Operation and Planning of Power Distribution Systems
Dr. Sanjib Ganguly
Department of Electronics and Electrical Engineering
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Lecture - 27
Multi-objective power distribution system planning approach

So, in my last lecture | discuss the single objective or mono-objective optimization

problem for solving this power distribution system planning ok.

(Refer Slide Time: 00:46)

Mono-objective vs. multi-objective optimization

+ The objective functions for this planning, i.e., cost and
reliability generally conflict with each other.

 There exists a set of frade-off solutions for the problem
with conflicting objectives.

/% A set of frade-off solutions can be obtained with
simultaneous optimization of all objectives.

% Mono-objective optimization can not perform
simultaneous optimization of multiple objectives. The
multi-objective optimization is required for such type of
optimization.

.

And in this lecture, I will talk about this multi-objective optimization problem; multi
objective optimization problem. In fact, our objective function etcetera would be same as
that of the previous planning problem, but if you can remember my last lecture, you have

seen that we had two objective functions formulated.

One is the objective function related to the cost, another is the objective function related
to reliability ok. And we formulated two planning problems, two optimization problems.
In one problem we solved a planning problem where our objective function is
minimization of total cost. In another problem we solved a planning problem, where our
objective function was the minimization of total interruption cost. And thereby, we will
try to maximize the reliability of the network ok. Now, in general this cost and reliability

these two objectives conflict with each other. In fact, | discuss this in the 3rd module,



when | was talking about this reliability assessment that this cost and reliability, these are

conflicting objectives which conflict with each other. What does it mean?

It means that when we have this cost optimization, we will never get a solution which
would be most reliable. Similarly, when we will do optimize this reliability we will not
get a solution which will be you know that the best solution or best economic economical

solution or best solution in view of the total cost.

So, there exists conflict-ness. | will talk about this in fact, after a few while ok. In fact,
when we have this type of optimization problem, we call this as multi-objective
optimization problem, where we have multiple objective functions which conflict with
each other. And here, we have the same objective functions as we have formulated in my

last lecture, one is total cost another is total interruption cost.

Total cost refers to the total investment and operational cost and total interruption cost is
basically the cost associated with all sort of faults or interruptions ok. And when we have
this kind of conflicting objectives we use this multi objective optimization approach. It is
a very big domain in optimization theory, 1 will not go into detail of that, but I will give
you some insight to understand that what is multi-objective optimization problem. And
why we need to have a special care for solving those kind of multi-objective

optimization problems ok.

Now, in multi objective optimization problem, unlike the single objective or mono-
objective optimization problem, there exists a number of solutions instead of a single
optimal solution. And this number of solutions, we are called this trade-off solution or
they are known with a special nomenclature that is called non dominated solution, | will

come to that ok.

So, in multi-objective optimization, our goal is to have simultaneous optimization of

multiple objective functions, which conflict with each other ok.
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Now, I will give an example here. Suppose, | have an optimization problem where | have
two objective functions; so, optimization problem with two objective functions ok. This
is very simple example to understand the usefulness of multi-objective optimization
approach. So, in one optimization, in this optimization problem the one objective is f 1 X,
it is a single variable optimization problem where objective function is f 1 x is equal to x
square. See this is objective function 1 ok. And another objective function is f 2 X is
equal to x minus 5 square let us say ok or x minus 10 square or X minus 2 square or
whatever you can call ok. So, let us consider it is as X minus 2 square, instead of x minus
5 square. So, this one is our objective function 2; objective function 2. So, this is a case
of unconstrained single variable optimization problem. So, this is un-constrainted single
variable optimization problem with two objective functions, with two objective functions
ok. And let us consider that our goal is to minimize both the objective functions; our goal
is to minimize both the objective function. Now, since this problem is of a single
variable, we can easily sketch the function f 1 x and f 2 x with respect to this variable x
ok. So, let us do that.

So, this is x starting from 0 to infinity and this in this direction this is negative. Now, this
one is suppose, f 1 x. So, if we plot this f 1 x with respect to x, how would be this plot?
This plot would be something like this ok. So, this one is our f 1 x ok. Now, | am also

plotting here this f 2 x, then how would be this plot?



Suppose this is x is equal to 2. So, this plot of this f 2 x would be something like this. So,
this is f 2 x; so this is f 1 x and this is f 2 x. In the same graph, | am plotting both the
functions, one is f 1 x another is f 2 x ok. And as you have seen that our goal is here to
simultaneously optimize both the objective functions, simultaneously optimize both the
objective function ok. So, here our goal is to simultaneously optimize both the objective

functions ok.

Now, | will create three regions for these values of your x, one is this region, one is this,
another is this. So, here this is basically when x is lower than 0 and this is the zone where
X is greater than 2. And this is of course, this is when x varies between 0 to 2 ok. Now,
looking at this characteristic, or looking at this graph, one can understand that at this
region when x is equal to 0, both f 1 x and f 2 x are in decreasing trend if we increase this

value of x ok.

So, if x increases and both variations are in decreasing trend ok. So, here when x is equal
to 2, both f 1 x and f 2 x are in increasing trend ok. So, you can see from beyond this x is
equal to 2, both are increasing ok. Now, what will happen when x is equal to x is in
between 0 and 2? Ok.

If you look at in between this f 1 x; f 1 x is in increasing with the increase of x and f 2 x
it is decreasing with increase in x ok. So, in this region, now if we consider that if we
optimize this both the objectives at this region when x is equal to x lower than 0. Since
both the objective functions are in decreasing trend or with the same type, they follow
the similar characteristics we can easily find out that what would be the solution, if we

optimize both the objectives together.

And that will eventually similar to an objective function, that f x is equal to f 1 x plus f 2
X; that means, if you simply aggregate this two objective functions and if we minimize
that then whatever solutions you are getting that will be the solution of that particular
problem. Similarly, same thing is applicable when x is greater than 2, you simply

aggregate f x is equal to f 1 x plus f 2 x.

And if you optimize that function f x then whatever solution you will be getting that will
be the optimal solution beyond this x greater than 2. But, in this region, when x is in
between 0 and 2, since both the objectives are in opposite trend, one is increasing with

respect to this variable, another is decreasing with respect to that variable.



Then, we cannot simply aggregate two objective functions and we can tell that whatever
solutions we are getting that is the optimal solution that we cannot. Why we cannot?

Because, both are basically in opposite trends and or both will conflict with each other.

For example, here you can see at x is equal to O, that f 1 x is value is 0, but f 2 x if you
consider this region f 2 x is of highest value, f 2 x is of highest value ok. So, although f 1
x is of lowest value, but f 2 x is a highest value ok. So, if we independently analyze these
two objective function then it may appear to me that f 1 x is getting optimized, the
function 1 is getting optimized, but the function 2 is not.

So, when function 1 is giving you the best solution for its own function evaluation, the
other function that f 2 x is having the worst solution ok. Now, same thing is applicable
when x is equal to 2, that f 2 x is providing the f 2 x that the second function is having
the lowest value; whereas, f 1 x is having the highest value ok.

So, here you can see this is highest value of this your f 2 x and lowest value of f 1 x. And
here, you can see that the highest value of f 1 x and the lowest value of f 2 x ok. And in
between all these points, all these values of x, all these values of x, you can see there are
certain points where we have your f 1 x is decreasing, but f 2 x is. In fact, there are
certain points you can see that f 1 x is having higher value and there are certain points f 2

x is of higher value ok.

And we cannot simply aggregate these two objectives. If we do so, then we cannot
independently find out that which one is having the best solution. In fact, if you
aggregate these two then it may so appear to you that this is probably the optimal
solution. But, this is optimal solution in view of the aggregation of both the objectives,

but not in view of the individual objectives.

If you have the individual goals that | need to optimize both f 1 x and f 2 x then that
solution will not provide you the optimal solution either in the objectives ok. And that is
why we cannot simply aggregate these two function to have a, we cannot make
aggregation of these two objective functions to form a single objectives, we cannot do so
because both the objectives behave differently and that is why we call them conflicting
in nature. So, if suppose f 1 x is your objective function related to the cost, then you get
the best solution at x is equal to O, but at that if f 2 x is your objective function related to

the reliability, then at this particular solution that f 2 x is the worst; so that means, when



cost is the in view of this objective function related to the cost, if it provides the best
solution in view of the reliability provides you the worst solution ok. And suppose if you
do not have any preference prior to this optimization, that | would prefer one particular
objective over other, then you cannot decide that which one should be the best solution
among these two. And that is what you know goal of having this you know multi
objective optimization. In multi-objective optimization, suppose if we have this type of
conflicting objectives we do not arrived at a single solution. Rather, we say that each and
every point might be one solution for this one perspective solution for this optimization
problem. And if we plot these solutions in the objective function domain by keeping this
f1xandf2x intwo axis of this plot, then you will get different solutions which will be
something like this, which will be something like this. In fact, all you know points of x
will have a feasible solution.

So basically this plot would be a continuous plot like this, where each and every point
will represent a prospective solution. So, this type of plot, this type of plot is called in
multi-objective optimization, this type of plot is called non-dominated solution. And a
set of optimal non dominated solution is called this final solution of a multi-objective

optimization approach ok.

Now, so one needs to understand one thing that this will work when we have two
objective functions and both the objective functions will conflict with each other.
Meaning that in one case when you are getting the best solution in view of the other
objective functions you are getting it as a worst solution. So, this is probably the best
solution in view of this f 1 x, but worst solution in view of f 2 x, because it is having the

highest value and vice versa.

Similarly, these two corner solutions of this will give you the two solutions where you
get one objective function’s best value, another objective function’s worst value ok. So,
this is what you know the goal of this having multi-objective optimization problem

instead of aggregating these objectives together like this.

Because it is not possible to have an aggregated objectives when we have two objective
functions which are of different trend, which behaves differently, which conflict with
each other ok. And we have different approaches for multi objective optimization, for

solving multi objective optimization problem.



(Refer Slide Time: 21:33)

Jo)= W F @4 Wy F6)

Dapltd gt AP

’ )
’ W D;Hm i |
Wy omd PL »

e
Cownhamk  APP0 Gl
£. Ero \0“_/’_" ig“;;\)‘“:;n’gwo«
W/r 84\@)‘ 4'@) ==
i %‘w
/ 'l(l/@ é
Sackive Ophiwizaditn approach s
(W\Lku obje(‘/b\’ ()
D ansto- Ll = ( ot k)

@
o { e = (T inboagide Gl
Lo ('Pow% balower )
W
i /L ﬁrcw by

So, let me write solutions or rather solution approaches for multi-objective optimization
problem. So, there are different types of solution approaches, proposed time to time for
this solving multi objective optimization problem and it is a very well known paradigm
of research in optimization theory. And, many people across the globe are working on
this ok. So, there are some broad categorizations possible on depending upon the
different types of multi-objective optimization approaches. One is called at weighted
aggregation method, weighted aggregation approach this is one of the approaches | will
talk about this, another approach is called Pareto based approach ok; what is this I will
also come. Another is epsilon constraint approach or | should write it in words, epsilon
constraint approach ok or so and there are other approaches, as well, for example,
lexicographic approaches I am not going into detail. So, there are different approaches
for solving this multi objective optimization problem. So, one needs to go through the
literature of multi-objective optimization problems and multi objective optimization
algorithm or solution strategies for multi objective optimization problem, in order to
understand that what are the different types of approaches already reported in the
literature for solving this multi objective optimization problem ok.

Now, what do you mean by this weighted aggregation approach? In this approach,
although we cannot aggregate this multiple objectives which conflict with each other, but
here in weighted aggregation approach it is similar to a single objective optimization

approach, where multiple objectives are weighted and aggregated.



So, suppose | have a two objective optimization problem, where our objective function is
objective functions are f 1 x and f 2 x and we simultaneously minimize these two
objectives. So, here we what we do here, we aggregate both the objectives with some
weights. So, where w 1 and w 2 are weights. Now, if you do so then; obviously, you will
get a one solution for this particular, by solving this particular problem. Now, here as |
told you one solution will definitely not represent that the optimal solution when we have

multiple objective functions, which conflict with each other ok.

And that is why what they do? They do different combinations of weight in order to get
different solution and then plot this. So, this w 1 and w 2 are taken as the values of this w
1 and w 2 are taken as different combination of weights. So, different combination of w

1 and w 2 is taken to find multiple solution, multiple solutions ok.

So, in this approach we need to run this optimization algorithm multiple times in order to
have a multiple solution by assigning different combination of these values of the
weights ok. Now, this is weighted aggregation approach, but there are some merits
demerits which you need to learn by going through the literature of multi objective
optimization theory.

Now, there is another approach that is called Pareto based approach, which | have used
for solving this multi objective distribution system planning problem, 1 will come to that.
And there is another approach which is called epsilon constraint approach in which even
though we have multiple objective functions, we convert. Suppose we have this f 1 x to f
m X, we have m number of objective functions for a particular problem in epsilon
constraint method, we optimize only one objective function. Let us say this is a
minimization problem, we keep only one objective function and the rest of the objective
functions are converted to some constraint. So, f 2 x, we convert to some constraint. So,
let us write it as f i x to constraint, where this constraint is made with this value of
epsilon. So, epsilon i represent the constraint for this ith objective function. And this
value of epsilon i is suitably chosen so that we get a multiple solution by varying
different values of this epsilon. So, this is what this epsilon constraint approach. We will
not be discussing this here, one needs to go through the literature of multi-objective

optimization to understand this in a broader way.



So, here we will be using this Pareto-based approach, in the next slide we will be shown
you this Pareto based a multi objective optimization approach. Now, this approach why it
is called Pareto based approach? Because this approach is proposed by Professor Pareto,
who was a French Economist and Italian born French Economist who proposed this
Pareto based approach for multi objective optimization problem. Now, again we go back

to this you know this main problem so that | can let you know what is our optimization
problem all about.
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So, if you can go back you can see. So, we had two objective functions formulated, one

is called this total installation operational cost that is C 10, another is total interruption
cost that is C IN.
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And when | solve this problem as a single objective optimization problem, we
considered both the objectives at a time and we formulated two of optimization

problems, one is problem 1 another is problem 2.

Now, here the advantage of this multi-objective optimization approach is that we will
simultaneously consider both the objectives and we can solve the problem as a whole.
So, here our goal is to simultaneously optimize both the objective. So, here our goal is to
simultaneously minimize C 10 and C IN and of course, these two are you know two
different objective functions, one is related to total cost which includes that total

investment and operational cost.

Another is related to total interruption cost, which is related to reliability by minimizing
what we can get a solution which would be a reliable solution ok. And you know both
the objectives we simultaneously optimized under the constraints of equality and
inequality constraints. We have equality and inequality constraints; equality and
inequality constraints, which already | discuss in that lecture where | discuss this
problem formulation; equality constraint is to balance the power of all these distribution
nodes. So, this is power balance constraint and inequality constraints are the capacity
constraints for individual substation, individual feeders, individual ampacity constraint of

this feeder branch.



And also this voltage limit constraint; capacity constraint and voltage limit constraint.
So, these are the constraints we have in this problem. So, here our goal is very clear that
we need to simultaneously optimize these two objectives under these various equality
and inequality constraints ok.

So, in previous example | have shown you that we optimize one objective at a time and
thereby creating two different problems, but here we are merging these two different
problems in a single problem by not aggregating these objective functions, but, by
considering the simultaneous optimization of both the objective functions, ok.

(Refer Slide Time: 33:50)

Multi-objective planning
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Now, this is what | discuss this multi objective planning is all about simultaneous
optimization of objective functions by using this Pareto dominance principle. Again,

what is Pareto dominance principle? | am coming to that.

Then we have solved by using a multi-objective optimization approach which is called as
Strength Pareto Evolutionary Algorithm-2 (SPEA-2) to solve this multi objective
optimization problem for a distribution system planning. And this SPEA-2 is initially a
problem which is proposed in genetic algorithm and we have extended this to this
particle swarm optimization approach. And so we call this whole approach as Strength
Pareto Evolutionary Algorithm 2, SPEA-2 based multi-objective particle swarm
optimizations ok. So, we call this open as SPEA-2 MOPSO, which stands for Strength

Pareto Evolutionary Algorithm-2 based multi-objective particle swarm optimization ok.



So, we use for both static and expansion planning problem that is for 21-node data as

well as 100-node data.

(Refer Slide Time: 35:16)

Pareto-dominance principle

The Pareto-dominance principle states that for anm
objective optimization (say, minimization) problem, @

olution x dominates solution y if:

foralli, f(x)< f(1), and 3jsuch that f,(x)< f,(y), i=L...m. . |

L/ oralll, ()< £(0), md You YR il kot
A'set of non-dominated solutions constitutes a Pareto-front. 7=
/ ___4_/’,_’—/— e ——

8-

ON)D' &NS' Objectve function | XY, 2 o (we
QoY bl Soluibag
Pareto-front of a two-objective minimization problem ond 2 o A
mone dowimatd Solwbitud
ORI

Now, what is Pareto-dominance principle? So, it is something that one needs to
understand very clearly. Now, in Pareto-dominance principle, we call that a solution
dominates another solution if it is strictly better, in one in view of one objectives and in
view of the other objective it is equally good or it is not worst as compared to the other

solution.

Suppose, | have two objective functions, one is f 1 x, another is f 2 x. And | have two
solutions, one is capital X, another is capital Y ok and also one is capital Z. So, X, Y, Z
are three feasible solution feasible solutions ok. So, now, in this Pareto-dominance
principle, according to this you know domination principle, which is mentioned over
here, we call a solution x dominates a solution y if it is strictly better. This is, suppose,
minimization problem so this condition means it is strictly better in view of jth objective
functions objective function ok and it is equally good means it is not worse in view of

other objective function as mentioned over this condition.

So, if both the conditions will satisfy then we call the solution x will dominate solution y.
So, in order to visualize this let us have three possible solution or three candidate
solution or three feasible solutions which represent with this dots ok. Now, as you can



see for the solution x this is the value of this you know in view of this objective function

1 and this is the value of this objective function 2.

This is the value of objective function 2 and this is the value of objective function 1.
Similarly, for this solution y this is the value of objective function 2 and this is the value
of objective function 1 and for this solution Z, this is the value of objective function 1

and this is the value of objective function 2.

Now, you compare these solutions one by one ok. So, you can see this if you compare
the solution x and solution y, then you can see since our goal is minimization problem it
is @ minimization problem and our goal is to simultaneously minimize both f 1 x and f 2
x ok. Now, if so, then in view of this both the objectives you can see X, solution X is

providing strictly better solution than solution Y.

So, X is strictly better, if because in view of both the objective functions you can see
solution X is having lower values of this objective function ok in view of both the

objectives. Now, that is why we call that X, the solution X dominates solution Y.

So, we call that X dominates Y, because in view of both the objective function in view of
the values of both the objective function X shows the better solution, X shows strictly
better solution ok. Because it is having lower value of the solution in view of objective
function 1, as well as objective function 2 ok. But, if you compare this solution X with
solution Z, then you can see that in view of this you know objective function 1, in view

of the objective function 1 because it is a minimization problem.

This solution Z is having better solution, but in view of objective function 2, the solution
X is having better solution. So, when we have that type of condition, that one solution is
better in view of one objective and other solution is better in view of other objective,

then we cannot call that either X dominates Z or Z dominates X.

So, in that case we call X and Z are non-dominated solution; non-dominated are non-
dominated solutions ok. So, what we call non-dominated solution? When we have two
solutions in which none of them is strictly better than other keeping the other objective
function values not worst, so, here you can see X is having this strictly better in view of

one objective, but that solution Z is also strictly better than X in view of other objectives.



So, when this type of condition will exist then we call both the solution are not
dominated by each other, rather they are non-dominated solution ok. And a set of non
dominated solution constitutes a Pareto front and a set of optimal non-dominated
solution is called as Pareto optimal solution. A set of optimal non-dominated solutions is
called Pareto optimal solutions ok. A set of optimal non dominated solution is called
Pareto optimal solution ok, and in multi objective optimization approach our goal is to

obtain this Pareto optimal solution that one needs to understand ok.
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Pseudocodes of SPEA2-MOPSO-

distribution system planning algorithm
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Begin
Generate initial population by PSO encoding scheme;
Decode the particles to obtain initial non-deminated solutions;
Store them in elife archive;
Calculate fitness of particles;
iteration=1;
/Papulation size = size of PSO papulation, //Max iter= Maxinum number of iterations
While iteration<=Max iter
For i=1,...,Population size
Update velocity and position of the particle according to PSO;
Decode particle to get the network topology; -
Select conductor size using conductor size selection algorithm;
Caleulate objective functions and assign particle finesses by SPEA2;
Endfor
Find out non-dominated solutions and update efite archive by SPEA2;
iteration=iteration+|;
Endwhile
Edite archive contains optimal network topologies and conduetor sizes
End

So, this is the pseudo code of SPEA-2 based multi objective particle swarm optimization

for solving this distribution system planning problem.

So, here again, we initialize this population size of this PSO, we also initialize this
maximum iteration that should be executed or beyond which this program will be
terminated. And we update this velocity and position of this particle according to this
PSO principle that already we have mentioned, but here since we have two different
objective functions, we have two different fitness functions for this particle and you have
seen that we update this velocity and position of the particle in view of the fitness
function. Now, here we have two fitness functions ok, and that is why it is multi-
objective optimization problem. And by using the principle of strength Pareto, we
convert this two fitness functions into a common fitness function ok and then,

accordingly we rank the solution; accordingly we find out this non-dominated solution



and so and so ok. So, by using this Pareto dominance principle, we find this non-
dominated solution and by using this Strength Pareto Evolutionary Approach we assign
this fitness function to individual particles and thereby, solving this problem similar to

the previous single objective optimization problem.
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Now, these are the results; these are the results that we got for different systems. So, this
a represents this that solutions of 21-node system, b is representing this solution for 54-
node system, c is representing the solution for 54-node system and d is representing the
solution for 182-node system ok.

So, what you can see that this each of this black dot, they represent one candidate
solution, one candidate solution and we get a set of solution ok. A set of non-dominated
solution, but we cannot call them as a set of optimal non-dominated solution, because
that you already | have discussed that in particles swarm optimization we cannot

comment on this optimality of the solution.

We cannot say that whatever we are getting at the end that is the optimal solution. So,
that is why this set of solution is not Pareto optimal solution, rather they are Pareto
approximation solution ok. Pareto approximation solution which might be closer to the
Pareto optimal solution and we have done several statistical analysis in order to find this

how they are different from one approach to other ok.



So, another thing you can see that, this nature of this plot of this Pareto approximation
solution which is called Pareto approximation front and this Pareto approximation front
depends on the different types of problems. So, it is a very much problem specific. So,
here it is you know shape is different than this is the shape for the other problem, which

is of different planning problem which is of 54 node system.

Similarly, here you get a different shape and here you get a completely different shape.
So, the plot of this Pareto approximation solution which is also called Pareto
approximation front will show you that how different the different problems are. Also
one thing you can see that two corner solutions are marked here. One is this and this for
this Pareto front, one is this and this for this Pareto front, and one is this and this for this

Pareto front ok.

So, in view of this, you know one objective that is total interruption cost this solution is
having you know lowest value, but it is having the highest value in a view of the other
objective function. And that is why this solution is the is called as most reliable solution
among this Pareto approximation solution, because it gives the best solution in view of
this total interruption cost, but worst solution in view of the total investment and

operational cost.

So, these two corner solutions are the two best solutions in view of one objective, one
objective each ok. So, one solution is the best solution in view of a cost objective,
another solution is the best solution in view of reliability objective that one needs to

notice.
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Performance comparison with multi-objective
GA (MOGA)-based planning

Objective functions
(MOGA [Carrano et al. Objective functions
IEEE PWRD, 2006]) (SPEA2-MOPS0)

First Second First Second

Solutions

Most economical | g 75105 | 84379 | 666X10° | 818
Mostreliable | 1707105 | 771 | 154x105 | 16.1889

Qualitative comparison:

» The proposed encoding/decoding scheme always
guarantees generation of connected radial nefworks.

» The implementation of the proposed algorithm is
easier as there is no need of so many heuristic
crossover and mutation operators.

And here also, we have a performance comparison with this paper and this is the source
of this our data for this 21-node system and 100-node system. And we got that in fact, we
compare these two corner solutions only and we got this for this proposed approach that
is SPEA-2 based MOPSO, we have the better solution in view of this economical
objective. And in view of this reliability objective, it is slightly higher values for this
corner solution. And therefore, we cannot comment that in view of both the solutions;
that we are getting the best solution. But, we can say we are getting competitive solutions
for this approach ok.

(Refer Slide Time: 48:51)

Summary

* Both mono- and multi-objective planning algorithms
are presented for stafic and expansion planning of
distribution systems.

% The proposed modified cost-biased
/ encoding/decoding scheme always generates
connected radial network for the distribution systems.

% The performance assessment with several statistical
tests indicates that the proposed algorithm is an
effective tool that can be used for the optimization of
large-scale distribution systems.



So, let us have a summary over here. So, here up to this, we completed this discussion of
mono- and multi-objective distribution system planning problems and corresponding
solution strategies, we call them as multi-objective optimization solution. These are
discussed for different types of planning problem which includes static problem or
expansion problem. Also, different types of encoding, decoding scheme we have used
and the performance assessment of several statistical tests, already we have shown in
mono-objective problem. In multi objective problem is not shown over here but one can
go through the paper where we publish this result, 1 will show you at the end in the

reference list.
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Multi-objective planning of electrical distribution

systems using dynamic programming

Objectives:

0 Development of a dynamic programming-based
approach for multi-objective planning of distribution
systems

/A To present a qualitative and quantitative
performance comparison between the dynamic
programming and the multi-objective evolutionary
algorithm (MOEA)-based approaches such as:

» SPEA2-MOPSO
» MOGA [Carrano et al. IEEE PWRD, 2006]

Now, I will talk about another approach for multi-objective optimization for solving this
multi-objective optimization problem that is called dynamic planning, that is called
dynamic planning or sorry that is called dynamic programming ok. So, dynamic
programming or DP, it is a very well known solution strategy; it is a kind of enumerative
strategy; it is not a meta heuristic approach which gives different solution after different
execution of simulation. But, it provides same solution at the end of this execution and it
is a kind of enumerative approach, it works with certain logics ok. And our goal was to
have qualitative and competitive performance comparison of this dynamic programming

with this multi-objective particle swarm optimization algorithm ok.
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Why Dynamic programming?

‘ » Dynamic programming can solve non-linear,
non-differentiable problems.

» Dynamic programming has not been used so
far for the multi-objective planning of
disfribution systems. ~

» Comparison shows that the dynamic
programming is much faster compared to the
mixed integer programming [Boulaxis ef al. IEEE
PWRD, 2002].

Now, why we have chosen dynamic programming? Because, you know it is not a
solution strategy which is very problem specific, unlike linear programming and so.
Rather it can work with any type of problem, whether the problem is non-linear or
whether the problem is non differentiable. So, linearity does not the requirement for
application for this particular approach and we can also extend this approach for solving
multi objective optimization, which we have done. And we publish this one also in a
reputed journal, 1 will talk about up in the reference list, also we provide some

comparison ok.
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Dynamic programming: An overview

U Two key ingredients of dynamic programming

are optimal substructure and overlopging sub-

problems.

{ Firstly, the dynamic programming decomposes a

mulfi-stage decision problem into several

overlapping sub-problems. Then, it solves all the

sub-problems recursively, in a bottom-up fashion.
, s

Decomposition of a problem into several overlapping sub-problems



Now, what is dynamic programming? So, basic philosophy of this dynamic
programming is: its key ingredients are optimal substructure and overlapping sub-
problems ok. Now, what do you mean by overlapping sub-problem? An illustrative
example is shown over this figure. So, what it did a complete problem is converted to
some overlapping sub problems, like this ok and thereby, this reduces the dimension of
the problem or this reduces the overall problem into a set of problems, which we need to
solve one by one ok. And this sub-problem 1, you can see, it is independent of sub-
problem 2 and thereby you can start this solution of sub-problem 1 first. And this
solution will be transferred to this next problem in order to solve this sub-problem 2 and
so on. And then finally, we get the complete solution ok. And that is what the philosophy
of this overlapping sub-problem ok. So, it starts with a problem which is independent of
this all other problems and then one by one we will keep solving the other sub problems

as well ok.
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Dynamic programming for multi-objective
planning of electrical distribution systems

+ Both the objective functions are functions of branch power flows
which depend on the load demand of all the downstream nodes.

# Optimization of a branch/feeder route can be caried out after
optimization of all its downstream branches.

 /Network structure optimization and branch conductor size
/ optimization are done with two approaches:

(i) Non-iterative two-step approach
(ii) Iterative two-step approach

+ Non-dominated solutions are obtained with a weighted objective

with different settings of weights
e U 8

w,Cpp " +w,C2™, such that w, +w, = L;[w,,w, are pre-defined weights|

Now, here this solving about using this dynamic programming for multi-objective
optimization problem. Here, we use this weighted approach and we convert these two
objective functions into a single objective that is C T and with these two weights, w 1
and w 2, where we use different weight combinations to get a set of solution which we
require for to represent in multi objective optimization problem ok. And we use two

approaches, one is non iterative approach, another is called iterative approach.



In non-iterative approach this structure or topology of the network is first determined
then this branch conductor size is chosen afterwards whereas, in the iterative two-step
process both are simultaneously done. So, both the determinations of network structure
or network topology and conductor sizes are done simultaneously ok.
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Dynamic programming for multi-objective
planning of electrical distribution systems
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Multi-stage decision process

This is an example, how this dynamic programming is used in distribution system
planning problem; we divided all this black nodes are representing these loads, loading
points or load nodes. And this one as usual is representing the substation and we know
the substation location ok. And this is basically service area this rectangle is basically
service area under the substation ok. And as per this requirement of dynamic
programming we divided this whole service area into number of stages, stage 1, stage 2
to stage M ok. Stage 1, stage 2 to stage M and we will start with a one particular stage as
a process of a solution of a sub-problem. So, here we will start with not stage 1, rather
with stage M because the philosophy was at the end of this network or the loads or nodes
which are located distant away from the substation. They are somewhat independent in
the flow of power. So, they only carry those lines which are connecting this distant
nodes, they only carry the load currents of individual nodes only which you have seen.
But, in substation near to the substation the distribution lines are carrying the loads of all
the nodes of a network. And that is what the philosophy behind consideration of the
furthest nodes as the first stage to initiate this dynamic programming. So, we will start

with stage M and we will solve this sub-problem first ok, we will start with this leaf



nodes or the end nodes or the nodes which are the end nodes ok and then after getting the
solution we provide it to the stage M plus 1 and this solution is called as sub-network 1
here. So, whatever solution we get by solving this stage M that is sub-network 1 which is
submitted to the next stage in order to get sub-network 2 and so on. And then after

solving this stage 1 we will get the final network topology.
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Network structure optimization

Initialize two arrays {a}, {p} Frolm/\
consisting of the nodes of stage j

x N
+1 and j, respectively ‘
From D
Initialize y = 0

From C

Find out minimum element of  and
Find out the corresponding nodes, i.¢., elements of
nbjccli\'c {a}, {P} construct a branch between
e$ | function and them, add the element of {B} to {a},

/

From B

and delete it from array {f}

store it in

Obtain partial network j

This is the flowchart of network structure or network topology optimization in order to
find out the routes of individual lines or feeder branches. Here you can see in order to
understand this flowchart, one needs to go through this paper which is published in
Elsevier journal, that is IJEPS International Journals of Energy Power and Energy
System. So, you can see that we have initialize two arrays, one is alpha and beta and this
B is a matrix which is a p defined matrix which assigned that interconnectibility between
two nodes. If this is 1, then it is possible to build a network branch or distribution line
otherwise 0 represents it is not possible to build a line in between this node p and g.
Now, this alpha is initially null for the first stage that is stage M here and beta is
consisting of all the rest of the nodes. Now, slowly when we connect one node to the
exist this sub network we connect, we put it to alpha and we remove it from this array

beta. And that is what is done, if you go through this you will be able to understand.
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Branch conductor size optimization

From A
'

Find out the minimum element of & and
corresponding optimal conductor size for
K% branch of /* feeder

k=k+l

Calculate objective function (Cy)
considering n™ conductor size for m™
branch of /" feeder and store it on &

Now, this is how we select this branch conductor size ok, that is the flow chart to select

this branch conductor size.
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Non-iterative two-step approach

Co)

Input Ny number of different
combinations of weights

Perform load flow to obtain minimum conductor
From C Kize required to satisfy the branch current constraint
for each branch of the whole network

From B
Distribute different nodes in
number of stages

Optimize branch conductor sizes of whole
network using i-th combination of weights

No

Build partial network-j using subroutine given
in Fig. 3 with i-th combination of weights

Yes

Obtain a set of non-dominated solutions
with different network topologies and
branch conductor sizes

Now, if we do these two sequentially, that we first determine this network structure and
then we assign this conductor size, then it is called non-iterative two-step approach. And

if we do it together in an iterative approach then it is called an iterative approach.
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Iterative two-step approach

. Perform load flow to obtain minimum conductor
From A —*\ize required to satisfy branch current constraint for
Toput N, number of diffeceat cach branch of the partial network of j-th stage

combinations of weights

Optimize branch conductor sizes for each
branch of the partial network of j-th stage using|
i-th combination of weights

Distribute different nodes in )
number of stages

= No
Build partial network-j using subroutine given @
in Fig. 3 with i-th combination of weights

Yes

Obtain a set of non-dominated solutions
with different network topologies and
branch conductor sizes

End

So, you can get a flowchart of both the approaches over here ok.
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Stage by stage evolution of the network for 21-

node sysfem

2) Swbr
SN(YiWV“

And this is an illustrative example how we get the solution stage by stage for 21-node
system, here this is our 21-node system and this is what pre-existing network as you
know. So, this is the stage you know the stage where we start this problem. Now, after
solving this problem we get a partial node here which is submitted to the next stage. And
then we developed another partial network which are represented by S 1 and SN 1, SN 2
and so on. S 1 SN basically represent sub network. So, we first determine this SN 1 in



this stage of optimization, then we get both SN 1 and SN 2 in this stage of optimization
that is the next stage. And this is submitted to the next stage and we get this sub-network
which consists of SN 1, SN 2, SN 3 and then finally, we get this sub-network and then
finally, get with this full network ok. So, this is how you can see this network is building.

So, network is building up ok by using the philosophy of dynamic programming ok.
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Pareto-approximation fronts obtained with dynamic
programming _ L
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Legends: (a) 21-, (b) 54-, and (c) 100-node systems

And by varying this weights into different combinations, we get different solutions and
we here are the Pareto approximation fronts or Pareto fronts that we get. That is the final
non-dominated solution that we got in this dynamic programming approach. So, these
are the solutions and these are the different number of weight combinations that we took
in 21-node, 54-node, 100-node. And therefore, you can see in 21-node, we get more
number of solutions, because we have taken more number of weight combinations. But,
for 100-node network, we get less number of solution because we took less number of

weight combinations ok.
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Sensitivity test (with different number of stages)
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And this is an example for this by varying these stages, this is the sensitivity analysis
with varying stages. So, if we have more number of stages we get the computational time
somewhat lower and if we take the less number of stages the computational time will be

much higher ok.
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Performance comparison of non-iterative and
iterative two-step approaches

‘

gu_ Approaches | Computational
g time
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Pareto-fronts obtained with 21-node system

Similarly, this is the comparison of these two approaches, one is non-iterative approach
another is iterative two-step approach. There is the comparison of you know



computational time, iterative approach of course, takes higher number of simulation time
ok.
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Performance comparison with MOEA
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Legends: (a) 21-node system, (b) 54-node system, and (¢) 100-node system

Computation time (min)
Test system =
\/ SPEA2-MOPSO Dynamic programming
| 21-node 1.895 1.765
’ 54-node 27.6281 237.8742
V' (T00-node 82.8633 892.2187

This is the comparison of with multi-objective evolutionary algorithm. So, here we
propose this dynamic programming as well as SPEA2 MOPSO and we made this
comparison in view of Pareto approximation point, as well as the execution type of
computational time ok, which shows that this Pareto front that we got in dynamic
programming is somewhat better in different systems, but computational time that the
dynamic program takes to execute is much higher specifically, when this number of
nodes of the system is getting higher ok. So, for 100-node system, it takes 892 minutes to

solve which is a huge amount ok.
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Performance comparison with MOEA
Objective functions (§) Objective functions (8)
Solutions (MOGA [Carrano ef al. 2006]) |~ (Dynamic programming)
‘ First Second First Second
Most economical 6.7x10° 843.79 6.5%10° 639.6468
Most reliable 17.07x10% 171 14.75x10° 59175
/This comparison illustrates:
v The performance of dynamic programming is better than that
of MOEA. T
v The dynamic programming is simpler to implement compared
to the MOGA as there is no need for so many heuristic
crossover and mutation operators.
v The dynamic programming suffers from the curse of
dimensionality for higher node systems.
s

So, based upon that, we can conclude that dynamic programming performs well ok. This

is the comparison of this multi-objective genetic algorithm, which | already have shown
you proposed by this author in 2006 in IEEE paper and the result that we got for dynamic
programming. So, what we get that performance of dynamic programming is even better,
and it is also simpler to implement. But, it suffers from the curse-of-dimensionality
means that, when we have higher number of dimensions in an problem, it takes a very

long time to execute ok.
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Summary

‘ % Dynamic programming can be used as an efficient
solution strategy for multi-objective planning of
distribution systems.

%/The curse-of-dimensionality is @ major hurdle for the
applicability of dynamic programming for more
generalized large-scale distribution system planning

« This becomes a motivating factor for the use of
MOPSO in all subsequent investigations.



So, in summary this dynamic programming can be used as a viable alternative for
solving this multi-objective optimization problem, but it suffers from this problem of
curse of dimensionality ok. And performance-wise, it provides solutions which are

somewhat better than the meta-heuristic approaches ok.

So, with this I will stop today and I will continue in the next lecture.



