuities as you can see 

here there are discontinuities lies in the spatial symmetry that emerges from this relation 

when K equals g/2. That means when the period of the medium is exactly  equal to the 

period of half of the travelling wave ok. So in that case you can consider  the two modes 

with K equals plus minus g/2 ok. 



 
 

 So and the bloch periodic function  we have seen 𝑝𝜅(𝑧) so you can replace K with ±⁡𝑔/2. 

So in these cases  since these modes travel with the same wave number because this and 

this they have  the same wave number right but they are in opposite direction ok. So you 

can actually see the inverted versions of the medium they will propagate in the opposite 

direction this one ok. So you can write 𝑝−𝑔/2(𝑧) will be equal to 𝑝𝑔/2(−𝑧). So that is how 

you get you know the inverted version of the medium here. 

 

 But these two modes are in fact basically one and the same just that their bloch numbers 

differ by g ok. Because one is g by 2 another is minus g by 2. So what is the difference 

between their bloch numbers is basically g. So when the  modes are separated by integral 

multiple of g they are basically the same modes. So it means there are two different ways 

of modes that is possible having the same wave  number in that case it is only possible if 

they have two different frequencies and that is why there is a discrete jump in the frequency 

ok. It therefore follows that at the edge of the Brillouin zone so this is the edge of the 

Brillouin zone there are two bloch periodic  functions that are inverted versions of each 

other. 



 
 

 So these two are basically inverted version of each other fine. And the dispersion relation 

that you see here is basically a  multivalued periodic function with period g equals 2𝜋/Λ 

and the  discontinuities at K equal to integral multiple of g by 2. And the reason of the  

discontinuities I have just explained here right. Now since the medium is inhomogeneous 

or you can say piecewise homogeneous within a unit cell. the two distinct functions they 

interact with the medium differently and therefore you have two different eigenvalues or 

distinct values of omega. That is what I was telling that it is only possible if you have these 

two modes having different frequencies and that explains the discontinuity that emerges 

from the continuous omega K line across the boundary of the Brillouin zone. So this is the 

Brillouin zone boundary this  vertical dashed lines so whenever they will cross the Brillouin 

zone boundary you will  find a discontinuity. 

 

 Here also they are crossing the Brillouin zone boundary we will get  this discontinuity. So 

a similar argument explains the discontinuities that occur at K equals to any other integral 

multiple of g by 2 that is happening. Here it is 2 times  g by 2 so this is where also you will 

get the discontinuity. If you proceed further you  will find 3 g by 2 that case also you will 

find another discontinuity. Now another thing is across the central frequency as the 0 spatial 

frequency you see this part and this part basically they are symmetrical. 

 

 You can draw a mirror image of what  is happening here to here and you will be able to 

construct the band diagram. So this is for forward propagating waves these are for the 

backward propagating waves or waves in the other opposite direction. Now let us look into 

the wavelength  in 1D crystal. So what happens a wave incident on a 1D crystal which is 



nothing  but a periodic variation of refractive index in one direction that can be achieved  

by  dielectric slab air dielectric slab air so slab air slab air and so on.  So this is the incident 

wave and you can see that you are actually having you know  reflected wave from each of 

this structures So here this is reflecting here you this is the one reflected from this one but 

it is also carrying the reflection from the previous one and so on. So the reflected waves 

they are in phase and they reinforce   with each other and in that case what happens when 

they are in phase they combine with the incident wave and they produce a standing wave. 

 

 
 

 So they constructively interfere and give you a standing wave and standing wave cannot 

travel and that is how you know this particular wave will not be able to travel through this 

particular material. So this is giving you the band gap. But when the material if you choose  

you know wavelengths which are not in the 1D photonic crystal band gap. PVG means 

photonic crystal photonic band gap or photonic crystal band gap. So if you  choose the 

wavelength that is outside the band gap and that light will enter you will  again get all the 

reflected waves but this time the reflected waves are not in phase. 



 
  So they will not be able to you know form a standing wave rather what will happen  the 

light will able to propagate through this material but with slight attenuation.  So this is 

where transmission through this crystal will be possible when the  wavelength does not lie 

in the band gap. So with band gap there is standing wave  formation and that stops your 

you know propagation or transmission through  this material. Outside the band gap light is 

able to propagate through this material  but with slight attenuation. 

 

 Slight attenuation is coming because of this kind of  you know interference with the 

reflected wave. So with that we will stop here.  Thank you and we will start the discussion 

of dispersion relation and other details of  photonic band structure in the next lecture. If 

you have any doubt regarding these lectures and any other previous lectures mention the 

lecture number and MOOC on your subject line and you can drop email to this particular 

email address.   

Thank you. 


