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Hello. Welcome to module one, lecture three of the course VLSI Design Verification and Test. 

In this module, we will take a deeper look into the scheduling of operations within a basic block 

in high-level synthesis. 

 

(Refer Slide Time: 00:21) 

 

 

 

So, before going into the scheduling, a bit of a background, how have we come to this place? So 

firstly, we said that the application will be defined in terms of a high-level language, high-level 



hardware description language like Verilog and describing its behavior. Now, after we have 

obtained this Verilog code, each module of this Verilog code will be parsed and the flowchart 

from this module will be extracted. 

 

Now corresponding to this flowchart, we will be able to obtain a control flow graph of the 

module. So what will be -- what will the control flow graph show? The control flow graph will 

show how the control flows through various paths in the module. So there would be various 

mutually exclusive tasks or operations that will be conducted and the control will decide which 

mutually exclusive sets of operations will be chosen and which will be not based on data input. 

 

So now, how does a control flow graph look like? A control flow graph -- in a control flow 

graph, the nodes are basic blocks as we said before. A basic block is a piece of sequential or 

straight-line code with a single entry point and single exit point. Control cannot come into in the 

middle of the basic block and control also cannot go out of the basic block in the middle. 

 

So control comes at the beginning of the first treatment of the basic block and goes out at the end 

of the basic block. So, and edges, what do they denote? They denote the dependency among the 

basic blocks. Now we also said that given this control flow graph with basic blocks and the 

dependencies, I can directly generate the master controller. So what will the master controller 

control? The master controller will control when will the operations in a basic block be initiated, 

right? 

 

However, as we also said before that the complete master controller cannot be generated at this 

step because the complete master controller will be a tool that will allow us to ascribe timing 

information to each operation in a hardware synthesized circuit. However, until we have not 

ascribed explicit timing information to each operation within a basic block, we cannot ascribe the 

complete timing information of the module. So, therefore, to obtain the complete master 

controller, we need to ascribe timing within a basic block, timing to operations within a basic 

block, and timing to operations within a basic block is done through scheduling. 
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So next we have now arrived within a basic block and we have to schedule operations within a 

basic block. Now before going into scheduling, we also said this before that all operations within 

a basic block can ideally be scheduled in a single clock cycle. However, if we do so then there 

will be unacceptable hardware costs and delays. 

 

So why can it all -- how can all operations be done in a single clock cycle? Because there are no 

mutually exclusive operations within a basic block, all operations are performed. It’s simply a 

data flow graph showing the dependency of the data. So data comes in, gets transformed through 

operations and goes out at the end of the basic block. There are no control operations in it. There 

are no mutually exclusive operations in it. So, however, the length of the clock cycle has to be at 

least equal to the propagation, the total propagation delay in the critical path. 
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So what do we mean by this? So each of the operations, this one, this one, this one, each of them 

has a propagation delay because it has to be executed through a resource. And what is a critical 

path? Critical path is the highest weighted path from the source to sink inside a basic block. For 

example, this path has three operations, this plus this plus this. So this is a critical path now the 

clock cycle has to be at least big enough so that all three operations can be performed in 

sequence through this basic block, right?  

 

And therefore, because this clock will also feed to other operations, other throughout the circuit 

at different places, so this clock cycle although is sufficient for this basic block may cause 

unnecessary delay in other basic blocks. Well, let us say in that basic block, I have two 

sequential operations like this and this. I don't have the third. So, therefore, it will perform these 

two operations and wait because the length of the clock cycle is such that three sequential 

operations can be executed. So the clock cycle length has to be judiciously decided and adjusted 

according to the circuit that we have, according to the need that we have. 

 

 

 



(Refer Slide Time: 06:28) 

 

 

 

Now why did we say all this? Because then we need to ascribe timing. If we don't do everything 

in one clock cycle, we need to do different operations in different clock cycles. So, therefore, 

ascribing such operation to different clock cycles is the very problem of scheduling. Ascribing 

the timing information to each operation within a basic block is the problem of scheduling. 

 

So what does scheduling do? It assigns a start time to each operation in a basic block and the 

controller, it generates -- it allows the generation of the controller so that those operations can be 

directed as those time steps within the basic block. 
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Now choosing a time step for each operation in a basic block is basically an optimization 

problem, as we will see in depth in the next two classes. The time step is also called a control 

step or a c-step. 
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So scheduling is the task of assigning a time step to each operation in the data flow graph or the 

operation constraints graph. However, choosing a time step for each operation in general is not a 

trivial problem. It is generally an NP-complete optimization problem as we will look inside in 

depth, and depending on the performance of a schedule, the performance or how good the 

schedule is can be characterized through various attributes. 

 

 

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time: 08:27)  

 

 

 

For example, the number of time steps that the schedule took to assign time steps to all 

operations. So the lower the number of time steps within which all operations in the basic block 

can be scheduled, better is it in terms of performance of the circuit, faster will be that circuit. 

However, in general, to perform in a lower number of time steps requires higher resources, more 

resources as we will also see. 

 

So the next attribute is how much resources were consumed by the schedule and other attributes 

could be how many temporary registers were required MUXes, DEMUXes etc., as we will see. 
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So depending on the type of scheduling that we are doing, depending on the number of resources 

that we have, the amount of time that we are taking to schedule, there are principally four 

different kinds of scheduling problems that are there. Literature says, there are four different 

kinds of scheduling problems within a basic block. 

 

The first one being resource-unconstrained scheduling where we have no constraints on the 

amount of resources that we can use. The second one is time-unconstrained scheduling where 

performance is not an important factor. We want to take as low resources as possible and delay is 

not a matter to us. So, typically, such circuits or such chips would be -- we would like them to be 

very small in size. That is why we want to have a critical view on the resource consumed and not 

so on time. 

 

So the next two cases are more generalized scheduling problems: resource-constrained 

scheduling and time-constrained scheduling.  We will look at each of them one by one. 
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So before going into the scheduling problem, we will take a general example, this running 

example, we will be using throughout the topic of scheduling that we will be dealing with. So on 

the left of the screen, we have a basic block. So this can be assumed to be the hardware 

description in Verilog, a behavioral description of a basic block. So X1 = x + dx; U1 = u - (3 * x 

* u * dx) - (3 * y * dx); Y1 = y + u * dx; and the last one c = x < a, now the corresponding data 

flow graph of this basic block is shown on the right of the slide. So see the operation one takes as 

input two independent variables 3 and x. 
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Operation two takes two independent variables u and dx. So operation three performs the 

operation 3 into x into u into dx. And operation six, for example, performs the operation 3 into y. 

Operation seven performs the operation 3 into y into dx. And then here operation four performs u 

minus 3 into x into u into dx, and in five we obtain the final U1. 

 

Similarly, we obtain the Y1 and c variables as outputs of 9 and 11 operation, the operation 

number 9 and operation number 11, respectively. Now given this data flow graph, we have to 

obtain the operation constraints graph. 
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So this -- the data flow graph that we obtained in the last slide is shown on the left-hand side of 

the slide and the corresponding operation constraints graph is shown on the right side. Here the 

independent variables have been removed. We have made the graph polar having a single source 

node and a single sink node and we have only shown the dependencies among the operations, 

right. So in this way we have obtained the operation constraint graph. So this operation 

constraint graph basically we will be using throughout the topic of scheduling. 
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So the first type of scheduling that we had said was Resource-Unconstrained Scheduling. So the 

definition is -- the problem definition is this: “Schedule operations within a basic block such that 

all operations can be performed in correct sequence in minimal time using unlimited hardware 

resources.” So there is no limitation on the hardware resources that we have.  

 

Hence the solution approach is to just topologically sort the operations constraint graph that we 

have and label the nodes in topological order. So this topological order will give me the schedule 

because finally, we just have to assign a distinct c-step to each level that we have obtained in the 

after topological ordering of the graph. 
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So such an approach has been adopted in the ASAP algorithm. So it’s generated from the DAG 

or operation constraint graph by a breadth-first search from data sources to sinks. So how does it 

operate? It starts with the highest nodes (that have no parents), the independent nodes in the 

DAG, so all independent nodes are scheduled in level one and then time steps are assigned in 

increasing order as we proceed downwards.  

 

So after we have scheduled the independent operations, a few more nodes become independent 

and ready for scheduling, and they are scheduled and we perform as many nodes, as many ready 

nodes are there, we schedule all the ready nodes that are available at a particular time step to that 

step. So it follows the simple rule that a successor node can execute only after its parent has 

executed. 
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So an example, the operation constraint graph that we obtained is shown in the left and on the 

right we have the corresponding ASAP schedule. See that all the independent operations, this, 

this, this, this and this have been scheduled in step one and then after these have been scheduled, 

then 3 becomes ready, 7 becomes ready, 9 becomes ready, 11 becomes ready and they are all 

scheduled in step two. After they have been -- after 3 has been scheduled, 4 can be scheduled, so 

four is executed in time step 3; 5 can be scheduled after 4 has been scheduled. So 5 has been 

scheduled in time step 4, right. 

 

So we will therefore get a very fast performing basic block if we do an ASAP schedule, but 

obviously, we need unlimited hardware. For example, in step 1, we required four multiplication 

operations and if we had a multiplier that will perform these operations -- performing these 

operations, we need four multipliers, because four multiplication operations are being performed 

concurrently in step 1 and hence the area of the obtained circuit will be high. 
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Now a similar algorithm is the ALAP Algorithm. How is it different from ASAP? ASAP has 

been obtained from as soon as possible schedule. ALAP on the -- ALAP correspondingly has the 

name as late as possible, right? It works very similar to the ASAP algorithm except that it starts 

at the bottom of the DAG and proceeds upwards. ALAP solves the latency-constrained problem. 

 

And the latency bound, we can give any latency bound that is suitable to us. Obviously, we can 

give the latency bound that has been computed by the ASAP algorithm. For example, in the 

previous ASAP schedule, we had obtained a latency bound of four. So, if you use the same 

latency bound four and apply it to the ALAP algorithm, we will update something like this. 
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On the left hand side, again, the operation constraint, the unscheduled operation constraints 

graph has been shown. On the right side, we obtain the ALAP schedule. So ALAP schedule as 

we said, the ASAP schedule starts from the source towards the sink. ALAP schedule progresses 

from the sink towards the source. So the NOP has been scheduled -- the start of the NOP 

operation is at time step 5. So all operations on which NOP depends can be scheduled in the 

previous time step at time step 4. So NOP depends on operations 5, 9 and 11. So these three 

operations have been scheduled in time step 4. 

 

At time step 3, all operations on which 5, 9, 11 depends can be scheduled. So 4, 8 and 10 has 

been scheduled in time step 3. In time step 2, 3 and 7 has been scheduled, similarly, and in time 

step 1, 1, 2 and 6 has been scheduled. So this is what is the ALAP algorithm. 

 

 

 

 

 

 



(Refer Slide Time: 19:05) 

 

 

 

Now from the ASAP and ALAP algorithm, a few very important concepts can be obtained, and 

these concepts are applied in a more generalized scheduling problems that we will take up in due 

course in the next few slides. So mobility is defined for each operation. What is mobility? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time: 19:35) 

 

 

 

Mobility is the difference between the ALAP time and the ASAP time of a schedule. And what 

does it provide this difference between ALAP and ASAP provides a measure of the slack that is 

available on the start time. So this mobility, this term mobility is also called the degree of 

freedom of an operation node because it defines the number of cycles by which an operation can 

be moved upwards or downwards in the schedule. 
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So taking an example, in the same operation constraints graph that we have, we see that those in 

the red lines, the red line in the right side here, this one represents the critical path because all 

nodes in this path has zero mobility. Hence v1, v2, v3, v4, v5 all have zero mobility. See now that 

operation six and seven has mobility one. Why? Operation six can be scheduled in either time 

step 1 or time step 2. Similarly, operation 7 can either be scheduled in time step 2 or time step 3 

with the latency bound of 4 that we have. So the mobility of the operation six and seven becomes 

one. 

 

Similarly, the four operations 8, 9, 10, 11 has a mobility of two. Why? Because it is easy to see 

eight can be scheduled in operation -- in time step 1, 2 or 3. Nine can correspondingly be 

scheduled in time steps 2, 3 or 4. Ten can be scheduled in time steps either in 1, 2 or 3 and 11, 

similarly, can be scheduled in time steps 2, 3 or 4. Okay. 
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So with this concept, we now move into Time-Unconstrained Scheduling. From resource-

unconstrained scheduling, now you move to time-unconstrained scheduling. So what is the 

problem definition of this scheduling? Schedule operations within a basic block such that all 

operations can be performed in correct sequence using minimal hardware resources in unlimited 

time. 

 

So as we said, we now have unlimited time that is no bound on performance. Performance can be 

as bad as possible. However, we need to consume as low amount of resource as is possible. So 

how do you do that? Perform a serialized topological sorting of the DAG and assign a c-step to 

each operation so that optimal scheduling may be performed, right? So we will not look into this 

scheduling as this we -- it is easy to understand what we do here. We just perform a serialized 

topological sort and schedule the DAG and therefore we will not look at this anymore. 
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Now we move into the more generalized scheduling strategies. So the first one here is Resource-

Constrained Scheduling. So what is the definition of the problem? Schedule all operations within 

a basic block such that they can be performed in correct sequence in minimal time given the 

available numbers and types of resources. So now we have a constraint on the total amount of 

resources that we can use.  

 

Now given this constraint on the availability of resources, we have to perform all the operations 

in the basic block in minimum time, right? So we want to maximize performance given an area 

constraint or a resource constraint on the circuit. 
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So moving on, in this type of scheduling, we will be given this operation constraints graph and 

we will have different symbols to represent a few things. Firstly, n represents the number of 

operations in the operation constraints graph, the total number of operations that are there. nr 

represents the number of resource types available. ak equals to the upper bound on the number of 

resources of type k. 

 

So suppose you have both multiplication and addition operations within an arbitrary basic block, 

right. Now additions must be performed using a separate adder functional unit or resource and 

multiplications will be performed by a multiplier resource. Now let us say we have three 

multiplier resources and four adders. So ak where a multiplier will be 4 because we have four 

multipliers and let us say three adders, so a adder will be 3 because we have three adders and nr 

will be 2 because we have two types of resources. One is adder and one is multiplier. 

 

ti will represent the start time of each operation vi. So the operation constraints graph is 

represented by G = (V, E). The nodes being defined as vi and the start time of a node will be 

defined as ti. ti
S
 is the ASAP time of vi. So when we have done the ASAP schedule, we have 



labeled each operation with its ASAP time, its ASAP schedule time. So that ASAP schedule time 

will be designated as ti
S
.  

 

Similarly, ti
L
 will designate the ALAP time of operation. So there is a mistake here. It is 

represented as ASAP, but it will be ALAP, ALAP time of operation vi. And di denotes the 

propagation delay corresponding to operation vi. So the propagation delay will mean how much 

time it takes to perform let us say an addition on the adder circuit, on the adder resource that we 

have. That is the propagation delay di.  

 

Now given these notations, we will look at how difficult this problem of scheduling is. For 

example, we actually have polynomial time optimal solutions in a very stringent few cases. For 

example, only when the number of types of resources are just one, we have all addition 

operations within the whole basic block, within the full DAG. All operations take the same delay 

or same propagation delay. 

 

All operations have the same propagation delay, unit propagation delay, and the DAG is 

basically a tree and is not a DAG as such. For example, how does -- when does a DAG become a 

tree? When removing the direction constraint of the DAG, even after removing the direction 

constraint of the DAG, there is no cycle in the DAG, then the DAG becomes a tree. So it has 

been shown that if we have these constraints, then a polynomial time solution or a linear time 

solution can be obtained for such an operation constraints graph and that is basically obtained 

through the Hu's algorithm. 
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However, if the DAG is generalized, I have not written down here, if the DAG is generalized, 

then we can have at most two resources. We can have at most two resources in a generalized 

DAG of one type, and then only we can obtain polynomial time solutions. More than two 

resources, three, four, five, but a constraint number of resources, we don't know, we still don't 

know whether we get a polynomial time solution or not.  

 

So, basically, what we take in general is that the solution is NP-Complete if the number of 

resources is greater than 2 and we have a generalized DAG. So the problem is as complicated as 

this. 
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So hence, if the problem is complicated and which means that the problem is NP-complete, then 

we have different types of strategies to solve it. The optimal solutions can be obtained by various 

mechanisms. For example, we can formulate the whole problem as a linear program, as an ILP 

and then we have solving tools, ILP solving tools to solve such ILPs and get the solution. 

 

We can apply advanced state-space search techniques such as depth-first branch and bound and 

breadth-first branch and bound to exhaustively but systematically search the whole state space 

and find out an optimal solution where the state space would mean all the different possibilities 

for assigning operations at different time steps to different resources and by exhaustively 

searching through all the possibilities find the best solution that we get. 

 

However, why we said that even if it is -- even though it is exhaustive, by systematically 

searching the whole state space, we can prune or cut off some parts of the state space and get 

away by not searching them because by through search systematic technique, we can ensure that 

that portion of the state space will never contain the optimal solution. We will look at these 

optimal solutions in a bit more detail in the next lecture. 

 



Now along with optimal solutions, optimal solutions for the huge circuits that we often have in 

VLSI domain is not always possible. It is not always possible to apply optimal algorithms 

because it may take years to give a solution. It may take even years, literally. 
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So we also have heuristic fast solutions where the entire state space is obviously not searched 

and hence the solutions are on most cases are sub-optimal. However, the solutions often 

produced are quite good with respect to the best solution that we can get and the advantage is 

that we often get the solution in very quick time. So heuristic fast solutions are useful when the 

overhead for optimal solution is unacceptable and good heuristics often produce near optimal 

solutions in many cases.  

 

The other approach is the stochastic solution approach. The stochastic solution approach, in this 

approach we start with an initial solution. So a very crude heuristic fast solution could provide us 

this first randomly generated candidate solution, and from this solution we refine this solution 

through several iterations and moving through different areas of the state space and obtaining a 

solution. So it will obviously again not always give an optimal solution, but in many cases, the 



solutions are often acceptable and good with this, we come to the end of module one of lecture 

three. 
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