Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Module: 2 Bipolar Junction Transistors Lecture-6 BJT Amplifier – Part 1

In the last class we discussed about the different biasing schemes used for amplifiers and we studied about the significance of proper biasing scheme so that a week signal given as input can be faithfully amplified without any distortion occurring at any portion of the signal. Today we will discuss about the amplifier which is used for such amplification of week signal with different biasing schemes and today we will start discussing a BJT amplifier in the common emitter configuration. The common emitter BJT amplifier with fixed biasing scheme will be discussed first. The fixed biasing scheme as you have studied earlier is having a biasing resistance given here by this R_b . This resistance is connected to base terminal and its shares the same V_{CC} with the collector which is used for reverse biasing. We are taking for example an NPN transistor which is common emitter configuration. Here apart from these biasing resistances there are capacitances, which are used for coupling the signals.

(Refer Slide Time: 2:36)

The C_1 is the input coupling capacitor which is coupling the signal V_S and the output which is obtained at the output terminals this output is V_O and this output is obtained by coupling the collector with a capacitor C_2 and this V_S which is the input signal this is having a series (00:03:00) resistance R_S and we are getting the output voltage V_O across this load resistance R_L . This amplifier has the source resistance R_S in series with the source V_S and it has a load resistance R_L and we are getting the output voltage across this load resistance and R_B is the resistance which is connected in the base for biasing and R_C is the resistance at the collector. This scheme is a simple biasing scheme which is known as fixed bias scheme.

In order to know how this amplification is taking place by considering the AC equivalent circuit we can proceed now to find out the different parameters which are involved in this amplifier. We can find out the voltage gain that is the ratio by which the output voltage is increased with respect to the input voltage V_I or with respect to the source V_S . As well we can find out the current gain, the ratio between the output and input currents. Also we can find out the input impedance, output impedance, etc. But before that we must draw the AC equivalent circuit for these amplifiers including the transistor model which we discussed earlier. r_e model will discuss here. That is we will take the r_e model for replacing the transistor.

First we will draw this AC equivalent circuit. Following the procedure which we discussed earlier we can draw the A C equivalent circuit by first making the DC sources zero that is short circuiting the DC source. Then we will assume short circuit part for the AC input as far as the capacitors are concerned because the capacitor are chosen high values so that under the signal which is being applied the capacitors offer almost zero impedance or capacitive reactance such that it is like short circuit. Following this procedure if we try to draw the AC equivalent circuit for this fixed bias transistor amplifier we will make the V_{CC} zero. Here it is only having the DC source V_{CC} shared by this R_B and R_C. This source will have to be made zero first. That is we will be grounding this V_{CC} and after grounding this V_{CC} we are left with the R_B and R_C resistances being grounded. As far as this figure here R_B and R_C, these two resistances are connected to ground and then we will consider the capacitances C1 and C2 and make them short circuit because we are drawing the AC equivalent circuit and as these capacitors are having large values it is almost equivalent to being short circuited as far as AC is concerned. This pat involving C_1 and C_2 will be short circuit as far as the signal is concerned. Short circuiting means we will simply remove these capacitors by short circuit part.

As far as this base terminal is concerned, it will have an R_B which is grounded as well as it will be connected to V_S the signal at the input through this resistance R_S and this coupling capacitor will also be now removed and it will be a short circuit part from collector through this load resistance to ground and another part will be there from the collector which is through this resistance R_C to ground because V_{CC} is now grounded and emitter is already grounded. The whole circuit as far as AC equivalent is concerned, will have this base, collector, emitter terminals as coming from the transistor. From the base terminal this R_B is connected to ground and another part will be to this V_S through this R_S .

(Refer Slide Time: 7:07)

Collector will also have this R_C to ground and R_L is the load resistance connected at the collector to ground; it will be there as far as this transistor is considered and we have already discussed how to draw this equivalent r_e model that is emitter resistance model for this transistor. We will replace simply the equivalent transistor model for the common emitter transistor. This base, collector, emitter this is the transistor basically. Here the emitter is having the resistance beta plus one R_E and collector is having a dependent current source beta times I_B which is equal to I_C . This part is replaced by this transistor model and incorporating this transistor model into the whole circuit we are getting this AC equivalent circuit for the amplifier.

Now we want to find out the voltage gain. For example if we try to find the voltage gain we will find out the ratio between the output voltage and the input voltage. We have to see which are the input terminals and output terminals? Always we will see from the source to find out the input terminals and we will look from this load to consider the output terminals. That means the whole amplifier will be having the source and load externally. As if we are sitting at the source and looking into the amplifier, in that way we have to find out the parameters. Similarly as far as output is concerned we will be looking from the load as if we are sitting on the load and looking into the amplifier. This point is important because we will have to exclude the source and load while finding out the parameters in the whole amplifier. In between these two dash lines is the whole amplifier and a source and the load are external to it.

Now we want to find out the voltage gain that is gain means the amplification between the output voltage and input voltage. The output voltage is between these two points. That is the voltage across this load resistance and input voltage is between these two points. V_I is the input voltage and V_O is the output voltage and conventionally this input and output currents if we consider they are into the amplifier. Customarily the direction is shown as into the amplifier. So I_I that is the input current which is coming from the source, it will be flowing into the amplifier at this input terminal, so this is the input current and output current at this output terminal into the amplifier. The I_0 current is flowing through this resistance R_L into the amplifier and input current is coming from source into the amplifier.

If we look into this input current we notice that the input current is having two parts. One part is through this resistance R_B and other part of the current is through this resistance beta plus one R_E . This input current basically has two parts: one is through this, one is through this and if we consider the current source of the output, I_C is the current source which is equal to beta times of I_B and the current which will be flowing, will be flowing in this direction. It will be going to the output side; input current, base current will be coming and it will be flowing like this. Here the beta times of I_B current which is the collector current has actually three parts: one is through this R_C , one is through this R_O . Ro is the output resistance of the transistor. We generally ignore this because it is having a very high value in the order of mega ohm but to be exact this should be there and after words we can ignore. If we are told that it is very, very large you can ignore it. But for time being while drawing the exact equivalent circuit we will be having this R_O at the output side. This R_O is the output resistance of the common emitter transistor and that is generally having very high value.

(Refer Slide Time: 11:07)

This collector current beta times of i_b has three parts one is through R_C and one is through this R_O and other is through this R_L which is nothing but the conventional output current i_o as it is shown here. We want to find input impedance; Z_i is denoting the input impedance. We have to take the input terminals; the voltage at this input terminal is v_i divided by the current i_i . Input voltage by input current will be the input impedance and output impedance we will look into the output terminals from the load and we will find out what is the output impedance by taking the ratio between v_o and i_o that is v_o by i_o making the input source zero. That is v_s you make zero that will make v_i zero means i_b will be zero, so i_c will be zero. We will be left with this two resistances being in parallel at the output side so that will constitute the output resistance. These parameters we are going to find out. But one thing to notice is that while finding these parameters we will exclude this source and load from this amplifier. That means we will look from the source to the input side or we will look from the load to the output side while finding of these parameters. We will find out these parameters one by one from this equivalent circuit.

We want to find out what is the input impedance Z_i ? The input impedance means the ratio between v_i and i_i . Z_i is equal to v_i by i_i . We can find out what is v_i ? If we look into this figure between these two terminals or two points, the voltage across this resistance beta plus 1 r_e or the voltage across R_B that is the input voltage. We can find out in two ways. That is the current which is flowing through R_B , multiply it by R_B . That is the v_i or current i_b multiplied by this resistance beta plus 1 r_e that is the input voltage. We will follow the latter. That is we will follow the input voltage expression that is i_b into beta plus 1 into r_e and denominator is i_i . Our purpose is to eliminate those active components. We will eliminate or cancel out the currents and we will be left with only the passive elements.

(Refer Slide Time: 13:32)

That is why this i_b if we want to express again in terms of i_i in order to cancel them out, we look back into the circuit and find out the base current. Base current is that part of the current which is flowing through this resistance coming from i_i . Input current is i_i . One part goes through this resistance R_B and other part is through this resistance beta plus 1 r_e . We are interested in finding out i_b . What is i_b ? These two parallel parts are there, so current division is taking place. So i_i into R_B divided by R_B plus beta plus 1 r_e that gives us the value of i_b . Expressing i_b in that way i_b is equal to i_i into R_B by R_B plus beta plus 1 into r_e , the remaining terms are there; beta plus 1 into r_e divided by R_B plus beta plus 1 r_e . This is the exact expression for the input impedance for this amplifier in the fixed bias

mode and here we find that all these parameters are passive parameters; means they are either resistance or they are either current gain beta and in fact we will have to find out the small r, small e that is the resistance coming from the transistor model and we can find it out.

In this particular example we can find out re because re is nothing but 26 millivolt divided by emitter current capital I, capital E, I_E. Once we know I_E from the DC equivalent circuit we can plug in the value here and find out the small r, small e. That exercise has to be done in order to proceed further. In order to find out all these parameters we have to consider both the DC equivalent circuit and AC equivalent circuit. DC equivalent circuit we have to consider because we want to find out what is small r_e. After we find out small re we can plug in here and we can find out the other parameters. Input impedance we have found out and here Zi can be expressed as a parallel combination between the two resistances R_B and beta plus 1 r_e. That is exactly what is happening because if we look into this expression R_B into beta plus 1 r_e by R_B plus beta plus 1 r_e, this is nothing but the parallel combination of these two resistances R_B and beta plus 1 r_e and in fact this is very, very obvious. If we look into the circuit from the input terminals then there are two resistances at the input one is R_B and one is beta plus 1 r_e, both are in parallel. Intuitively also we can see that this is the equivalent parallel resistance between these two resistances which are in parallel. That is what exactly we are finding out here, the parallel impedance between these two resistances that is R_B parallel beta plus 1 r_e. 1636 This is the input impedance.

We look into the output circuit and find out what is the output impedance? Here we have to find out looking from this load. Output impedance can be found out if we make this input voltage zero because we are interested only in the quantities in the output side. Input side components or input side currents or voltages must not interfere with this output side. If we make this V_i zero then i_b will be zero, so i_c will be zero. This is like open circuit. This part will not be there. We will be left only with two parallel resistances R_C and R_O because our circuit will be like this. This part will be i_b is zero, so i_c is equal to zero and there are these two resistances; one is R_C and one is r_o , small r_o that will be there at the output side and we are finding of this output impedance. This output impedance is the parallel impedance R_C and r_o . Output impedance is R_C parallel r_o making the input v_i is equal to zero. That is the procedure to be followed in order of find out what is output impedance?

(Refer Slide Time: 17:45)

At this point I want to mention that if r_o is considered to be very, very large which is actually the case, it is in the order of meg ohm; 10 to the power 6. As compared to R_C it is higher. So we can neglect this resistance or we can ignore this resistance because it is very high, it is almost like infinity. If it is very high or infinite what will happen is that there will be practically no current in this part. Because it is offering infinite impedance current will not flow in this part. That means it is like open circuit, r_o will be simply ignored. Then we are left with only R_C . Then we can say that R_C is the output resistance. This is the case when you ignore r_o . r_o means the output resistance of the transistor. These two parameters Z_i and Z_o we have found out. What about the voltage again?

(Refer Slide Time: 18:37)

Voltage Gain A. $\frac{-\mathbf{i}_{o}\mathbf{R}_{h}}{-\mathbf{i}_{o}\mathbf{R}_{h}} = \frac{-\beta\mathbf{i}_{h}\left|\frac{\mathbf{R}_{o}\|\mathbf{r}_{o}}{\mathbf{R}_{o}\|\mathbf{r}_{o} + \mathbf{R}_{o}\|}\right|}{\mathbf{R}_{o}\|\mathbf{r}_{o}\|}$ $\frac{\beta \mathbf{R}_{c} \|\mathbf{r}_{c}\| \mathbf{R}_{L}}{(\beta+1)\mathbf{r}_{c}} \approx \frac{-\mathbf{R}_{c} \|\mathbf{r}_{c}\| \mathbf{R}}{\mathbf{r}_{c}}$ **Phase Reversal** 180º phase shift occurs between the input and output signals

Voltage again is the ratio between the output voltage and input voltage. That means it is a ratio between v_o and v_i . If we look back what is v_o here? This v_o is nothing but i_o into R_L but with a minus sign because we have denoted v_o upper point is positive with respective to the ground but this i_o is following in this direction. This is i_o . i_o is this current. It is flowing from higher potential to lower potential as far as this sign is concerned. The voltage drop if we consider it as v_o it will be i_o into R_L with a minus sign. Minus i_oR_L will be equal to v_o because as far as direction of current this is positive point, this is negative point. But voltage we have denoted as v_o as upper point is positive. v_o is equal to minus i_o into R_L and input voltage we know. We have already found the input voltage is i_b into beta plus 1 r_e .

Again we replace the i_0 . If we look back into the circuit, what is i_0 ? i_0 is that part of current of i_c which is flowing through this resistance of R_L because if we look into this output side the current source is beta times i_b which is equal to i_c . This current is flowing in this output side and this current has three parts. As I have just now mentioned one part of current beta times i_b is flowing through R_C , other part is through r_0 and other part is through R_L and we are interested in finding out that part i_0 . If we combine these two R_C and r_0 together as R_C parallel r_0 that is one resistance; other is R_L . According to current division beta times of i_b is divided into this parallel resistance and this resistance. We are interested in finding out this resistance R_L . That will be equal to beta times i_b into this equivalent parallel combination R_C parallel R_L divided by R_C parallel r_0 plus R_L . That is written here. Beta times of i_b ; minus sign is there because minus i_0R_L is the voltage at the output. Here we are replacing this i_0 by beta times i_b into R_C parallel r_0 plus R_L into R_L . R_L is already there in the original expression and v_i input voltage is given by i_b into beta plus 1 into r_e .

We can further simplify this expression by writing minus beta into i_b , i_b cancel. Upper term or the numerator term if we again consider it is nothing but parallel combination between these three resistances R_C , small r_o and capital R capital L, R_L . Because this is R_C parallel r_o into R_L divided by R_C parallel r_o plus R_L . This is the parallel combination between this and this. Finally we have a parallel combination between all the three in the numerator divided by beta plus 1 into r_e . Beta and beta plus 1 are almost equal because beta is a high value; suppose 100 and 101 there is not much difference it is almost equal. We can conveniently cancel them out. Then it gives a further simplified expression and that is equal to minus R_C parallel r_o parallel R_L by r_e and here again if we now consider that r_o is very high then we can further ignore r_o and if r_o is ignored then we will get another further simplified expression of A_v which is equal to minus R_C parallel R_L divided by r_e , small r_e . This is a very, very simple expression to remember because now we have ignored r_o because it is very high. But this is the exact expression and further simplification can be done conveniently looking into the practical aspects.

One thing to be noted here is the minus sign. Actually this minus sign has significance or it has a meaning because minus sign means the phase reversal of 180 degree or the output voltage is out of phase by 180 degree with the input. That is actually denoted by this minus sign. 180 degree phase shift occurs between the input and output signals. That is

why v_0 by v_i is having a minus. If I have input voltage like this, I will be getting an output voltage which will be amplified no doubt but it is out of phase by 180 degree like this. So we will get 180 degree phase difference between the input and output and that is denoted by this minus sign.

(Refer Slide Time: 23:40)

If you want to find out another term which is current gain, the current gain is the ratio between output current i_o and input current i_i . Output current, as we have just now done, can be expressed as beta times of i_b into R_C parallel R_L by R_C parallel R_L plus R_L divided by i_i . It is better to look into the equivalent circuit to find out what is the i_b ? i_i into R_B by R_B plus beta plus 1 into r_e ; that also we have done earlier. Writing in that way that is what is done here; i_i into R_B by R_B plus beta plus 1 into r_e ; that also we have done earlier. Writing in that way that is what is done here; i_i into R_B by R_B plus beta plus 1 into r_e . That is the value of i_b and the rest of the part is as it is divided by i_i . We can cancel out this i_i and i_i . We are left with i_i is equal to beta times of R_B by R_B plus beta plus 1 r_e into R_C parallel r_o by R_C parallel r_o plus R_L . Mind it here we cannot make a parallel combination because the numerator does not have this R_L term. So as it is we have to write. Further simplification can be done only if we consider that here in this term, we can look into the beta plus 1 r_e , r_e is small. If we write down the R_B plus beta plus 1 r_e equivalently or approximately then only we can do further simplification. But let us not do and keep it exactly in this same way.

One thing we can do is, r_0 is ignored. If r_0 is ignored then we will be left with beta into R_B by R_B plus beta plus 1 r_e into R_C by R_C plus R_L . That much simplification we can do and here one thing to be noticed is that there is no phase shift between the output and input currents.

(Refer Slide Time: 25:34)

If output current is towards the transistor, input current will also be towards the transistor. There is no sign change, so there is no phase reversal. The current gain does not have any phase shift, only the voltage has. But one more thing I would like to find out here is the voltage gain with respect to the source. If we look into the voltage gain, what we have just now found out, it is v_0 by v_i . That means with respect to the input voltage we are finding out the ratio by which the output voltage is increased. The input voltage means this voltage. But again if we look into what is v_i with respect to V_S because one part of this input signal which you are giving as input, that part is lost in the resistance R_S because there is a drop in the resistance R_S and the rest is what is available as v_i .

If we want to find out the voltage gain with respect to the source and term it as Av_s denoting the voltage gain with respect to the source then we have to write it as v_o by v_s and that can be further expressed by chain which is v_o by v_i into v_i by v_s . Because v_o by v_i we have already found out we can write it as Av but what about v_i by v_s ? We have seen that the signal v_s which you are applying at the input, there is a resistance at which there is drop; rest part is available as v_i . This voltage we want to express in terms of v_s . What will be that voltage? This input side is having input impedance Z_i , which we have already found out. We can find out voltage division because voltage division is taking place here. What is v_i ? v_s into Z_i by Z_i plus R_s . This is the voltage available at input and that is what is written here. v_s into Z_i by Z_i plus R_s and Z_i we have found out; R_B parallel beta plus 1 r_e . That is Z_i . That we have just now found out; R_B parallel beta plus 1 r_e . Putting the value of Z_i we can find out now the expression for v_i by v_s is nothing but Z_i by Z_i plus R_s . So this is the voltage gain with respect to the source. We are finding out two things. One is with respect to the input voltage; one is with respect to the source.

(Refer Slide Time: 28:07)

This was about the fixed bias configuration. Let us go to another configuration which is having resistance at the emitter. That is self bias is there but with a by pass capacitor.

(Refer Slide Time: 28:22)

If we consider this figure, this is a self bias in the emitter. That is the difference between the fix bias and this bias which is called the emitter bias configuration. But there is a bypass capacitor. If we look into the circuit and compare with the earlier one there is no difference as far as the AC equivalent is concerned because as there is a bypass capacitor and it is like short circuit in AC. The emitter resistance r_e will be bypassed. But the emitter current is nothing but the same circuit which we just now analyzed because the

equivalent will be like this only. Because the emitter is bypassed it will be directed to the ground not through this resistance in the emitter r_e but it will be having a short circuit path and others are exactly the same. This circuit and the earlier fixed bias circuit do not have any difference as far as AC equivalent is concerned. So we need not analyze it again and similar analyses as the earlier, still holds for this circuit. That is this amplifier with self bias in the emitter with a bypass capacitor.

(Refer Slide Time: 29:36)

But if the by pass capacitor is not present in the emitter then the circuit will be different. That is what we are going to do.

(Refer Slide Time: 29:44)

We consider common emitter bias configuration without the emitter bypass capacitor, bypass capacitor is not there mind it and that is why there is the existence of this r_e that is the emitter resistance in the emitter part. If we want to draw the equivalent circuit for this amplifier following the usual procedures that we have followed earlier we will get a circuit like this. This is the transistor side; equivalent model for the transistor or the common emitter and the input is having this R_B as well the source and resistance R_S which is the series resistance with the source and output is R_L , the load resistance, R_C , r_e is there. But here one thing is missing. r_o we are ignoring and r_o is conveniently ignored here because inclusion of this r_o will further complicate the whole analysis. So very, very conveniently we can ignore r_0 . That is what is done here, r_0 is ignored. Otherwise it will be very complex circuit to analyze and in order to avoid all those complication we can very well ignore r_0 as it is practically also true. Excluding the r_0 we are having the circuit and at the output side only R_C will be there. R_L is there which is the load resistance and r_e is there is in the emitter. The current following through this emitter resistance r_e if we look, it is the ammeter current. That is equal to beta plus 1 into r_e . This resistance r_e can be very well written as the reflected resistance beta plus 1r_e.

Instead of r_e we can write beta plus 1 r_e in the emitter resistance and we can keep this i_b same. That is same current i_b is flowing having a resistance here beta plus $1r_e$. That is conveniently done because then our analysis will also be easier and we are not doing anything wrong because if we consider the voltage drop, the voltage drop is i_b into beta plus $1r_e$ plus i into r_e . But i is again nothing but beta plus 1 i_b . The voltage drop is same. Only thing is we are writing it differently. That is instead of r_e we can write beta plus 1 r_e and the current i_b is same. Other current is beta times i_b . This should have a symbol of a diamond because this is the symbol for a dependent current source.

(Refer Slide Time: 32:17)

It is not the circle; circle is independent current source. This is wrong. In order to write it correctly we should have diamond signal which is the symbol for a dependent current source; because it is a dependent current source, dependent on i_c , dependent on i_b . In this circuit all the parameters which we found for the other circuit are to be found out. For that we start with input impedance. If I consider input impedance, v_i by i_i is the input impedance; looking from this source into the input that is the input impedance. Input impedance is basically parallel impedance between R_B and this whole resistance. This whole resistance is this resistance plus this resistance. Let us name it as Z_b . For clear understanding I am denoting it separately; Z_b is equal v_i by i_b . That is this voltage by the current i_b . As we have expressed it as beta plus 1 into r_e keeping the i_b same, what is this resistance? This resistance is nothing but the series resistance between beta plus 1 r_e and beta plus 1 capital R_E . We are writing here v_i is equal to the input voltage is i_b into beta plus 1 into r_e plus beta plus 1 i_b into R_E .

(Refer Slide Time: 33:34)

We are writing it in a different fashion. We are keeping i_b same and writing it as beta plus 1 into r_e plus R_E where now we can denote Z_b is equal to beta plus 1 r_e plus R_E . The whole resistance from this point to this point, beta plus 1 into small r_e plus capital R_E , is denoted by Z_b . Now we can find out the input impedance easily. What is this input impedance? This resistance R_B parallel to Z_b . Z_i is equal to R_B parallel Z_b . That is input impedance v_i by i_i . If we write down the whole expression of v_i i_b into Z_b is this v_i divided by i_i . Again if I proceed in that way which we used earlier i_b is equal to i_i into R_B by R_B plus Z_b . This current following through this resistance is i_b . Find out that current. That current is equal to i_i into R_B by R_B plus Z_b into Z_b by i_i . Canceling out these two, I am left with R_B into Z_b by R_B plus Z_b which is R_B parallel Z_b . I look into the circuit from this terminal and find out Z_i . Intuitively I can say RB parallel this whole resistance and that's what I have also found out proceeding from this initial expression for Z_i ; that is giving the same result.

This is input impedance, what is output impedance? We look into the output circuit. I look into the amplifier from the output side, from the load. We have to look from the load. That is output impedance; skipping this v_i zero, making v_i zero means this i_b is also zero. It is like this part is open. This part is open means I am having only 1 resistance R_C at the output. Output impedance Z_O is R_C . We want to find out voltage gain A_v , following the expression v_o by v_i and doing all the replacements like v_o . What is v_o ? v_o is minus i_o into R_L . Like previous example this is the direction from bottom to top of this current. Minus i_o into R_L is equal to v_o divided by v_i . v_i is again i_b into this whole resistance Z_b . That is followed here, minus $i_o R_L$ by i_b into Z_b .

(Refer Slide Time: 36:12)

Again what is i_0 ? That part of the current which flows through R_L. The current which flows through R_L is i_0 . The dependent current source beta i_b is what is flowing in this output circuit. You see the current part. One is i_b , base current; one is the collector current. Both are combined here to give the emitter current. The current which is starting from a source it should end up at that same source. So after this point again ib will be flowing this way and i_c will be flowing this way. i_c has again 2 components. One is through $R_{\rm C}$ and another through $R_{\rm L}$. I am interested in finding out the current through $R_{\rm L}$. That is what is i_0 ; beta times of i_b into R_C by R_C plus R_L is i_0 . That is what is done here. It is beta times of ib into R_C by R_C plus R_L into R_L. Since R_O is not there, 3 parts are not there. There are only 2 parts. That is the difference which is made here otherwise it will be more complex, divided by i_b into Z_b equal to minus of beta into i_b , i_b cancel; $R_C R_L$ by R_C plus R_L. Again this is nothing but the parallel combination between the R_C and R_L, in the denominator Z_b is there. What is the voltage gain A_v ? That is equal to minus beta into R_C parallel R_L by Z_b . Again Z_b we can a replace. That is equal to beta plus 1 into small r_e plus capital R_E . This is the expression for voltage gain v_0 by v_i . We want to find out the voltage gain with respect to the source v_0 by v_s . That is Av_s we want to find out. What is v_0 by v_s ? As we know v_0 by v_s is equal to A_v into Z_i by Z_i plus R_s . Z_i we know. We found out Z_i . Simply replacing by this quantity for Z_i we can now get this Av_s . A_v we have just now found out. Voltage gain we have found out.

We want to find out the current gain i_o by i_i . i_o by i_i is the current gain and i_o again we will write in the same way; beta times of i_b into R_C by R_C plus R_L . That is the part of current which flows through R_L and divided by i_i . Again if I replace i_b by that part of the current which flows through the Z_b that is the i_b , out of the input current i_i this portion goes through this Z_b ; i_i into R_B by R_B plus Z_b is i_b and the rest is this one, same R_C by R_C plus R_L divided by i_i . Then this and this will cancel. Current gain becomes beta into R_B into R_C by R_B plus Z_b into R_C plus R_L . This is the exact expression for current gain. r_o is ignored here.

(Refer Slide Time: 39:07)

This circuit, that is the circuit having the emitter bias, emitter resistance which is un bypassed, there is no by passing capacitor there we get this expression or parameters which are involved in that amplifier.

Another example which is very powerful, which we have earlier discussed and which is very, very much used in all these practical amplifiers is the voltage divider bias configurations. We now have this common emitter voltage divider bias configuration. This is the circuit having $R_1 R_2$ parallel at terminal B and connected to V_{CC} . These resistances R_1 and R_2 are 2 separate resistances, instead of one single resistance R_B as was discussed in the earlier cases. Others are same. Other parameters in this circuit are same. In fact if I analyse this circuit, draw the AC equivalent circuit it will be similar. Only difference that will be there is that we have to find that the Thevenin's resistance R_B which is the parallel equivalent of R_1 and R_2 and that will be the factor which will be differing than the earlier circuits.

(Refer Slide Time: 40:22)

If we draw the AC equivalent circuit for this voltage divider biasing scheme following the usual procedures that AC equivalent circuit will have R_1 and R_2 parallel because it is grounded. Since V_{CC} is grounded, in AC equivalent circuit these two resistances which are both connected at base and connected to ground this also will be grounded. Because this will be grounded, this is also grounded. These 2 are parallel. These parallel equivalent if i denote by capital R capital B which is R_1 parallel R_2 , all others are same than the earlier discussed circuits.

(Refer Slide Time: 40:58)

 R_C , r_o is kept, R_L is there. In this circuit we can easily find out the parameters involved. We can find out what is the input impedance? If I look from this point find out what is the input impedance Z_i ? This resistance parallel this resistance; R_B parallel beta plus 1 r_e and this R_B is R_1 parallel R_2 . That is the only thing which is differing than the fixed bias circuit and as this emitter is bypassed by this capacitor, ultimately we are having the short circuited part like this. What is Z_i ? Z_i is equal to R_B parallel beta plus 1 r_e . Even if you follow this usual procedure of finding out v_i dividing it by i_i which will give you Z_i that will give you finally the same result. But I can intuitively very well see that this is nothing but the parallel combination between these two resistances at the input. I can immediately right down this input impedance like this and similarly I find out the output impedance. I look from this load into the amplifier in the output circuit. Look from here, look from this load. Then it is parallel combination between R_C and r_o ; that is the output impedance.

(Refer Slide Time: 42:17)

These two can be immediately found out. In the traditional way of finding of all these expressions of voltage, current, etc also you will finally get the same result. If I find out Z_i is equal to v_i by i_i again what is v_i ? v_i is i_b into beta plus 1 r_e divided by i_i . i_b again I replace in terms of i_i . That part of the current which flows through the resistance beta plus 1 r_e that is i_b ; i_i into R_B by R_B plus beta plus 1 r_e . That is this current i_b into beta plus 1 r_e divided by i_i . These two cancel. I am left with R_B into beta plus 1 r_e by R_B plus beta plus 1 r_e . This is nothing but a parallel combination between these two resistances R_B and beta plus 1 r_e . R_B we know is R_1 parallel R_2 .

(Refer Slide Time: 43:13)

	<u></u> (β+	0.
$Z_{i} = \frac{v_{i}}{t_{i}} = \frac{t_{h}(\beta + 1)t_{h}}{t_{i}}$ or, $Z_{i} = R_{h} \ \beta + 1)t_{h}$ where $R_{h} = R_{h} \ R_{h}\ ^{2}$	× K ₂ +(0+1),	$\frac{1}{R_{g}(\beta+1)r_{s}} = \frac{R_{g}(\beta+1)r_{s}}{R_{g} + (\beta+1)r_{s}}$
Output Imped	ance Z _o	
$Z_o = R_c \parallel r_o$		

Expression vise if I see the earlier circuit also, there is no difference. Because earlier also in fixed bias scheme we have found out that input impedance Z_i was R_B parallel beta plus 1 r_e and this is also R_B parallel beta plus 1 r_e . Only difference is that now we are having R_B as parallel combination between R_1 and R_2 , not a single fixed resistance. That is the difference, others are same and output impedance as we have seen is R_C parallel r_o . I need not again analyze it in detail. That is very clear and voltage gain, A_v can be found out in a classical way of finding out the voltage and finding out the gain. v_o is equal to minus i_o into R_L .

(Refer Slide Time: 43:59)

Here this is v_o . Current is flowing in this direction. So minus i_o into R_L is v_o . As v_o has been denoted, upper point is positive with respect to the ground and again v_i we know i_b into beta plus 1 r_e . That is replaced here and find out i_o from the output circuit. The current source that is beta i_b , this current is divided into 3 parts. I am interested in finding out this current through R_L that is equal to beta i_b into R_C parallel r_o by R_C parallel r_o plus R_L . That is the current i_o . This R_L is already there divided by i_b into beta plus 1 r_e and now I can cancel out this i_b and this i_b and I am left with minus beta into R_C parallel r_o into R_L by R_C parallel r_o plus R_L . This is nothing but the parallel combination of R_C parallel r_o and R_L . Finally I am getting parallel combination between these 3 resistances R_C , small r_o and capital R_L . That is here minus beta into R_C parallel R_L and in the denominator beta plus 1 into small r_e .

This is the exact expression that we obtained for this voltage divider biasing scheme and here we can conveniently further simplify by approximating this beta plus 1 and beta. As these are almost equal we can cancel out these two and then write down this expression is minus R_C parallel r_o parallel capital R_L divided by r_e . This is a further approximation. Even further approximation I can do by conveniently ignoring r_o because in all practical cases r_o is very high. I can even further approximate by writing it down as minus R_C parallel R_L by r_e . This is after approximation one step further. Finally we can see that this voltage gain is actually high in common emitter amplifier because small r_e is in the order of ohms. This is less as compared to the parallel combination of R_C and R_L because R_C R_L are generally in the order of kilo ohms. Finally in the numerator if I get a kilo ohm order of quantity and the denominator is in the ohm order, 10 to the power 3, it is almost like 100 times or more than that you get in enhancement of the input signal. That is actually what happens in a common emitter amplifier and I try to find out what is the overall voltage gain? With respect to the source how much voltage gain I am getting?

Suppose I apply source which is in the order of 1 millivolt peak to peak. I am applying a small signal V_S . Its peak to peak value is 1 millivolt. Then how much amplified signal at the output I get that can be found out by finding the overall voltage gain Av_s . Because Av_s is nothing but v_o by v_s , final output voltage by input signal at the source that is actually giving you the measure of overall voltage gain and by using the expression that we have already discussed Av_s is nothing but A_v the voltage gain into Z_i by Z_i plus R_s , then we can find out what is this overall voltage gain and if we do this we will find out the voltage gain. With respect to the source this overall voltage gain will be less than the voltage gain, A_v because if we look into the denominator Z_i plus R_s , R_s is the series resistance. It has a small value. But still the denominator value being higher than the numerator, in this case it will be a fraction. A_v multiplied by fraction means ultimately it will be a reduced value than A_v . Overall voltage gain if we consider having the series resistance in the source it will be less. Av_s is generally lesser than A_v .

(Refer Slide Time: 48:18)

Overall voltage gain is lesser than the voltage gain which would have been possible had there been no series resistance in the source and similarly current gain, A_i we can find out. Ai current gain is i_o by i_i and i_o is the current which flows through the load resistance R_L . The load resistance R_L is having the current i_o which is part of the current beta times i_b and that current is beta times i_b into R_C parallel r_o divided by R_C parallel r_o plus R_L . That is replaced here; R_C parallel r_o by R_C parallel r_o plus R_L . 4854

(Refer Slide Time: 48:54)

That is the part of this current beta times i_b which flows through R_L which is i_o divided by i_i . Again we can express this i_b as i_i into R_B by R_B plus beta plus 1 r_e because that is the

part of the current which is flowing through this beta plus 1 r_e ; that is the base current. Out of the input current i_i a part is flowing through this beta plus 1 r_e that is the base current. That is nothing but i_i into R_B by R_B plus beta plus 1 r_e . That we are replacing here. Instead of i_b , I am writing i_i into R_B by R_B plus beta plus 1 r_e ; others are same. This is same as it is. Then I can now cancel out. Writing it in that order has a purpose of cancelling out those two i_i . We are having current gain expression as beta into R_B by R_B plus beta plus 1 r_e into R_B by R_B plus beta plus R_L . This is the exact expression of current gain in voltage divider biasing scheme. There is no phase difference in the current gain. That means there is no phase shift between the input current and the output current and in the voltage gain there is a phase reversal of 180 degree.

The input signal is out of phase by 180 degree with the output signal and if we look into the current gain I can further simplify it by ignoring r_0 . If I ignore r_0 that will be R_C by R_C plus R_L and beta is generally very high in common emitter. It is 100 or even more than 100; it can be say up to 500. Even if it is say in hundreds, beta is in hundreds, the voltage gain is very much higher and basically that is the reason why common emitter amplifiers are used for voltage amplification. You get a high voltage gain and the high voltage gain actually can be seen here. Because small r_e is there in the denominator that is very small as compared to the numerator, it is always greater than 1. In the order of hundreds also you get voltage gain in common emitter amplifier. For voltage amplification purposes we use common emitter amplifier. There is a phase reversal of 180 degree and that has to be remembered.

In this discussion we have today covered the different biasing schemes and if we understand the way to proceed in the AC equivalent circuit to find out all those parameters which are involved in the amplifier like voltage gain, current gain and input impedance, output impedance, these are the major parameters and a related parameter may be power gain. That you can find out. If we multiply voltage gain and current gain we will get the power gain expression also. But that is just a secondary gain I get from voltage and current gain and once I know voltage and current gain, you can find out the input impedance and output impedance, we have found out. We have found out the input impedance and output impedance, we have found out voltage gain and current gain for different biasing schemes. Out of all these biasing schemes the voltage divider biasing scheme which we have just now discussed is very popular because it generally has the capacity to stabilize the operating point.

Although we have discussed today the amplifier from the perspective of the AC equivalent circuit, prior to it we have already discussed the biasing schemes. Once we have set upon a good biasing scheme stabilizing the q point or the operating point that should not shift afterwards. Even because of change of beta, because of change of the transistor or because of temperature change there should not be significant change or shifting of the operating point. After ensuring the biasing only we proceed to find out the amplification of the amplifier that we have considered. Voltage divider biasing scheme is very, very popular because it guarantees the stability of the operating point. That is why it is very much used in practice.

With the voltage divider biasing scheme along with those capacitances which are coupling capacitances and by pass capacitance we have found out all the parameters which are involved in the amplifier. We can find out for any biasing scheme if we proceed in a similar way from the starting principle. In order to find out the voltage gain we must proceed from the starting point which is nothing but the ratio between the output voltage and input voltage. What is output voltage, what is input voltage? Those expressions we have to find out keeping in mind the AC equivalent circuit or referring to the AC equivalent circuit along with the transistor model being incorporated into it. We can find out any parameter for any biasing scheme amplifier proceeding in the same manner which we discussed today and even if some of the resistances are absent; for example we have no resistances in the emitter. That is emitter is having no resistance.

In this circuit if there is no resistance in this emitter or simply it is connected to ground, then also we can find out. By proceeding from the first principle, there is no difficulty in finding out the parameters for any circuit with even some of the resistances being not there; instead of 2 there is only 1 single resistance as we discussed in the first case. Always we have to proceed with the first principle. That means if we want to find out the input impedance it will be v_i by i_i . But one thing to be noted here is that we will be considering the source and a load outside the purview of this two terminal network. That means input terminals will have the source resistances and the source outside and the output terminal will have the load resistance outside. This point has to be remembered and the whole network will be in between these two points or two pair of terminals, input and output; 1 1 dash and 2 2 dash, if we name it.

(Refer Slide Time: 56:03)

In that way we can proceed and find out the parameters which are required or which are important for this amplifier and we can find out for any of the configurations. Basically if we are asked to find out the voltage gain of this particular amplifier, then by plugging in all the values we can find out the gain. Next we will consider the numerical example. If I want to find out numerically the value of any of the parameters for any of the configuration we can do that. Today's discussion actually leads us to going a step further for exactly finding out the amplifier parameters. But we have to keep in mind that we are still considering the small signal analysis. Our signal is still small enough to make the transistor operate in active region only. The transistor should not be overdriven into either saturation or cutoff. These two conditions should never arise. Then only this whole discussion is valid. Whatever small signal analysis we are doing, we are applying it to the transistor amplifier and in view of this small signal being applied we are still in the active reason or the transistor is operating in the active region. That is why we can write down that i_c is equal to beta times i_b . If it is saturation we will never be able to analyze it in the way that we are analyzing. This point has to be kept in mind that we are dealing with a small signal analysis and we are trying to find out all those parameters involved in the amplifier taking example of different biasing schemes and finding out all this.

Today we discussed about common emitter transistor amplifier, BJT common emitter configuration with different biasing schemes. Also there are common base and common collector amplifiers and these common base and common emitter amplifiers are basically used for some difficult, special applications; like a voltage buffer or current buffer, etc, it will be used. We will discuss that but then today we have discussed about the most frequently or commonly used amplifier for voltage amplification and in that case generally the common emitter amplifier is used. We have discussed extensively about common emitter amplifier in different configurations of biasing. We will also discuss about common base and common collector amplifiers next.