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Welcome to module 2 of lecture 7 in the last module we saw that for operations within a simple 

data flow graph within a basic block and for temporary registers within a simple operation 

constraint graph within a basic block their corresponding resource sharing models can be formed 

using interval graphs and we can find a minimum the minimum number of registers required to 

implement a set of temporary variables within the operation. 

 

Constraint graph or the minimum number of functional units required for each type to implement 

the behavioral operations within an operation constraint graph can be obtained in polynomial 

time using graph coloring of the conflict graph corresponding to the operations or the registers in 

the operation constraint graph within a simple basic block. We use the left edge algorithm to 

obtain such an optimal coloring of the interval graph in n log n time we saw that here n is the 

number of operations or the number of temporary registers that we have in the graph. 

 

And we need to sort the elements at the start of the algorithm in terms of the left edges of that 

intervals and this amounts to the nlog n complexity of the left edge algorithm. In this module we 

will see a bigger scenario we will see the resource sharing problems that exist. 
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When we consider not only a single operation constraints graph but we consider a different 

operation constraints graph across modules. Now we need to understand that within a single 

operation constraint graph there are no controls statements there are no mutually exclusive 

operations there are no branches and there are no loops but however when we consider the 

source sharing when we attempt to consider resource sharing across modules across operation 

constraints graph in different modules we need to also consider the control flow structure the 

loops, the branches in those modules. 

 

So in this we will look at this broader problem and we will we will take simple examples to 

understand what is the actual problem that we have in hand. The first scenario is the most simple 

scenario, let a module A consists of two operations are plus followed by a star so this is module 

it is here I have a + and here I have a *, a * a + followed by a * and I have a module B which 

consists of two operations a * followed by a + and we said that + uses one unit delay and * 

consumes to unit delay, right. 

 

Now let us consider a module m1 here which calls module A followed by module B, so it first 

calls module A and then calls module B we see that here this is very simple a and B are not 



concurrent and hence all operations are also not concurrent and we can apply the simple interval 

graph method to solve it and the left edge algorithm will give me the maximum resource sharing 

for module 1. Now let us complicate the situation just a bit I have a module A it consists of two 

operations + followed by a * very similar to the previous one and also module will be very 

similar * followed by a +.  

 

Now here the only difference is that the module B is called before module A finishes so I have 

an operation constraint graph that defines module A I have an operation constraints graph that 

defines module B and I in the first example both this operation constraints graph were separated 

in time the complete lifetimes of the operation constraints graph were separated in time given 

non-concurrent here the operation constraints graph are overlapped. 

 

Module 2 here is a module 2 that calls both module A and module B module 2 has a call to A at 

time t equals to 1 and a call to B at time t equals to 3, now here we see that the * are not 

compatible the * operation that is a multiplication operation takes two time units to execute and 

hence this multiplication operation and this multiplication operations are overlapped in time and 

hence I cannot use a single instance of a multiplier resource to execute both these operations they 

become incompatible. 

 

However the plus operations are compatible they are separated in time and obviously they are 

both additions and can be implemented by the adder, so hence the same instance of an adder can 

be used to execute both these behavioral operations.  
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Now let us let us take the next small complication higher complication now we have a loop and 

we to simplify a loop we just say that there is a module which calls another module two times 

okay, module A consists of two operations are + followed by a * similar to the previous two 

examples. Now module three has two calls to A at time ta equals to1 and Ta equals to 5 now 

there is a module three which calls A at time which calls A at time T equals to 1 and then again 

calls A at time T equals to 5. 

 

Now m3 has three other multiplication operation, so the two noncontiguous intervals of * so we 

have two non contiguous intervals of * in A, so here this * operation in A is non compatible with 

the * operation to hear again this star operation is not is not compatible with 4 here and here this 

2 is non-compatible with 3 this 4 is again non-compatible with 3 so what happens that this 

module A becomes non-compatible with 2 why, module A is non-compatible with 2 because 

module A does not complete before 2 begins. 

 

So 2 is a distinct multiplication operation A is another module so A and 2 are conflicting and 

hence I have an edge in the conflict graph between A and 2. Similarly, I have an edge between 2 

and 3 because two and three overlap I have an edge between 3 and 4 right, I have an edge 



between 3 and 4 because 3 and 4 overlap I have an edge between A and 4 because 4 and A 

overlap in time but what we see here is that there are two distinct intervals now for this module 

A and it is no longer a single continuous interval and hence the conflict graph is no more an 

interval graph it is not even a chordal graph we have a cycle of length 4 and we do not have any 

chord which connects non-consecutive agents. 

 

In non-consecutive vertices and hence this is not a chordal graph so this therefore the addition of 

this simple call here we call a module two times with this with this three additional 

multiplication operation makes this graph a non-chordal graph and hence the graph coloring 

algorithm on this conflict graph therefore becomes NP complete and we need to apply 

enumerative techniques. 
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Now let us take another type of complication which is branching, now we assume that all 

operations there are simple one type of operation in this example all operations take two units so 

start times of the operation Ta is at time step 1 Tb starts at time step 3 Tc and Td are two 

mutually exclusive operations and they both start at time step 2. Now c and d being mutually 

exclusive or compatible although they execute at within the same time step because they are 



mutually exclusive they can be implemented by the same resource instance because either c or d 

will execute. 

 

Both c and d will never execute they are mutually exclusive by this branch and because of this 

mutual exclusion between c and d there is not a cord between vc and vd in the conflict graph and 

therefore again we have a non-chordal graph here why, let us see how there is an A here A and B 

are compatible and hence there does not exist an edge in the conflict graph a and c are not 

compatible and here a and c have an edge. 

 

Similarly a and d are not compatible and hence they have an edge why are they not compatible 

because the overlap in time again b and c are not compatible because they overlap in time b and 

d also are not compatible because the overlap in time and hence in this conflict graph this 

conflict graph again becomes a non-chordal graph just by the introduction of a simple branch and 

therefore resource sharing over such modules which contain branches and loops become non 

trivial and cannot be solved in polynomial time and I need enumerative techniques for graph 

coloring because this problem become NP-complete for general graphs non-chordal graphs. 

 

However, we can apply heuristic techniques to solve general graph coloring problems although 

obviously such graph coloring techniques will not be optimal may not be optimal such graph 

coloring may not give the minimum number of colors. However, they are often essential when 

the problems of are of very large sizes for NP complete problems as we have seen branch and 

bound extra similar types of enumerative approaches can be applied to the graph coloring 

problem as well. 

 

When we are not studying it here we have taken we have understood a flavor of handling such 

big NP complete problems in with exponential complexity using combinatorial search 

approaches like branch and bound in previous lectures and we will not consider them here, rather 

we will understand a simple heuristic approach for solving the graph called the general graph 

coloring problem. 
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The solution proceeds as follows, let us say we want to find out whether the conflict graph is k 

colorable so we want to find out and allocate colors to a k colorable conflict graph, so if the 

graph is k colorable we will be able to assign colors to the vertices of this conflict graph so how 

do we proceed we pick anode t with fewer than k neighbors, so in the conflict graph we pick a 

node t with fewer than k neighbors then we put that the note that is the node we have chosen and 

put it on the stack and remove it from the graph. 

 

So after we take this node out of the conflict graph the edges adjusting to it also move away, 

right now this exposes a few more nodes with less than k neighbors possibly. Now if we can 

proceed and go on doing this we will ultimately obtain the empty graph that means we will go on 

taking up nodes pushing it onto the stack and until all nodes in the graph have been put into the 

stack, right and then the graph becomes completely empty. 

 

We may get stuck in between as well because we do not get neighboring nodes with less than k 

neighbors and that does not mean that the graph will not be k colorable we should understand 

that this is a heuristic approach. Now we assign colors to the nodes in the stack one by one we 

start with the last node added and at each step we pick a color different from those assigned to 



already colored neighbors. So if I have neighbors previously colored neighbors with a certain 

color when I take the another node out of the stack I cannot assign a color which is same as that 

of its neighbors, right.  
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We will take an example to see this, so let us say we are given this or this conflict graph so this 

conflict graph say has a,b,c,d,e,f operations and we want to allocate all these operations are of 

the same type and we want to allocate the minimum number of functional units necessary to 

color this to color this graph.  
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So what do we have we have k equals to 4 first we will search for a node with less than 4 

neighbors, so a is such a node with less than 4 neighbors in fact a has 2 neighbors so I can 

remove k from this graph when I remove a from this graph. 
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We this is the residual graph that residual conflict graph that remains a goes to the stack now we 

have to find another graph which has less than 4 neighbors so we are assuming that the graph is 

for colorable and hence we are trying to find out neighbors which are less than 4. So we choose 

d, d has 3 neighbors less than 4 neighbors and we choose d. 
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And after we have chosen d the residual graph is this one, this is the residual graph that remains 

and ad and a goes into the stack. Now we see that all the remaining nodes have less than 4 

neighbors and hence I can choose in any order, so we can remove any node we continue 

removing nodes until the graph is empty, so f,e,b,c,d,a is a certain order of choosing the nodes 

and the stack will be this after removal of all nodes. 
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So before the start of the algorithm we see that if has more than 4 neighbors more than 3 

neighbors e has 4 neighbors c has 4 neighbors so I can choose either a or b or d I had chosen a 

that can be done randomly. 
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However I have chosen this order and have come to this place and for now I have an empty 

graph, now when I have an empty graph and all nodes have been put into the stack I will start 

assigning colors to the nodes starting from the top of the stack and at the top of the stack I have f 

which is the last node I have added so I had first added a then I had added be then I took it order 

cdef now when I have taken out c I have allocated resource r1 with the blue color to f at this step 

then I take out the next color e and we see that e and f share an edge and hence I allocate another 

distinct resource r2 resource 2 color it red and I use a distinct resource because they share an 

edge. 

 

Now I takeout edge be and we see that b has an edge with both f and e and hence I cannot use the 

colors blue or red and I have used black here so I need another instance of the resource so I have 

already used three instances of the resource for executing a fb and e then I remove c.\ 
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And I see that c also shares an edge with each of the previous nodes each of the previous 

operations and therefore I have to allocate another different colors a pink to this node. Now I 

take out d we see that d and b do not share an edge and hence d and b can have the same color so 

the same resource instance can be used for both operations b and resource instance are three 

black can be used for both b and d and at last I take out a we see that a and e can have the same 

color because they do not share an edge and the same resource can be assigned to both of them.  

 

Hence, I have been able to allocate all the operations of my operation constraints graph using 4 

colors from the corresponding conflict craft that I have by obtaining a coloring of the conflict 

graph using 4 colors this is a heuristic graph coloring methodology for general graphs. Now we 

must understand that like we said that across modules when there are loops as well as branches. 
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 Conflict graph becomes non-chordal and becomes a general graph and polynomial algorithms 

do not exist for coloring similar for functional units we studied that this similar thing happens for 

registers as well because let us say this is an operation instance multiplication and this operation 

floats is output on a particular register suppose I allocate a functional unit f1 to this 

multiplication operation then there are two distinct intervals in which the functional unit must 

hold operation 1. 

 

Similarly there will be two distinct intervals for the corresponding temporary register at the 

output of this multiplication operation and hence the registered implemented will have two 

distinct intervals and will not be a simple interval graph anymore. 
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And hence the register coloring problem or the register allocation problem will also become a 

general graph coloring problem which is NP-complete and one of the methods by which we can 

color such a general graph is by the graph coloring method. 
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That we just studied we come to the end of module 2 of lecture 7. 
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