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Lecture - 27 

Multi-objective power distribution system planning approach 

 

So, in my last lecture I discuss the single objective or mono-objective optimization 

problem for solving this power distribution system planning ok. 
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And in this lecture, I will talk about this multi-objective optimization problem; multi 

objective optimization problem. In fact, our objective function etcetera would be same as 

that of the previous planning problem, but if you can remember my last lecture, you have 

seen that we had two objective functions formulated. 

One is the objective function related to the cost, another is the objective function related 

to reliability ok. And we formulated two planning problems, two optimization problems. 

In one problem we solved a planning problem where our objective function is 

minimization of total cost. In another problem we solved a planning problem, where our 

objective function was the minimization of total interruption cost. And thereby, we will 

try to maximize the reliability of the network ok. Now, in general this cost and reliability 

these two objectives conflict with each other. In fact, I discuss this in the 3rd module, 



when I was talking about this reliability assessment that this cost and reliability, these are 

conflicting objectives which conflict with each other. What does it mean? 

It means that when we have this cost optimization, we will never get a solution which 

would be most reliable. Similarly, when we will do optimize this reliability we will not 

get a solution which will be you know that the best solution or best economic economical 

solution or best solution in view of the total cost. 

So, there exists conflict-ness. I will talk about this in fact, after a few while ok. In fact, 

when we have this type of optimization problem, we call this as multi-objective 

optimization problem, where we have multiple objective functions which conflict with 

each other. And here, we have the same objective functions as we have formulated in my 

last lecture, one is total cost another is total interruption cost. 

Total cost refers to the total investment and operational cost and total interruption cost is 

basically the cost associated with all sort of faults or interruptions ok. And when we have 

this kind of conflicting objectives we use this multi objective optimization approach. It is 

a very big domain in optimization theory, I will not go into detail of that, but I will give 

you some insight to understand that what is multi-objective optimization problem. And 

why we need to have a special care for solving those kind of multi-objective 

optimization problems ok. 

Now, in multi objective optimization problem, unlike the single objective or mono-

objective optimization problem, there exists a number of solutions instead of a single 

optimal solution. And this number of solutions, we are called this trade-off solution or 

they are known with a special nomenclature that is called non dominated solution, I will 

come to that ok. 

So, in multi-objective optimization, our goal is to have simultaneous optimization of 

multiple objective functions, which conflict with each other ok. 
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Now, I will give an example here. Suppose, I have an optimization problem where I have 

two objective functions; so, optimization problem with two objective functions ok. This 

is very simple example to understand the usefulness of multi-objective optimization 

approach. So, in one optimization, in this optimization problem the one objective is f 1 x, 

it is a single variable optimization problem where objective function is f 1 x is equal to x 

square. See this is objective function 1 ok. And another objective function is f 2 x is 

equal to x minus 5 square let us say ok or x minus 10 square or x minus 2 square or 

whatever you can call ok. So, let us consider it is as x minus 2 square, instead of x minus 

5 square. So, this one is our objective function 2; objective function 2. So, this is a case 

of unconstrained single variable optimization problem. So, this is un-constrainted single 

variable optimization problem with two objective functions, with two objective functions 

ok. And let us consider that our goal is to minimize both the objective functions; our goal 

is to minimize both the objective function. Now, since this problem is of a single 

variable, we can easily sketch the function f 1 x and f 2 x with respect to this variable x 

ok. So, let us do that. 

So, this is x starting from 0 to infinity and this in this direction this is negative. Now, this 

one is suppose, f 1 x. So, if we plot this f 1 x with respect to x, how would be this plot? 

This plot would be something like this ok. So, this one is our f 1 x ok. Now, I am also 

plotting here this f 2 x, then how would be this plot? 



Suppose this is x is equal to 2. So, this plot of this f 2 x would be something like this. So, 

this is f 2 x; so this is f 1 x and this is f 2 x. In the same graph, I am plotting both the 

functions, one is f 1 x another is f 2 x ok. And as you have seen that our goal is here to 

simultaneously optimize both the objective functions, simultaneously optimize both the 

objective function ok. So, here our goal is to simultaneously optimize both the objective 

functions ok. 

Now, I will create three regions for these values of your x, one is this region, one is this, 

another is this. So, here this is basically when x is lower than 0 and this is the zone where 

x is greater than 2. And this is of course, this is when x varies between 0 to 2 ok. Now, 

looking at this characteristic, or looking at this graph, one can understand that at this 

region when x is equal to 0, both f 1 x and f 2 x are in decreasing trend if we increase this 

value of x ok. 

So, if x increases and both variations are in decreasing trend ok. So, here when x is equal 

to 2, both f 1 x and f 2 x are in increasing trend ok. So, you can see from beyond this x is 

equal to 2, both are increasing ok. Now, what will happen when x is equal to x is in 

between 0 and 2? Ok. 

If you look at in between this f 1 x; f 1 x is in increasing with the increase of x and f 2 x 

it is decreasing with increase in x ok. So, in this region, now if we consider that if we 

optimize this both the objectives at this region when x is equal to x lower than 0. Since 

both the objective functions are in decreasing trend or with the same type, they follow 

the similar characteristics we can easily find out that what would be the solution, if we 

optimize both the objectives together. 

And that will eventually similar to an objective function, that f x is equal to f 1 x plus f 2 

x; that means, if you simply aggregate this two objective functions and if we minimize 

that then whatever solutions you are getting that will be the solution of that particular 

problem. Similarly, same thing is applicable when x is greater than 2, you simply 

aggregate f x is equal to f 1 x plus f 2 x. 

And if you optimize that function f x then whatever solution you will be getting that will 

be the optimal solution beyond this x greater than 2. But, in this region, when x is in 

between 0 and 2, since both the objectives are in opposite trend, one is increasing with 

respect to this variable, another is decreasing with respect to that variable. 



Then, we cannot simply aggregate two objective functions and we can tell that whatever 

solutions we are getting that is the optimal solution that we cannot. Why we cannot? 

Because, both are basically in opposite trends and or both will conflict with each other. 

For example, here you can see at x is equal to 0, that f 1 x is value is 0, but f 2 x if you 

consider this region f 2 x is of highest value, f 2 x is of highest value ok. So, although f 1 

x is of lowest value, but f 2 x is a highest value ok. So, if we independently analyze these 

two objective function then it may appear to me that f 1 x is getting optimized, the 

function 1 is getting optimized, but the function 2 is not. 

So, when function 1 is giving you the best solution for its own function evaluation, the 

other function that f 2 x is having the worst solution ok. Now, same thing is applicable 

when x is equal to 2, that f 2 x is providing the f 2 x that the second function is having 

the lowest value; whereas, f 1 x is having the highest value ok. 

So, here you can see this is highest value of this your f 2 x and lowest value of f 1 x. And 

here, you can see that the highest value of f 1 x and the lowest value of f 2 x ok. And in 

between all these points, all these values of x, all these values of x, you can see there are 

certain points where we have your f 1 x is decreasing, but f 2 x is. In fact, there are 

certain points you can see that f 1 x is having higher value and there are certain points f 2 

x is of higher value ok. 

And we cannot simply aggregate these two objectives. If we do so, then we cannot 

independently find out that which one is having the best solution. In fact, if you 

aggregate these two then it may so appear to you that this is probably the optimal 

solution. But, this is optimal solution in view of the aggregation of both the objectives, 

but not in view of the individual objectives. 

If you have the individual goals that I need to optimize both f 1 x and f 2 x then that 

solution will not provide you the optimal solution either in the objectives ok. And that is 

why we cannot simply aggregate these two function to have a, we cannot make 

aggregation of these two objective functions to form a single objectives, we cannot do so 

because both the objectives behave differently and that is why we call them conflicting 

in nature. So, if suppose f 1 x is your objective function related to the cost, then you get 

the best solution at x is equal to 0, but at that if f 2 x is your objective function related to 

the reliability, then at this particular solution that f 2 x is the worst; so that means, when 



cost is the in view of this objective function related to the cost, if it provides the best 

solution in view of the reliability provides you the worst solution ok. And suppose if you 

do not have any preference prior to this optimization, that I would prefer one particular 

objective over other, then you cannot decide that which one should be the best solution 

among these two. And that is what you know goal of having this you know multi 

objective optimization. In multi-objective optimization, suppose if we have this type of 

conflicting objectives we do not arrived at a single solution. Rather, we say that each and 

every point might be one solution for this one perspective solution for this optimization 

problem. And if we plot these solutions in the objective function domain by keeping this 

f 1 x and f 2 x in two axis of this plot, then you will get different solutions which will be 

something like this, which will be something like this. In fact, all you know points of x 

will have a feasible solution. 

So basically this plot would be a continuous plot like this, where each and every point 

will represent a prospective solution. So, this type of plot, this type of plot is called in 

multi-objective optimization, this type of plot is called non-dominated solution. And a 

set of optimal non dominated solution is called this final solution of a multi-objective 

optimization approach ok. 

Now, so one needs to understand one thing that this will work when we have two 

objective functions and both the objective functions will conflict with each other. 

Meaning that in one case when you are getting the best solution in view of the other 

objective functions you are getting it as a worst solution. So, this is probably the best 

solution in view of this f 1 x, but worst solution in view of f 2 x, because it is having the 

highest value and vice versa. 

Similarly, these two corner solutions of this will give you the two solutions where you 

get one objective function’s best value, another objective function’s worst value ok. So, 

this is what you know the goal of this having multi-objective optimization problem 

instead of aggregating these objectives together like this.  

Because it is not possible to have an aggregated objectives when we have two objective 

functions which are of different trend, which behaves differently, which conflict with 

each other ok. And we have different approaches for multi objective optimization, for 

solving multi objective optimization problem. 
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So, let me write solutions or rather solution approaches for multi-objective optimization 

problem. So, there are different types of solution approaches, proposed time to time for 

this solving multi objective optimization problem and it is a very well known paradigm 

of research in optimization theory. And, many people across the globe are working on 

this ok. So, there are some broad categorizations possible on depending upon the 

different types of multi-objective optimization approaches. One is called at weighted 

aggregation method, weighted aggregation approach this is one of the approaches I will 

talk about this, another approach is called Pareto based approach ok; what is this I will 

also come. Another is epsilon constraint approach or I should write it in words, epsilon 

constraint approach ok or so and there are other approaches, as well, for example, 

lexicographic approaches I am not going into detail. So, there are different approaches 

for solving this multi objective optimization problem. So, one needs to go through the 

literature of multi-objective optimization problems and multi objective optimization 

algorithm or solution strategies for multi objective optimization problem, in order to 

understand that what are the different types of approaches already reported in the 

literature for solving this multi objective optimization problem ok. 

Now, what do you mean by this weighted aggregation approach? In this approach, 

although we cannot aggregate this multiple objectives which conflict with each other, but 

here in weighted aggregation approach it is similar to a single objective optimization 

approach, where multiple objectives are weighted and aggregated. 



So, suppose I have a two objective optimization problem, where our objective function is 

objective functions are f 1 x and f 2 x and we simultaneously minimize these two 

objectives. So, here we what we do here, we aggregate both the objectives with some 

weights. So, where w 1 and w 2 are weights. Now, if you do so then; obviously, you will 

get a one solution for this particular, by solving this particular problem. Now, here as I 

told you one solution will definitely not represent that the optimal solution when we have 

multiple objective functions, which conflict with each other ok. 

And that is why what they do? They do different combinations of weight in order to get 

different solution and then plot this. So, this w 1 and w 2 are taken as the values of this w 

1 and w 2 are taken as different combination of weights. So, different combination of w 

1 and w 2 is taken to find multiple solution, multiple solutions ok. 

So, in this approach we need to run this optimization algorithm multiple times in order to 

have a multiple solution by assigning different combination of these values of the 

weights ok. Now, this is weighted aggregation approach, but there are some merits 

demerits which you need to learn by going through the literature of multi objective 

optimization theory. 

Now, there is another approach that is called Pareto based approach, which I have used 

for solving this multi objective distribution system planning problem, I will come to that. 

And there is another approach which is called epsilon constraint approach in which even 

though we have multiple objective functions, we convert. Suppose we have this f 1 x to f 

m x, we have m number of objective functions for a particular problem in epsilon 

constraint method, we optimize only one objective function. Let us say this is a 

minimization problem, we keep only one objective function and the rest of the objective 

functions are converted to some constraint. So, f 2 x, we convert to some constraint. So, 

let us write it as f i x to constraint, where this constraint is made with this value of 

epsilon. So, epsilon i represent the constraint for this ith objective function. And this 

value of epsilon i is suitably chosen so that we get a multiple solution by varying 

different values of this epsilon. So, this is what this epsilon constraint approach. We will 

not be discussing this here, one needs to go through the literature of multi-objective 

optimization to understand this in a broader way. 



So, here we will be using this Pareto-based approach, in the next slide we will be shown 

you this Pareto based a multi objective optimization approach. Now, this approach why it 

is called Pareto based approach? Because this approach is proposed by Professor Pareto, 

who was a French Economist and Italian born French Economist who proposed this 

Pareto based approach for multi objective optimization problem. Now, again we go back 

to this you know this main problem so that I can let you know what is our optimization 

problem all about. 
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So, if you can go back you can see. So, we had two objective functions formulated, one 

is called this total installation operational cost that is C IO, another is total interruption 

cost that is C IN. 
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And when I solve this problem as a single objective optimization problem, we 

considered both the objectives at a time and we formulated two of optimization 

problems, one is problem 1 another is problem 2. 

Now, here the advantage of this multi-objective optimization approach is that we will 

simultaneously consider both the objectives and we can solve the problem as a whole. 

So, here our goal is to simultaneously optimize both the objective. So, here our goal is to 

simultaneously minimize C IO and C IN and of course, these two are you know two 

different objective functions, one is related to total cost which includes that total 

investment and operational cost. 

Another is related to total interruption cost, which is related to reliability by minimizing 

what we can get a solution which would be a reliable solution ok. And you know both 

the objectives we simultaneously optimized under the constraints of equality and 

inequality constraints. We have equality and inequality constraints; equality and 

inequality constraints, which already I discuss in that lecture where I discuss this 

problem formulation; equality constraint is to balance the power of all these distribution 

nodes. So, this is power balance constraint and inequality constraints are the capacity 

constraints for individual substation, individual feeders, individual ampacity constraint of 

this feeder branch. 



And also this voltage limit constraint; capacity constraint and voltage limit constraint. 

So, these are the constraints we have in this problem. So, here our goal is very clear that 

we need to simultaneously optimize these two objectives under these various equality 

and inequality constraints ok. 

So, in previous example I have shown you that we optimize one objective at a time and 

thereby creating two different problems, but here we are merging these two different 

problems in a single problem by not aggregating these objective functions, but, by 

considering the simultaneous optimization of both the objective functions, ok. 
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Now, this is what I discuss this multi objective planning is all about simultaneous 

optimization of objective functions by using this Pareto dominance principle. Again, 

what is Pareto dominance principle? I am coming to that. 

Then we have solved by using a multi-objective optimization approach which is called as 

Strength Pareto Evolutionary Algorithm-2 (SPEA-2) to solve this multi objective 

optimization problem for a distribution system planning. And this SPEA-2 is initially a 

problem which is proposed in genetic algorithm and we have extended this to this 

particle swarm optimization approach. And so we call this whole approach as Strength 

Pareto Evolutionary Algorithm 2, SPEA-2 based multi-objective particle swarm 

optimizations ok. So, we call this open as SPEA-2 MOPSO, which stands for Strength 

Pareto Evolutionary Algorithm-2 based multi-objective particle swarm optimization ok. 



So, we use for both static and expansion planning problem that is for 21-node data as 

well as 100-node data. 
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Now, what is Pareto-dominance principle? So, it is something that one needs to 

understand very clearly. Now, in Pareto-dominance principle, we call that a solution 

dominates another solution if it is strictly better, in one in view of one objectives and in 

view of the other objective it is equally good or it is not worst as compared to the other 

solution. 

Suppose, I have two objective functions, one is f 1 x, another is f 2 x. And I have two 

solutions, one is capital X, another is capital Y ok and also one is capital Z. So, X, Y, Z 

are three feasible solution feasible solutions ok. So, now, in this Pareto-dominance 

principle, according to this you know domination principle, which is mentioned over 

here, we call a solution x dominates a solution y if it is strictly better. This is, suppose, 

minimization problem so this condition means it is strictly better in view of jth objective 

functions objective function ok and it is equally good means it is not worse in view of 

other objective function as mentioned over this condition. 

So, if both the conditions will satisfy then we call the solution x will dominate solution y. 

So, in order to visualize this let us have three possible solution or three candidate 

solution or three feasible solutions which represent with this dots ok. Now, as you can 



see for the solution x this is the value of this you know in view of this objective function 

1 and this is the value of this objective function 2. 

This is the value of objective function 2 and this is the value of objective function 1. 

Similarly, for this solution y this is the value of objective function 2 and this is the value 

of objective function 1 and for this solution Z, this is the value of objective function 1 

and this is the value of objective function 2. 

Now, you compare these solutions one by one ok. So, you can see this if you compare 

the solution x and solution y, then you can see since our goal is minimization problem it 

is a minimization problem and our goal is to simultaneously minimize both f 1 x and f 2 

x ok. Now, if so, then in view of this both the objectives you can see X, solution X is 

providing strictly better solution than solution Y. 

So, X is strictly better, if because in view of both the objective functions you can see 

solution X is having lower values of this objective function ok in view of both the 

objectives. Now, that is why we call that X, the solution X dominates solution Y. 

So, we call that X dominates Y, because in view of both the objective function in view of 

the values of both the objective function X shows the better solution, X shows strictly 

better solution ok. Because it is having lower value of the solution in view of objective 

function 1, as well as objective function 2 ok. But, if you compare this solution X with 

solution Z, then you can see that in view of this you know objective function 1, in view 

of the objective function 1 because it is a minimization problem. 

This solution Z is having better solution, but in view of objective function 2, the solution 

X is having better solution. So, when we have that type of condition, that one solution is 

better in view of one objective and other solution is better in view of other objective, 

then we cannot call that either X dominates Z or Z dominates X. 

So, in that case we call X and Z are non-dominated solution; non-dominated are non-

dominated solutions ok. So, what we call non-dominated solution? When we have two 

solutions in which none of them is strictly better than other keeping the other objective 

function values not worst, so, here you can see X is having this strictly better in view of 

one objective, but that solution Z is also strictly better than X in view of other objectives. 



So, when this type of condition will exist then we call both the solution are not 

dominated by each other, rather they are non-dominated solution ok. And a set of non 

dominated solution constitutes a Pareto front and a set of optimal non-dominated 

solution is called as Pareto optimal solution. A set of optimal non-dominated solutions is 

called Pareto optimal solutions ok. A set of optimal non dominated solution is called 

Pareto optimal solution ok, and in multi objective optimization approach our goal is to 

obtain this Pareto optimal solution that one needs to understand ok. 
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So, this is the pseudo code of SPEA-2 based multi objective particle swarm optimization 

for solving this distribution system planning problem. 

So, here again, we initialize this population size of this PSO, we also initialize this 

maximum iteration that should be executed or beyond which this program will be 

terminated. And we update this velocity and position of this particle according to this 

PSO principle that already we have mentioned, but here since we have two different 

objective functions, we have two different fitness functions for this particle and you have 

seen that we update this velocity and position of the particle in view of the fitness 

function. Now, here we have two fitness functions ok, and that is why it is multi-

objective optimization problem. And by using the principle of strength Pareto, we 

convert this two fitness functions into a common fitness function ok and then, 

accordingly we rank the solution; accordingly we find out this non-dominated solution 



and so and so ok. So, by using this Pareto dominance principle, we find this non-

dominated solution and by using this Strength Pareto Evolutionary Approach we assign 

this fitness function to individual particles and thereby, solving this problem similar to 

the previous single objective optimization problem. 
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Now, these are the results; these are the results that we got for different systems. So, this 

a represents this that solutions of 21-node system, b is representing this solution for 54-

node system, c is representing the solution for 54-node system and d is representing the 

solution for 182-node system ok. 

So, what you can see that this each of this black dot, they represent one candidate 

solution, one candidate solution and we get a set of solution ok. A set of non-dominated 

solution, but we cannot call them as a set of optimal non-dominated solution, because 

that you already I have discussed that in particles swarm optimization we cannot 

comment on this optimality of the solution. 

We cannot say that whatever we are getting at the end that is the optimal solution. So, 

that is why this set of solution is not Pareto optimal solution, rather they are Pareto 

approximation solution ok. Pareto approximation solution which might be closer to the 

Pareto optimal solution and we have done several statistical analysis in order to find this 

how they are different from one approach to other ok. 



So, another thing you can see that, this nature of this plot of this Pareto approximation 

solution which is called Pareto approximation front and this Pareto approximation front 

depends on the different types of problems. So, it is a very much problem specific. So, 

here it is you know shape is different than this is the shape for the other problem, which 

is of different planning problem which is of 54 node system. 

Similarly, here you get a different shape and here you get a completely different shape. 

So, the plot of this Pareto approximation solution which is also called Pareto 

approximation front will show you that how different the different problems are. Also 

one thing you can see that two corner solutions are marked here. One is this and this for 

this Pareto front, one is this and this for this Pareto front, and one is this and this for this 

Pareto front ok. 

So, in view of this, you know one objective that is total interruption cost this solution is 

having you know lowest value, but it is having the highest value in a view of the other 

objective function. And that is why this solution is the is called as most reliable solution 

among this Pareto approximation solution, because it gives the best solution in view of 

this total interruption cost, but worst solution in view of the total investment and 

operational cost. 

So, these two corner solutions are the two best solutions in view of one objective, one 

objective each ok. So, one solution is the best solution in view of a cost objective, 

another solution is the best solution in view of reliability objective that one needs to 

notice. 



(Refer Slide Time: 47:57) 

 

And here also, we have a performance comparison with this paper and this is the source 

of this our data for this 21-node system and 100-node system. And we got that in fact, we 

compare these two corner solutions only and we got this for this proposed approach that 

is SPEA-2 based MOPSO, we have the better solution in view of this economical 

objective. And in view of this reliability objective, it is slightly higher values for this 

corner solution. And therefore, we cannot comment that in view of both the solutions; 

that we are getting the best solution. But, we can say we are getting competitive solutions 

for this approach ok. 
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So, let us have a summary over here. So, here up to this, we completed this discussion of 

mono- and multi-objective distribution system planning problems and corresponding 

solution strategies, we call them as multi-objective optimization solution. These are 

discussed for different types of planning problem which includes static problem or 

expansion problem. Also, different types of encoding, decoding scheme we have used 

and the performance assessment of several statistical tests, already we have shown in 

mono-objective problem.  In multi objective problem is not shown over here but one can 

go through the paper where we publish this result, I will show you at the end in the 

reference list. 
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Now, I will talk about another approach for multi-objective optimization for solving this 

multi-objective optimization problem that is called dynamic planning, that is called 

dynamic planning or sorry that is called dynamic programming ok. So, dynamic 

programming or DP, it is a very well known solution strategy; it is a kind of enumerative 

strategy; it is not a meta heuristic approach which gives different solution after different 

execution of simulation. But, it provides same solution at the end of this execution and it 

is a kind of enumerative approach, it works with certain logics ok. And our goal was to 

have qualitative and competitive performance comparison of this dynamic programming 

with this multi-objective particle swarm optimization algorithm ok. 
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Now, why we have chosen dynamic programming? Because, you know it is not a 

solution strategy which is very problem specific, unlike linear programming and so. 

Rather it can work with any type of problem, whether the problem is non-linear or 

whether the problem is non differentiable. So, linearity does not the requirement for 

application for this particular approach and we can also extend this approach for solving 

multi objective optimization, which we have done. And we publish this one also in a 

reputed journal, I will talk about up in the reference list, also we provide some 

comparison ok. 
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Now, what is dynamic programming? So, basic philosophy of this dynamic 

programming is: its key ingredients are optimal substructure and overlapping sub-

problems ok. Now, what do you mean by overlapping sub-problem? An illustrative 

example is shown over this figure. So, what it did a complete problem is converted to 

some overlapping sub problems, like this ok and thereby, this reduces the dimension of 

the problem or this reduces the overall problem into a set of problems, which we need to 

solve one by one ok. And this sub-problem 1, you can see, it is independent of sub-

problem 2 and thereby you can start this solution of sub-problem 1 first. And this 

solution will be transferred to this next problem in order to solve this sub-problem 2 and 

so on. And then finally, we get the complete solution ok. And that is what the philosophy 

of this overlapping sub-problem ok. So, it starts with a problem which is independent of 

this all other problems and then one by one we will keep solving the other sub problems 

as well ok. 
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Now, here this solving about using this dynamic programming for multi-objective 

optimization problem. Here, we use this weighted approach and we convert these two 

objective functions into a single objective that is C T and with these two weights, w 1 

and w 2, where we use different weight combinations to get a set of solution which we 

require for to represent in multi objective optimization problem ok. And we use two 

approaches, one is non iterative approach, another is called iterative approach. 



In non-iterative approach this structure or topology of the network is first determined 

then this branch conductor size is chosen afterwards whereas, in the iterative two-step 

process both are simultaneously done. So, both the determinations of network structure 

or network topology and conductor sizes are done simultaneously ok. 
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This is an example, how this dynamic programming is used in distribution system 

planning problem; we divided all this black nodes are representing these loads, loading 

points or load nodes. And this one as usual is representing the substation and we know 

the substation location ok. And this is basically service area this rectangle is basically 

service area under the substation ok. And as per this requirement of dynamic 

programming we divided this whole service area into number of stages, stage 1, stage 2 

to stage M ok. Stage 1, stage 2 to stage M and we will start with a one particular stage as 

a process of a solution of a sub-problem. So, here we will start with not stage 1, rather 

with stage M because the philosophy was at the end of this network or the loads or nodes 

which are located distant away from the substation. They are somewhat independent in 

the flow of power. So, they only carry those lines which are connecting this distant 

nodes, they only carry the load currents of individual nodes only which you have seen. 

But, in substation near to the substation the distribution lines are carrying the loads of all 

the nodes of a network. And that is what the philosophy behind consideration of the 

furthest nodes as the first stage to initiate this dynamic programming. So, we will start 

with stage M and we will solve this sub-problem first ok, we will start with this leaf 



nodes or the end nodes or the nodes which are the end nodes ok and then after getting the 

solution we provide it to the stage M plus 1 and this solution is called as sub-network 1 

here. So, whatever solution we get by solving this stage M that is sub-network 1 which is 

submitted to the next stage in order to get sub-network 2 and so on. And then after 

solving this stage 1 we will get the final network topology. 
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This is the flowchart of network structure or network topology optimization in order to 

find out the routes of individual lines or feeder branches. Here you can see in order to 

understand this flowchart, one needs to go through this paper which is published in 

Elsevier journal, that is IJEPS International Journals of Energy Power and Energy 

System. So, you can see that we have initialize two arrays, one is alpha and beta and this 

B is a matrix which is a p defined matrix which assigned that interconnectibility between 

two nodes. If this is 1, then it is possible to build a network branch or distribution line 

otherwise 0 represents it is not possible to build a line in between this node p and q. 

Now, this alpha is initially null for the first stage that is stage M here and beta is 

consisting of all the rest of the nodes. Now, slowly when we connect one node to the 

exist this sub network we connect, we put it to alpha and we remove it from this array 

beta. And that is what is done, if you go through this you will be able to understand. 
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Now, this is how we select this branch conductor size ok, that is the flow chart to select 

this branch conductor size. 
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Now, if we do these two sequentially, that we first determine this network structure and 

then we assign this conductor size, then it is called non-iterative two-step approach. And 

if we do it together in an iterative approach then it is called an iterative approach. 
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So, you can get a flowchart of both the approaches over here ok. 
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And this is an illustrative example how we get the solution stage by stage for 21-node 

system, here this is our 21-node system and this is what pre-existing network as you 

know. So, this is the stage you know the stage where we start this problem. Now, after 

solving this problem we get a partial node here which is submitted to the next stage. And 

then we developed another partial network which are represented by S 1 and SN 1, SN 2 

and so on. S 1 SN basically represent sub network. So, we first determine this SN 1 in 



this stage of optimization, then we get both SN 1 and SN 2 in this stage of optimization 

that is the next stage. And this is submitted to the next stage and we get this sub-network 

which consists of SN 1, SN 2, SN 3 and then finally, we get this sub-network and then 

finally, get with this full network ok. So, this is how you can see this network is building. 

So, network is building up ok by using the philosophy of dynamic programming ok. 
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And by varying this weights into different combinations, we get different solutions and 

we here are the Pareto approximation fronts or Pareto fronts that we get. That is the final 

non-dominated solution that we got in this dynamic programming approach. So, these 

are the solutions and these are the different number of weight combinations that we took 

in 21-node, 54-node, 100-node. And therefore, you can see in 21-node, we get more 

number of solutions, because we have taken more number of weight combinations. But, 

for 100-node network, we get less number of solution because we took less number of 

weight combinations ok. 



(Refer Slide Time: 61:07) 

 

And this is an example for this by varying these stages, this is the sensitivity analysis 

with varying stages. So, if we have more number of stages we get the computational time 

somewhat lower and if we take the less number of stages the computational time will be 

much higher ok. 
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Similarly, this is the comparison of these two approaches, one is non-iterative approach 

another is iterative two-step approach. There is the comparison of you know 



computational time, iterative approach of course, takes higher number of simulation time 

ok. 
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This is the comparison of with multi-objective evolutionary algorithm. So, here we 

propose this dynamic programming as well as SPEA2 MOPSO and we made this 

comparison in view of Pareto approximation point, as well as the execution type of 

computational time ok, which shows that this Pareto front that we got in dynamic 

programming is somewhat better in different systems, but computational time that the 

dynamic program takes to execute is much higher specifically, when this number of 

nodes of the system is getting higher ok. So, for 100-node system, it takes 892 minutes to 

solve which is a huge amount ok. 
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So, based upon that, we can conclude that dynamic programming performs well ok. This 

is the comparison of this multi-objective genetic algorithm, which I already have shown 

you proposed by this author in 2006 in IEEE paper and the result that we got for dynamic 

programming. So, what we get that performance of dynamic programming is even better, 

and it is also simpler to implement. But, it suffers from the curse-of-dimensionality 

means that, when we have higher number of dimensions in an problem, it takes a very 

long time to execute ok. 
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So, in summary this dynamic programming can be used as a viable alternative for 

solving this multi-objective optimization problem, but it suffers from this problem of 

curse of dimensionality ok. And performance-wise, it provides solutions which are 

somewhat better than the meta-heuristic approaches ok.  

So, with this I will stop today and I will continue in the next lecture. 


