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This is the 8th lecture on DSP and today’s topic is Discrete time Fourier Transform.  

 

(Refer Slide Time: 1:09 - 1:10) 

 

 
 

As I have already told you, we shall omit the adjective discrete time; we shall simply call it 

Fourier Transform. In the last lecture, we had discussed in detail difference equations. I told you 

that difference equations can be solved by two methods; you can have the complementary 

function, which is the solution to the homogeneous difference equation, and add to it the 

particular solution. Then you find the constants in the complementary function from the initial 

conditions. The other method is: you find out zero input response and then add it to zero state 

response. In both of them you have to find out the constants. In the zero input response, you have 
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to find the constants from the given initial conditions. In zero state response, you have to find the 

constants from zero initial conditions. You have to find the constants twice. But since these 

terms have significance in system theory, they should have been introduced and we have done 

that.  

 

(Refer Slide Time: 2:46 - 4:09) 

 

 
 

We also said that stability can be obtained in terms of the roots of the characteristic equation, 

which is the characteristic polynomial equated to 0. Each root magnitude, for stability, should be 

bounded by unity; it should be strictly less than 1. We discussed FIR and IIR and we illustrated 

the fact that FIR does not necessarily mean non recursive. Similarly IIR is not necessarily 

equivalent to recursive.  
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(Refer Slide Time: 4:14 - 4:43) 

 

 
 

We also discussed an example of digital integrator and the equation that we got was y(n) = y(n – 

1) + (T/2) (x(n) + x(n – 1)). We showed that it is an IIR system and we also found out its unit 

impulse response. Then we introduced the Fourier Transform. 

 

(Refer Slide Time: 4:49 - 6:25) 
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FT is the so called DTFT which we have abbreviated as FT and we defined X(ejomega) = 

summation x(n) e–j n omega where n = – infinity to + infinity. In terms of its parts, it can either be 

described in polar form in terms of magnitude (| X |) and angle, or in the terms of real part (Xr) 

and the imaginary part (Xj). An intriguing fact is that the imaginary part is also a real quantity. It 

is only by multiplication by j that you make it imaginary. We also stated that both magnitude and 

the real part are even functions of omega and angle X and Xj are the odd functions of omega. 

The other point is that the X(ejomega) is a periodic function with a period of 2π. That is the reason 

we concentrate on – pi to + pi, and because of the evenness and oddness of its parts, we 

concentrate only from 0 to π. If we know this portion then we know the total spectrum.  

 

(Refer Slide Time: 06:33 - 07:37)  

 

  
 

We considered two examples. One was delta (n) whose Fourier Transform is 1 and the other was 

(1/2) n u(n) whose Fourier Transform is 1/(1 – ½ e–jomega). In general, if 1/2 is replaced by alpha, 

some constant, which can be real, or complex, that is, the signal is alphan u(n), then the transform 

can be very easily shown as 1/(1 – alpha e–j omega), provided the magnitude of alpha is less than 1. 

This raises the question of existence of the Fourier Transform. The Fourier Transform 

summation must converge in order that the Fourier Transform exists.  
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(Refer Slide Time: 07:47 - 09:42) 

 

 
 

We concluded the 7th lecture by finding out IFT (Inverse Fourier Transform) and we said that 

x(n) = [1/(2π)] integral – π to π [Xe (jomega) ej n omega d omega]. We also emphasized the fact that 

Fourier Transform and inverse Fourier Transform are not both matters of definition; one follows 

from the other. That is, given x(n), we can find out X(ejomega) uniquely, or given X(ejomega), we 

can find x(n) uniquely; one follows the other. Now consider the question of convergence of the 

summation [X(ejomega)]. Formally if we take this summation[x(n) e–j n omega] where n = – k and + 

k, obviously, the sum being finite, shall always converge. If we allow k to go to infinity, this 

must converge for FT to exist.  
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(Refer Slide Time: 09:46 - 12:05)  

 

 
 

One of the criterion is that the magnitude of the error between the actual value X(ejomega) and the 

finite sum Xk(ejomega), as k goes to infinity, must tend to 0. This criterion for convergence is 

sufficient but not necessary. One of the sequences which always satisfies this criterion is one 

which is absolutely summable. The magnitude of [X(ejomega)] will be less than or equal to the 

summation [magnitude of (x(n)]. Thus if x(n) is absolutely summable, then its Fourier Transform 

exists. But this condition is only sufficient. How do you prove that it is sufficient? Give at least 

one example of a sequence which is not absolutely summable but its Fourier Transform exists. 

There are sequences which are not absolutely summable but square summable. One such 

example is provided by the sequence x(n) = (1 /n) u(n – 1).  
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(Refer Slide Time: 12:09 - 13:49) 

 

 
 

Now it can be shown that summation [1/n2] = π2/6 where n =1 to infinity. But summation (1/n), 

in which n = 1 to infinity does not converge. Thus (1/n) u(n – 1) is not absolutely summable, but 

summation (1/n2), n = 1 to infinity converges. So this is a counter example showing that x(n) 

absolute summability is not necessary but a sufficient condition. Now (1/n) u(n – 1) is an 

example of a sequence whose energy is finite because summation 1/n2 defines its energy.  
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(Refer Slide Time: 13:56 - 17:58) 

 

 
 

The next statement is, if x(n) is absolutely summable then its energy, summation |x(n)|2 is less 

than infinity because a2 + b2 is always less than a2 + b2 + 2ab. So an absolutely summable 

sequence has a finite energy. An absolutely summable sequence is also a square summable, that 

is, its energy is finite, but converse is not true. In other words, a finite energy sequence is not 

necessarily absolutely summable.  
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(Refer Slide Time: 15:19 - 15:20) 

  

                  
 

The example we took is that x(n) = (1/n) u(n – 1) has finite energy but is not absolutely 

summable. However such sequences which are square summable do have Fourier Transforms. In 

this case we take /(Xk(ejomega ) – X(ejomega))/2 and integrate from – pi to + pi. This is our range of 

vision and within this range this error in energy must go to 0 as k goes to infinity. This is another 

way of satisfying the existence of Fourier Transform. First, we said that absolutely summable 

sequences have a Fourier Transform, but it is only a sufficient condition. Then square summable 

sequences also have a Fourier Transform and the error criterion is that as k goes to infinity, total 

error energy in the frequency domain tends to 0. There are sequences which are neither 

absolutely summable nor square summable but the Fourier Transform does exist.  
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(Refer Slide Time: 18:10 - 22:23) 

 

 
 

For example, is u(n) absolutely summable? The sum goes to infinity, and since 12 = 1, u(n) is not 

square summable either. However, the Fourier Transform does exist. In other words square 

summabiltiy is also a sufficient condition, like absolute summability.  

 

There are sequences which are neither absolutely summable nor square summable and for them 

also Fourier Transform exists. For the existence of Fourier Transform, we have to appeal to the 

analog delta function. The Fourier Transform of such sequences which are neither absolutely 

summable nor square summable shall have the analog delta function in its FT. The analog delta 

function is defined by integral (0 – to 0 +) delta (omega) d (omega) = 1 where delta (omega) is 

nothing but the limit of a square pulse whose duration is d and whose amplitude is 1/d, so that 

the area under the pulse is unity, when d tends to 0. This is the definition of an analog impulse 

function. Note that analog as used here is not in the time domain, it is in the frequency domain.  

 

The absolute summability or square summabilty criterion is not valid for x(n) = (alpha)n not 

multiplied by u(n), where alpha can be any quantity. 0jne ϖ is also neither square summable nor 

absolutely summable. If 0jne ϖ  has a Fourier Transform then its real part and imaginary part which 

are sinusoidal that is cosine(n omega0) or sine(n omega0) also should have a Fourier Transform 
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because one is the real part and the other is the imaginary part. We shall show that for such 

functions, which are neither absolutely summable nor square summable, the Fourier Transform 

will have an analog delta function. Once you admit the existence of this function, delta (omega), 

then they are Fourier transformable.  

 

Therefore, if we take the help of delta function a large range of functions are Fourier 

Transformable and u(n) and 0jne ϖ are examples.  

 

(Refer Slide Time: 22:37 - 25:45) 

 

 
 

For example, let us take 0jne ϖ . You can show that the Fourier Transform of this is given by 

summation [2π analog delta( omega – omega 0 + 2π k)] where k goes from – infinity to + 

infinity. This is an example; the FT of ejn omega0 contains a chain of delta functions, at omega0, 

omega0 + 2π, omega0 – 2π and so on. Proving this in a straight forward manner by applying the 

definition of Fourier transform is not easy. You have to bring in the theory of distribution. As 

you know, Fourier Transform is a one to one transformation, that is, if you prove that the inverse 

Fourier Transform of X(ejω) is x(n), then this is a good enough proof because this is necessary as 

well as sufficient; it has to be one to one transformation. And in such cases, it is easier to find the 

inverse Fourier Transform. The inverse Fourier Transform will be: x(n) = [1/(2π)] integral 
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[summation (2π delta (ω – ω0 + 2π k))ejn omega d (omega)]; here integral ranges from – pi to + pi 

and k goes from – infinity to + infinity. In this summation, we have to consider only one term i.e. 

k = 0, because integration is from – pi to + pi, this being the base band. Therefore, 2π and 2π 

cancel, the integral of [delta (omega –omega0) ejn omega d (omega)] ranges from – pi to + pi. This 

function exists only at omega = omega0; it then follows that the inverse Fourier Transform of this 

summation we started with, is 0jne ϖ . 

 

(Refer Slide Time: 25:53 - 28:37) 

  

 
 

We now write a few sequences and their Fourier Transforms. For delta(n), the FT is1; u(n) has a 

rather complicated transform which is [1/(1 – e–jomega)] + summation π delta (omega + 2π k) 

where k goes from – infinity to + infinity. If you apply the formula for FT of (alpha)n u(n) with 

alpha = 1, you should simply get 1/(1 – alpha e–j omega). There are two short comings in this 

application. First, the formula is valid for |α | 〈  1; secondly, it does not take care of the average 

value of u (n). Average value is 1/2 and the average value is a constant, whose Fourier transform 

is this summation term. For proof, you know that the inverse Fourier transform of this quantity is 

equal to u(n). In a similar manner, you can show that 0jne ϖ transforms to, summation 2π 

delta(omega – omega0 + 2π k), where k goes from – infinity to + infinity, alphan u(n), magnitude 
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alpha less than 1, transforms to 1/(1 – alpha e–jomega). This table gives you the basic sequences 

and transforms. Any other sequence can be expressed in terms of these sequences. I suggest that 

you verify this table for yourself with questions like what will be the Fourier Transform of u(– n) 

or of alphan u(– n). Once we admit the existence of a Fourier transform, all properties shall be 

valid.  

 

(Refer Slide Time: 29:28 - 31:34) 

 

 
 

Next, I take the example of the up sampler: y(n) = x(n/L) where n = 0, (+ –) L, (+ –)2L and so on 

and 0 otherwise. The Fourier Transform of y(n) is Y(ejomega) = summation [x(n/L) e–jn omega]. That 

is the definition, where n = 0 or ±  L, ±  2L, … up to infinity, but only for discrete values of n. 

We are not taking the in between samples. In between samples at, e.g. n = 1, 2…L – 1, will 

contribute 0 to the summation. What does this summation lead to? Let us put n/L = m, (some 

other quantity, which is an integer). Then my summation becomes summation x(m) e– jmL omega 

where m = – infinity to + infinity, and this equals X(ejL omega).  
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(Refer Slide Time: 31:42 - 35:54) 

 

 
 

Therefore for an up sampler the spectrum Y(ejomega) is related to the original spectrum of the 

input sequence by X(ejL omega). Since, a picture is worth 1000 words, let us draw the picture. Let 

us suppose that X has the spectrum shown in the figure, it has to be repetitive. We have marked 

0, – omegah, π, – π, 2π, – 2π (repetition after every 2π) etc. Note that I have taken hω π〈 . If I 

take the spectrum of Y(ejomega), how does it change? You see that it would have the same shape, 

except that omegah will be replaced by omegah/L; next one will be centered at 2π/L and extend 

from (2π/L) – omegah/L to (2π/L) + omegah/L and so on. So the spectrum is compressed; what 

existed between – omegah and + omegah, is now compressed to – omegah/L and + omegah/L. 

How many such repetitions shall be there between – π  andπ ? There are 2L – 1 repetitions, 

whereas from – pi to + pi there was only one sample in ( )jomegaX e . In the up sampled version, 

you get repetitions between 0 and pi, L – 1 of them, and this creates problems in up sampling. In 

up sampling, you have to follow the up sampler by a low pass filter to get rid of all the 

repetitions and the low pass filter cut off frequency must be omegah/L or slightly more than 

omegah/L but before the next spectrum starts. The up sampler is also a spectrum compressor and 

the repetition may create aliasing if not properly filtered. As you may recall higher frequencies 

posing as low frequencies is aliasing distortion. Thus up sampler has to be necessarily followed 

by a low pass filter whose cut off frequency is such that only the base band signal of the original 
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sequence is retained. All the rest is deleted; otherwise your further processing will give you 

unreliable results. 

 

(Refer Slide Time: 36:07 - 38:56) 

 

 
 

Let us take another example: you are required to find the inverse Fourier Transform of this 

sequence X(ejomega) = j sine omega[(3 + 4 cosine omega + 2cosine2 omega)]. In a general case we 

shall have to evaluate the integral [1/(2 pi)] (– pi to pi) X(ejω) ejnωdω. Here, we require to express 

this as summation[x(n)e–jn omega] with appropriate limits of n. In general n = – infinity to + 

infinity. That is, we have to find the coefficients of e–n omega. This is an example where X(ejomega) 

= [(ejomega – e–jomega)/2] multiplied by [(3 + 4 [(ejomega + e–jomega)/2] + 2((ejomega + e– jomega)/2)2]. We 

have to simplify this and find out the coefficients of e– jn omega. What will be the highest power of 

exponential? It is 3, is it + or –? It is both. If you can write this form, then the sequence x(n) shall 

be obvious.  
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(Refer Slide Time: 39:00 - 40:39) 

 

 
 

I suggest you to do this simplification and verify that the sequence becomes x(n) = (1/4,1,4/7.0 

(and this is n = 0) 9/2,–1,–1/4). So given a problem either to find the DFT or the IDFT or prove a 

given Fourier Transform pair, you have to decide which way and how to go about it.  

 

Now, we talk about the properties of Fourier Transforms. And to do this, we make a table: name 

of the property, sequence and its Fourier Transform. We shall use two sequences g(n) which has 

a Fourier Transform G(ejomega )and h(n) which has a Fourier Transform H(ejomega). 
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(Refer Slide Time: 40:44 - 43:00) 

 

 
 

First property is Linearity, Fourier Transform operation obviously is a linear operation. In other 

words, if you take alpha g + beta h, this shall have a Fourier Transform alpha G + beta H (it is a 

linear transformation because the definition is simply a summation). Then comes time shift: if 

you take g (n – n0), then the Fourier Transform would be 0jne− omega × G(ejomega); this also follows 

from the definition. Frequency shift property is that if you multiply a sequence g(n) by an 

exponential sequence ejn 0ϖ , then the Fourier Transform is G(ej( omega  – 0omega )); this also follows 

simply by writing the definition. Then comes differentiation in the frequency domain: 

multiplication of g(n) by n leads the Fourier Transform j d G(ejomega)/d omega; this can also be 

proved from the definition itself.  
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(Refer Slide Time: 43:07 - 44:08) 

 

 
 

Write G(ejomega) = summation g(n) e–jn omega for n = – infinity to + infinity, and differentiate with 

respect to omega. Then in the right hand side we get summation [g(n)(– j n)e–jn omega]. If I 

multiply both sides by j, j d G/d omega becomes equal to summation n g(n) e–jn omega which 

clearly shows that jdG/dω is the Fourier Transform of the new sequence n g(n). Similarly, all 

other properties simply follow from the definition. 
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(Refer Slide Time: 44:22 - 47:38) 

 

 
 

Let us take an example: let x(n) = n alphan u (n + 2). We know that the Fourier Transform of 

alphan u(n), magnitude alpha less than 1, is 1/(1 – alpha e–jomega). How does the given sequence 

differ from this? There are just two additional samples in x(n) and we have to take care of them. 

We write x(n) = {–2 alpha–2, – alpha–1, n alphan u(n)}; therefore X(ejomega) = – 2 alpha –2 ej2omega – 

alpha –1 ejomega + j (d/d omega) [1/(1 – alpha e–jomega)]. Try to understand the problem; if you 

understand the problem, then half of it is solved and the rest is pure algebra and calculus.  
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(Refer Slide Time: 47:39 - 49:42) 

 

 
 

The final result is: X(ejomega) = – 2alpha –2 ej2omega – alpha–1 ejomega + alpha e–jomega /(1–alpha e–

jomega). 

 

The next property is convolution: it says that if you have a sequence which is the convolution of 

two sequences, that is if x(n) = g(n)*h(n), then, in the frequency domain, the Fourier Transform 

is simply the product of G(ejomega) H(ejomega) and this is a great simplification. Finding 

convolution in the time domain may not be very simple. But in the frequency domain, if you 

know the two Fourier Transforms, then you simply multiply them and then find the Fourier 

inverse. Inversion may not require evaluating an integral. But if you have to do it, then you do it!  
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(Refer Slide Time: 49:50 - 51:51) 

 

 
 

Next comes the property of Modulation; it is also known as Complex Convolution. This property 

says that if two sequences are multiplied in the time domain (the previous case was 

multiplication in the frequency domain and it was convolution in the time domain), in the 

frequency domain, it is a convolution. The expression is [1/(2 pi)] integral (– pi to pi) G(eJ theta) H 

(ej(omega –theta)) d(theta). We introduce a dummy variable theta. H(ej(ω – θ)) a delayed and folded 

version; so this is called Complex Convolution, because it is a convolution of two complex 

quantities.  
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(Refer Slide Time: 52:02 - 53:55) 

 

 
 

Fourier Transform also gives an easy way of calculating the energy of a sequence and this is 

given by the so called Parseval’s relation. We will first state the general Parseval’s Relation: 

summation g(n) h*(n) = [1/(2 pi) integral – π to π [G(ejomega) H*(ejomega) d omega]. This can be 

proved from the Modulation Theorem just discussed. Try proving it. This is the generalized 

Parseval’s relation where we have assumed that both g and h can be complex and that is why we 

put *. Now a special case of this is g(n) = h(n) then you see the left hand side becomes 

summation g(n) magnitude squared where n = – infinity to + infinity, and this would be [1/(2 pi)] 

integral – π to π G(ejomega) magnitude squared d omega. The left hand side is energy in the time 

domain and the right hand side is the energy in the frequency domain. The two energies must be 

the same because Fourier Transform is a one to one transformation.  
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(Refer Slide Time: 54:03 - 56:44) 

 

 
 

I shall conclude the class with some symmetry relations. I strongly urge you to prove each of 

them. Proof is simple, particularly in the first two cases but it may not be so in the later ones. It 

says that if FT of x(n) is X(ejomega) then the FT of x(– n) is X(e–jomega). Is it obvious? In x(– n) ejn 

omega, if you put – n = r then obviously that becomes X(e–jomega). The next relation is that, if you 

take the complex conjugate of x(n), then the corresponding Fourier Transform is X*(ejomega); this 

is also not difficult to prove. The real part of x(n), if x(n) is complex, would be given by [x(n) + 

x*(n)]/2. So the FT is (1/2) (X(ejomega) + X*(ejomega)). Similarly the imaginary part, j imaginary 

x(n), shall have the FT ½(X(ejomega) – X*(ejomega)). Unfortunately, the nomenclature is such that 

the imaginary part is also a real quantity. 
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