Basic Electronics Dr. Chitralekha Mahanta Department of Electrical and Communication Engineering Indian Institute of Technology, Guwahati

Module: 4 - Operational Amplifier Lecture-3 Op-Amp Applications – Part 1

We are discussing about the op-amp or operational amplifier and we have been discussing about the application of op-amp in different circuits and we have seen applications of op-amp in practical amplifier circuits like inverter, non-inverter, integrator, differentiator and also we have discussed about the difference amplifier. The difference amplifier circuit is the circuit which gives the difference between the two input voltages with some scaling factor which is given by the connected resistances. Let us again visit that difference amplifier circuit.

(Refer Slide Time: 2:00)

In this diagram there is a circuit for difference amplifier and here we have to find out what is the output voltage V_0 naught for given input voltages of V_1 and V_2 .

(Refer Slide Time: 2:21)

The ratio between the resistances is such that R_2 by R_1 is equal to R_4 by R_3 . What will be the output voltage V_0 if this ratio is maintained? In order to solve such example we will apply the ideal op-amp consideration that we have been using till now, that the ideal opamp has infinite input impedance, so there is no current entering into the op-amp. We have also seen that the gain being infinite for an ideal op-amp, the voltages at the two terminals of non-inverting and inverting, that is at these two terminals are non inverting and inverting terminals, are equal. Applying these principles we will try to solve the circuit. In order to solve, let us draw this circuit again. This is a difference amplifier having the resistances at the two terminals of inverting and non-inverting. The resistances are R_1 , R_3 and we have another resistance to ground at the non-inverting terminal which is R_4 and the feedback resistance is R_2 . So this is the circuit and at the input there are two voltages V_1 and V_2 . We are interested in finding this voltage V_0 if the ratio R_2 by R_1 equal to R_4 by R_3 ; so this has to be satisfied.

If we look into the circuit, in order to find out the voltage V_0 , view the two voltages; one is V_1 and the other is V_2 . There are two input voltages. Applying the principal of linear circuit, this is a linear circuit; this op-amp is linear, we will find out this output voltage, applying the principle of superposition. We will find out V_0 first due to one voltage only, making the other zero and then sum up the responses due to individual voltages to give the combined output voltage. That is to be done; in these types of circuits that will simplify the solution. Here let us first keep voltage V_1 and make the voltage V_2 zero and find out what is V_0 ? First part of the circuit when V_1 is there and V_2 is zero and second part, we will do when V_1 is zero and V_2 is there.

(Refer Slide Time: 6:14)

The first condition of making V_2 zero will give us the circuit as having V_1 here. This is the resistance R_1 and this is the inverting terminal and V_2 is zero. V_2 is zero means it is like grounded. V_2 here is grounded, but the resistances cannot be eliminated. The resistances which were connected to V_2 will still be there. This is the non-inverting terminal which is connected to these two resistances, which are connected to ground because V_2 has been made zero and the other is this R_2 , as it is there. Let us name the response due to this V_1 alone as V_{01} . This is the first condition. Due to V_1 alone, the voltage if we want to find out, if we look into the upper part of the circuit it is an inverting type of circuit, inverting op-amp configuration that we have seen earlier. The voltage V_{01} will be equal to V_1 minus R_2 by R_1 . Here I am using the circuit, which was used earlier for inverting op-amp. Because if we look into the lower portion of the circuit, these two resistances R_3 and R_4 which are connected to the non-inverting terminal, they are not affecting in any way because the current entering into the op-amp is zero. So the current cannot flow through this R_3 and R_4 . That is this part of the circuit which consists of R_3 and R_4 does not affect the overall op-amp circuit. That is why it is simple application of an inverting type of op-amp.

Second part is when you have V_1 zero and V_2 is alone there. If we consider that V_1 is zero, this is R_1 , this is the inverting terminal and this is the feedback resistance R_2 . In the non-inverting terminal we have R_3 and R_4 like this and R_3 other terminal is connected to V_2 . In this part of the circuit, what is the response at the output? Let us name it as V_{02} , which is due to V_2 alone. In order to solve this circuit, let us focus on this part that is the non-inverting terminal. The voltage which is applied at this point, let us name it as say a, that is the non-inverting terminal is V_2 into R_4 by R_3 plus R_4 because this voltage V_2 is having voltage division one part across the resistance R_3 and the other voltages across this resistance R_4 . So, the voltage which is available at the positive terminal that is the non-inverting terminal which is denoted by this node a, that is nothing but V_2 into R_4 by R_3 plus R_4 . If this voltage is applied at this terminal a and we are to find out the output response V_{02} , this is nothing but a non-inverting type of op-amp.

We have a voltage at the non-inverting terminal and this voltage we have found out V_2 into R_4 by R_3 plus R_4 and we have connected these resistances at the inverting terminal which is due to R_1 and R_2 . That is nothing but a non-inverting op-amp and the voltage at the output V_{02} if we want to find out that is equal to 1 plus R_2 by R_1 into the voltage which is given at the non-inverting terminal.

(Refer Slide Time: 11:03)

If we want to find out V_{02} that is equal to 1 plus R_2 by R_1 into the voltage at the noninverting terminal, which we have found out and that is equal to V_2 into R_4 by R_3 plus R_4 . Now the total response V_0 we have to find out and that is equal to V_{01} plus V_{02} . We just add up these two voltages; individual responses we add up to find the final response. V_{01} we have found out to be equal to V_1 into minus R_2 by R_1 plus this portion of V_{02} we have to add up and that is equal to V_2 into R_4 by R_3 plus R_4 into 1 plus R_2 by R_1 . This is finally the voltage available but we will also use the condition given here and the condition which we are having is that R_2 by R_1 is equal to R_4 by R_3 .

Manipulating this response a little and using this relation, we will further simplify this voltage expression V_0 and you can look in this expression. If we divide this numerator and denominator by R_3 , then we will get in the numerator R_4 by R_3 and in the denominator we will get 1 plus R_4 by R_3 . As this ratio is equal, we can now utilize it. One more step we will write, which is equal to V_2 into, we will write it R_4 by R_3 by 1 plus R_4 by R_3 into 1 plus R_2 by R_1 ; so this we get. Now this R_4 by R_3 we can replace by R_2 by R_1 . Then the term in the denominator and this term will cancel out and then we will get further simplified expression which can be written as minus R_2 by R_1 plus V_2 ; in the

numerator we will write R_2 by R_1 using this relation. In the denominator again 1 plus R_2 by R_1 and you can see here in this expression we are cancelling out these two terms.

(Refer Slide Time: 14:07)

Finally what will we get? We take common this R_2 by R_1 , because in this expression we see R_2 by R_1 finally will be left here in the second part of the expression; R_2 by R_1 we can take common and what we will get is R_2 by R_1 into V_2 minus V_1 . This is the final expression for the output voltage V_0 . If we maintain this resistance ratio that R_3 by R_4 equal to R_1 by R_2 or R_4 by R_3 equal to R_2 by R_1 , then we get a simple difference amplifier which is giving the output voltage as a difference between the two voltages at the input and it is multiplied by a scaling term and that scaling term is coming from the resistances R_1 and R_2 . This is one example of application of op-amp which is very important and we will see later that these are difference amplifiers. Basically these are used in many instrumentation circuits where we want to amplify a very small voltage. Because in instrumentation what happens is that generally the voltage which has to be measured, may be in the order of millivolt or even lesser and we want to amplify it to be used somewhere. We have to basically amplify this small magnitude of voltage and in that case we will use the basic principle of the difference amplifier because here this V_2 minus V_1 is that available differential voltage at the input and that is amplified by this resistance network.

(Refer Slide Time: 16:03)

Let us consider a circuit where, in the output we want to have a half wave rectified output. But this output is exactly same in magnitude with the input voltage in that half of the input cycle when it is rectified. That is why the name is precision rectifier. In the normal rectifiers which we have seen earlier, in our diode study we were discussing about half wave rectifier circuit and in that type of circuits what we saw is that using a single diode we get rectified output at the output side for one half of the input signal and for the other half we get zero voltage. But what is important is that, in that half wave rectification for a very small voltage the diode was not conducting because diode conducts when the voltage applied is greater than the cut in voltage which is 0.7 volt for silicon and 0.3 volt for germanium.

For that portion of the input voltage when it is very small and less than the cut in voltage, there was zero current in the diode and so at the output also we got zero voltage. So there is a lag between the start of the current and the application of the voltage. But in this precision rectifier, which we are going to discuss that problem will be overcome. That is we will get exactly the input voltage at the output for the portion of the cycle when the

rectification is occurring or for that portion of the cycle when the diode is conducting. Let us see a circuit where we are using an op-amp along with a diode. This diode is connected at the output side. This is the feedback part which is formed by this diode. If we consider positive half cycle of the signal, suppose we are giving AC signal which is sinusoidal. In the positive half cycle of the signal when this V_i is positive, at the output which we are naming as V_{01} that will be also positive which means that the phase of the input voltage is not changed at this output V_{01} because it is the non-inverting terminal. As we are applying positive half cycle and here also we are getting a voltage which is positive, this diode will conduct. Let us take this diode current. When it is conducting the current is I_D . The diode current will flow through this R_L resistance. Let us name this resistance as R_L and this current through this resistance is I_L , so the current part is like this.

Now what will be V_0 ? We are considering say this feedback loop. This feedback loop is now complete and it is nothing but like a voltage follower circuit; we have earlier discussed voltage follower. This diode is conducting. So this voltage V_0 is equal to V_i . The voltage here and voltage here are same. So this voltage is V_i ; so V_0 equal to V_i . When in the positive half cycle we are having this feedback loop is complete and V_0 is equal to V_i and when V_i is very small, even less than this cut in voltage still V_0 is equal to V_i . So we are getting at the output same voltage as V_i . V_0 and V_i are equal, so there is no portion of this output voltage where we will get zero voltage. In the positive half cycle of the signal when this diode is conducting, then also we get V_0 equal to V_i but when this V_i is very small voltage, still as this is a voltage follower circuit we are getting V_0 equal to V_i .

But what will happen in negative half cycle of this input signal? For example in this negative half, we are applying a negative voltage at V_i . So V_{01} also will be negative. Because it is a non-inverting terminal, the polarity of the applied voltage does not change; same polarity. So V_{01} will be also negative. When V_{01} is negative, then this diode does not conduct. When this diode does not conduct, this feedback loop is now not complete because there is a break here.

(Refer Slide Time: 21:37)

What we will get? Actually if we have V_i negative, then we are having this diode and this is the feedback part and this is the resistance which we are considering. We are interested in finding out V_0 . As this voltage input is negative, this V_{01} is also negative. This diode doesn't conduct, so there is a gap in this feedback part. This feedback part is not complete. That means it is not continuous, there is a break. As there is a break, V_0 will be now equal to zero. There will be no flow of current through R_L . V_0 will be equal to zero; that means we are having in the negative half cycle, zero voltage and in the positive half cycle equal to input voltage. We are having now a perfect half wave rectifier which is called precision rectifier, the reason being that we are having exactly the input voltage at the output for the positive half cycle. (Refer Slide Time: 22:52)

This is the plot between V_0 and V_i and this plot as we know, it is called transfer characteristics. If we plot this V_0 versus V_i , this V_0 and V_i being the same unit, both are voltage, V_1 is also voltage V_0 is also having unit voltage. As in the positive half cycle, when V_i is positive, V_0 is equal to V_i . It is a straight line passing through the origin and the slope is 1. Slope is 1 because at any point if we find a slope this is equal to this. That means n theta is equal to 1. So theta is 45 degree angle. This is the characteristic of the V_0 , output voltage versus input voltage V_i . In the negative also it is totally zero. This is the transfer characteristic of the precision half-wave rectifier but in the normal half wave rectifier we did not get this type of characteristics because for a considerable portion of V_i , we are getting actually zero voltage, only then V_0 and V_i were equal. But for this portion when the voltage V_i is less than cut off, cut off voltage means silicon has 0.7 volt; for that portion V_0 was zero. Now we are achieving this precision in the half-wave rectifier with this precision rectifier circuit.

(Refer Slide Time: 24:42)

Another example of application of an op-amp with non-linear components is logarithmic amplifier. As the name suggests it has something to do with the logarithm. Here what we will get finally that we are going to derive. If we find out the output voltage V_0 , that will have a logarithmic function of the input voltage. That is why it is called logarithmic amplifier. In this circuit we are having this op-amp as well as a PN diode, which is connected in this feedback part. Resistance in the input is R_1 and V_i is the input voltage. One thing to notice is that we will have to apply only positive values to the input voltage. That means we will only apply positive V_i . Because this diode has to conduct, we cannot apply negative voltage so, V_i is actually limited to only positive values. If V_i is limited only to positive values that means we will consider only positive V_i .

So what will happen when we have a positive voltage at V_i ? This circuit is having this diode. As this diode is forward biased by this positive V_i , it will conduct. The current part if we consider, this is the current say I_1 . This current is same as the current through this diode I_D . Because there cannot be any current into the op-amp, the current I_1 must be equal to current I_D . What will be the output voltage V_0 ? If we look into this output voltage V_0 , the voltage here is zero because this voltage is equal to same as this voltage.

(Refer Slide Time: 27:01)

In this circuit if I consider the voltage across this diode as V_D , V_D is the potential across this diode.

(Refer Slide Time: 27:16)

In order to find out this V_0 , let us first find out what is the diode current? The diode current is nothing but the diode current in a PN diode or PN junction and we have already discussed about a PN junction extensively and we know the expression for the diode

current and if I consider diode current as i_D , i_D equal to reverse saturation current I_S into exponential to the power v_D into K by T_k minus 1. This expression we already know. The terms which are used here is that I_S is the reverse saturation current, v_D is the voltage across the diode. K is a constant which is given by 11600 by eta. The value of eta is 1 for the higher portion of the diode current for both silicon and germanium and we will use that eta value 1. T_k equal to the temperature in Kelvin, absolute temperature; whatever the temperature in centigrade plus 273, that will be in degree Kelvin. We will consider the room temperature to be say 25 degree centigrade. Generally 25 to 27 centigrade is considered to be the nominal room temperature in centigrade. If we convert it to absolute temperature scale Kelvin, then it is equal to 25 plus 273, which gives 298. So 298 Kelvin is T_k and the value of K is 11600.

If we rewrite this expression a little, we get i_D equal to I_S into e to the power v_D by T_k by K. This K by T_k , I am writing in the denominator; so, it becomes T_k by K and T_k by K we have computed to be equal to 298 by 11600 and that is giving a value of 0.026 volt or 26 millivolt. Actually this is 0.026. This expression has a value of 0.026 and the unit is volt and that can be written in millivolt as 26 millivolt. This is a very important parameter known as thermal voltage V_T . So V_T , which is equal to T_k by K is having the value of 26 millivolt at room temperature. This is called the thermal voltage. V_T is known as thermal voltage and at nominal room temperature, it is 26 millivolt; this value you should remember.

(Refer Slide Time: 30:37)

Our expression for the diode current will be now simplified using that V_T , which will be now written as i_D equal to I_S into e to the power v_D by V_T minus 1. Here we have to only know what is v_D that is the voltage across the diode because others, V_T which is thermal voltage that we know at room temperature and I_S is the reverse saturation current. Unless and until temperature changes, then I_S does not change. If we consider a constant temperature, I_S value will not change. If we look into this expression when the diodes starts to conduct, then the diode current is having a high value. The component 1, inside bracket can be very easily neglected because this value e to the power v_D by V_T is considerably greater in comparison with 1. We can write this expression, when the diode conducts, to be almost equal to I_S into e to the power v_D by V_T . (Refer Slide Time: 31:45)

Again if we look into this output voltage, to find out the output voltage then we go by this loop and write down the KVL, Kirchoff's voltage law. Starting from ground, zero minus this drop we are naming as v_D minus V_0 equal to zero. Because V_0 is with respect to ground; that point even though it is not drawn you must always remember it is with respect to ground. This Kirchoff's voltage law in this loop gives zero minus v_D minus V_0 equal to zero; means v_D equal to minus V_0 . We will use this v_D equal to minus V_0 or V_0 equal to minus v_D and replace it here in this expression by this. We are getting now i_D equal to almost I_S into e to the power v_D by V_T . That expression we can write down as equal to I_S into e to the power minus V_0 by V_T ; we can write it this way, replacing this v_D by minus V_0 from this expression.

Again you look into the circuit and what is i_D current? Again let us look from another point of view, from the input side. If I look from the input side what is this current? We are naming it i_i . i_i is equal to V_i by R_1 because the loop which will be effective in finding out this current is this one, if we consider so V_i this point is ground. V_i by R_1 is equal to i_i ; so i_i is equal to V_i by R_1 . Again this current is the same current as the diode current i_D . (Refer Slide Time: 33:42)

Whatever diode current expression we have got, we can equalize it to V_i by R_1 . That is V_i by R_1 is equal to I_S into e to the power minus V_0 by V_T . From this we can also write as V_i by I_S into R_1 equal to e to the power minus V_0 by V_T ; just I am dividing both sides by I_S . Again manipulating a little further what we will get? If we want to free this term, we have to use natural logarithm; logarithm to the base e. Taking logarithm to the base e both the sides, what will I get? Left side will be logarithm. Natural logarithm is written as simply ln V_i by $I_S R_1$ equal to right side will be only simply minus V_0 by V_T because ln e to the power minus V_0 by V_T simply is minus V_0 by V_T . Because this is to the base e only, this whole thing will become minus V_0 by V_T equal to this term.

So what is V_0 ? minus V_T into ln of this inside term. In the final expression if we just focus we see that output voltage is the function of the V_i but this function is a logarithmic function to the base e. So we get natural logarithm of this V_i , which is the output voltage. There are other terms which are scaling down terms like we have to multiply it by V_T , which is the thermal voltage and also V_i divided by I_S into R_1 . But as these terms are constant, we are not going to actually vary this R_1 and V_T because if temperature does not vary, the thermal voltage V_T will be also constant; it does not vary and I_S that is the reverse saturation current also does not vary. When we have already connected in a circuit, we are not going to change the R_1 value. So finally it is having the variable V_i only. So output voltage will be a function of V_i and that too a logarithmic function. That is why this amplifier circuit is known as logarithmic amplifier; we are amplifying but we will get a logarithmic expression.

(Refer Slide Time: 36:26)

Similarly another circuit which is reverse of the logarithmic amplifier is antilog or exponential amplifier. Here also we are using the same diode as well as the resistance but the connection is different from the earlier connections. What we are having here is a circuit. When you have a diode here in the input side and the feedback is having resistance R, what will be V_0 in this circuit? To analyze this circuit, let us name the current through the diode as i_D and the current through the resistance which is the same current but we are naming it as i. i_D and i are in fact same; equal. We now find our i_D ; we have already discussed about this diode current using the expression I_S into e to the power v_D by V_T minus 1. Again we will simplify it to be written as I_S into e to the power v_D by V_T , because it is higher than 1 we will just neglect 1. But then what is this voltage across this diode?

(Refer Slide Time: 37:49)

If we consider this circuit using KVL, Kirchoff's voltage law if we name it as say this is v_D , V_i minus v_D equal to zero. That means v_D equal to V_i . So the voltage drop across this diode, which we are denoting by v_D , is nothing but input voltage. This expression for the current i_D can be written down as e to the power v_D by V_T . That was the expression for the I_S into that I_S is there.

(Refer Slide Time: 38:39)

$$i_{D} = I_{S} e^{\frac{v_{L}}{V_{T}}} \qquad (= i_{D})$$

$$v_{o} = -i R = -i_{D}R$$

$$or, v_{o} = -I_{S} e^{\frac{v_{L}}{V_{T}}}R$$

$$or, v_{o} = -I_{S} R e^{\frac{v_{L}}{V_{T}}}$$

What we get? I_S into e to the power v_D by V_T . V_D is nothing but V_i , input voltage. So we are replacing v_D by V_i and then what is again V_0 ? Going from the ground to V_0 , by this loop if we come this is ground plus minus; so what this loop is giving us? zero minus iR minus V_0 equal to zero.

(Refer Slide Time: 39:20)

So V_0 equal to minus iR. V_0 equal to minus iR and what is i? i is again nothing but i_D; the same current is flowing through both the diode as well as the resistance R because there cannot be any current entering into the op-amp. This current and this current are same. So what we get from this expression is V_0 equal to minus i_D, we will write from here. Replacing here this i_D by this expression that is equal to minus I_S into e to the power V_i by V_T into R. That means we are getting a voltage which is V_0 that is equal to minus I_S into e to the power V_i by V_T into R into e to the power V_i by V_T . If we look into this expression closely, we see that we are getting a output voltage V_0 which is exponential function of the voltage V_i , which is at the input. We are having an exponential of the input voltage or it is an antilog of the input voltage because as we have earlier seen these terms I_S, R and V_T are constants. So it is a function of only the input voltage and that function is nothing but an exponential function. From these two examples we have seen that we are able to do logarithmic as well as exponential operations. These arithmetic operations are possible by connecting an

op-amp with a non-linear component like diode. We have seen only simple examples but practical limitations are there because of which we have to improve upon the circuit. But then those complex circuits we are not discussing because we are only trying to get the idea of these operations like arithmetic operation how it is done with the help of an op-amp. We will not go into detail complex circuits but the main principle or idea which is used is this one.

(Refer Slide Time: 41:40)

The difference amplifier which we have seen is widely used in instrumentation circuits. Instrumentation circuits as I have said earlier, has to amplify a very small voltage in the order of millivolt. But while using this difference amplifier in instrumentation circuit there are some practical disadvantages. (Refer Slide Time: 42:27)

One disadvantage is that the input resistance is very low because if we look into the difference amplifier, again we see that the input resistance which is only defined or which is given by the resistances R_1 and R_3 , these has a limited value. That is, it is finite and it is a low value. So input resistance is low and that is a practical disadvantage of a practical voltage amplifier.

(Refer Slide Time: 43:01)

Another disadvantage is that we have seen that we have got the output voltage V_0 which is R_2 by R_1 into V_2 minus V_1 . The gain is very important in an instrumentation amplifier because it is dealing with a very small millivolt order and that has to be amplified. So we need a very high gain basically and here it is difficult to change the gain because of the fact that the ratio, R_2 by R_1 is the determining factor for the gain of the op-amp circuit. But to change the gain, we have to change R_2 and R_1 and that is not very easy actually. So the gain change is difficult in this type of difference amplifier; that is gain cannot be easily varied. We have to take help of another improved instrumentation amplifier which is based on difference amplifier but we have to modify the circuit a little to overcome these difficulties. That circuit we are going to discuss now. This is an instrumentation amplifier circuit which is a very vital application of op-amp. Op-amp applications we are going to discuss and first we will discuss instrumentation amplifier.

(Refer Slide Time: 44:36)

The circuit of an instrumentation amplifier is shown here. Here we can very easily recognize this portion. If we just focus on this part, it is nothing but the difference amplifier which we have earlier discussed. It is a normal difference amplifier having these values of resistances. The ratio we have to keep constant; that is we have seen earlier, R_2 by R_1 is equal to R_4 by R_3 in order to get an output voltage which is equal to

 R_2 by R_1 into V_2 minus V_1 . Here in this amplifier, the resistance is R_2 only; R_3 and R_4 and R_3 is this resistance and equal to the resistance here. Instead of four different resistances R_1 , R_2 , R_3 and R_4 we are maintaining the ratio by making the resistances R_1 and R_2 equal to R_3 and R_4 . That means we are using only two resistances R_3 and R_4 in this difference amplifier and prior to it we have another circuit having two op-amps and resistances and these resistances are R_2 R_1 R_2 . The connection is like this. The resistances are connected in this way along with two op-amps.

These op-amps are getting the input voltage V_1 and V_2 . For this circuit, we are going to find out what will be the output voltage V_0 ? If we look into this circuit using ideal op-amp considerations, we will first look into the current that flows and the voltages.

(Refer Slide Time: 46:47)

For that let us name the voltages and currents as shown in this figure. Here let us name the voltage at this node as V_a and at this node as V_b . Other voltages at these two nodes are V_1 and V_2 . If I consider the currents which are flowing in this circuit, the current in the top resistance R_2 which is flowing is i_1 . Then as current cannot enter into this op-amp, the current which is flowing in R_1 will also be i_1 . Similarly the current which will flow in R_2 is also i_1 . That means same current from top to bottom will be flowing because of the fact that there cannot be any current into the op-amp. If we look into the voltages, if these voltages V_1 we are naming, this is the same voltage here which is V_1 that is equal to this voltage V_1 . That means in this circuit if this voltage is V_1 , then this voltage is also V_1 and that is why if this is V_1 , this is V_1 , this is also V_1 and we are getting V_1 at these three points. Similarly this voltage is V_2 . Using ideal op-amp consideration, this non-inverting voltage is equal to the inverting terminal voltage. This V_2 equal to V_2 and this is nothing but this point, so this is also V_2 .

(Refer Slide Time: 48:31)

What is the current i? We can find this current i equal to V_1 minus V_2 by R_1 . If we consider these two voltages, at the two ends the potential difference is V_1 and minus V_2 divided by R_1 is this current i. So that is written here and what is the voltage between V_a and V_b . That is V_a minus V_b same current i is flowing; i into the whole resistance combination will give you the potential between these two points V_a and V_b . V_a minus V_b equal to i into R_2 plus R_1 plus R_2 that means i into twice R_2 plus R_1 is equal to V_a minus V_b . These are the key equations and from these two equations we can find out V_a minus V_b . By replacing this i by this second equation we have now V_a minus V_b equal to i being replaced by V_1 minus V_2 by R_1 into twice R_2 plus R_1 .

If we look into the difference amplifier portion, this is the difference amplifier portion and the voltages at these two points are V_a and V_b . This is the non-inverting terminal, this is the inverting terminal and just using the result which we have earlier derived, we will straight forward write down the voltage output for this difference amplifier. This portion you look individually and find out what is V_0 ? V_0 is nothing but equal to V_b minus V_a into R_4 by R_3 . Because earlier we have got that V_b minus V_a into R_2 by R_1 , where R_2 and R_1 were the resistances in the feedback as well as the input part. Using that result we will now write, V_b minus V_a into R_4 by R_3 is equal to V_0 . Now replacing V_b minus V_a by this previous expression, we will write that is equal to R_4 by R_3 into V_b minus V_a , if we take the negative of this, it will be V_2 minus V_1 into twice R_2 plus R_1 . We can write down by taking R_1 common and cancelling with R_1 . I am writing one more step to simplify V_0 equal to R_4 by R_3 into V_b minus V_a is nothing but from this expression if I write V_b minus V_a give a minus sign in from it will be V_2 minus V_1 by R_1 into, again taking R_1 common, it will be 1 plus twice R_2 by R_1 . Then this and this cancel. So what we will get is this expression that is V_0 equal to R_4 by R_3 into 1 plus twice R_2 by R_1 into V_2 minus V_1 . The whole amplifier action is to give an output voltage V_0 equal to this expression.

If we see this instrumentation amplifier as a whole, it is having the difference amplifier using the basic principle of difference amplifier but there are other portions in front that take care of the disadvantages and over come. Because now what we see here is that we are having an instrumentation amplifier whose input impedance if we look, the input impedance will be now infinite because we are having the whole block as the amplifier. (Refer Slide Time: 53:04)

If we consider this side as the input then, we are getting very high input impedance. Also it is now easy to change the gain. Because if we look into this expression the gain can be changed if we change this R_1 keeping the R_2 part constant. That means you can connect a differential resistance; we can connect a rheostat type of resistance where we can change the rheostat value to change the value of R_1 . This has more flexibility in order to change the gain than the earlier difference amplifier, which we were using earlier. This instrumentation amplifier circuit is a better circuit than only difference amplifier and it is used enormously in instrumentation circuits.

In this discussion today, we saw the application of op-amp along with non-linear circuit components to build some very important arithmetic operation amplifiers like logarithmic amplifier, then exponential type of amplifier and also we have seen an example of a precision half wave rectifier, how it is being made. Also we have seen about a practically important circuit of instrumentation amplifier which works under basic principle of a difference amplifier. But it is better and modified and it overcomes the drawbacks of the regular or normal difference amplifiers and these different examples that we have discussed gives us the idea that op-amp can be used extensively in various circuits for use in different applications.