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Solving problems on DSP structures 

 

This is the 41st lecture and this is a problem solving session on DSP Structures; refer to Chapter 

VI of Mitra. The first problem I would solve is 6.29.  

 

(Refer Slide Time 01.27 to 03.15) 

 

 
 

Problem 6.29 is as follows: Develop a 2–multiplier canonic realization of the 2nd order transfer 

function H(z) = (1 + α + β)/(1 + αz–1 + βz–2). Normally it would require 3, α, β and 1 + α + β but 

since α and β occur in the numerator also, there is a possibility that we may be able to extract 

these multipliers. You can use only 2 multipliers and of course 2 delays. And now you write Y(z) 

in terms of X and Y but bringing the multipliers together. The result is Y(z) = X(z) +α [X(z) – z–

1Y(z)] + β[X(z) – z–2 Y(z)].  
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(Refer Slide Time 03.19 to 04.54) 

 

 
 

Refer to the diagram. Here is X(z) and here is Y(z). Y(z) is to be multiplied by – 1; then you 

have a z–1 and another z–1. Therefore, you get – z–1 Y(z) and – z–2 Y(z). X(z) is to be added to – 

z–1 Y(z) and then multiplied by α. So one of the terms is obtained; then we have to obtain the 

second term and use another summation. Finally, one can redraw the diagram to look like that 

shown in the next slide.  
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(Refer Slide Time 04.56 to 06.12) 

 

 
 

(Refer Slide Time 06.59 to 11.05) 

 

 
 

The next problem is 6.36. Given (a + z–1)/(1 + az–1), it can be realized in the form shown in the 

first part of the above diagram with a single multiplier but with 2 delays. The problem is to find a 

cascade realization of the 3rd order transfer function [(b + z–1)/(1 + bz–1)] [(a + z–1)/(1 + az–1)] [(c 
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+ z–1)/(1 + cz–1)] by sharing delays. Realization is of no problem, you just have to draw three 

such blocks, as shown above.  

 

The problem is to share delays between adjacent all pass sections and show that the total number 

of delays can be reduced to 4 instead of 6. In the above diagram, one can interchange the two 

adjacent summers. If you do that, then the two can be combined into one. Thus two summers are 

being replaced by one and this can be done in the second block also. Finally, you get only four 

delays because z–1 block cannot be combined in the last section which does not contain two 

adjacent summers. You have to draw the circuit carefully such that overlaps are minimized. 

Overlaps are not useful for fabrication.  

 

(Refer Slide Time 12.12 to 14.19) 

 

 
 

The next problem is 6.44. It has five parts: a, b, c, d and e and the problem is to realize each of 

the IIR transfer functions in Gray Markel form i.e. with taps from delays, and to check the BIBO 

stability of each transfer function. In a), H1(z) = (2 + z–1 + 2z–2)/(1 – 0.75z–1 + 0.125z–2). By now 

you should be quite efficient in obtaining lattice realizations of 2nd order functions in particular. 

The 2nd order functions require minimal amount of calculations; here, k2 = 0.125 = 1/8 and k1 = 
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d1/(1 + d2) i.e. – 0.75/(1 +0.125) = – 2/3. k2 and k1 magnitudes are < 1 and therefore the structure 

is stable.  

 

(Refer Slide Time 14.27 to 15:35) 

 

 
 

In the above slide, these two lattices, k2 = 1/8 and k1 = – 2/3 have been shown as blocks. The end 

is connected together and then you have to take taps α1, α2 and α3 as shown. The lattice sections 

here could be single multiplier or 2 multipliers each. If you complete the example, you get α1 = 2, 

α2 = 2.5 and α3 = 3.41667. 
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(Refer Slide Time 15.48 to 16.28) 

 

 
 

Since second order is very simple I will give you the results, only for part b. Here H2(z) = (1 + 

2z–1 + 3z–2)/(1–z–1 + 0.25z–2) and the results are k2 = 0.25, k1 = – 0.8, α1 = 3,α2 = 5, α3 = 4.25.  

 

(Refer Slide Time 16.43 to 18.08) 
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There is no twist in this problem; it is a straightforward one. In part d, H4(z) = (1 + 1.6z–1 + 0.6z–

2)/(1–z–1 – 0.25z–2 + 0.25z–3). Obviously k3 = 0.25. And k2 = d2′ = (d2 – d3d1)/(1 – (d3)2) = 0. 

 

Therefore k2 = 0 and k1 comes out as –1. Note that k2 = 0 simplifies the calculation. Obviously, 

the system is BIBO unstable, and has no realization.  

 

(Refer Slide Time: 1942 to 22.40) 

 

 
 

The next one, part e has H5(z) = (3 + 1.5z–1 + z–2 + 0.5z–3)/(1 – 1.8333z–1 + 1.5z–2 – 0.5833z–3 + 

0.833z–4). This occurrence of 33 in the 3 coefficients of the denominator indicates that it is a 

practical situation where the numbers had to be truncated. In other words, the designer has not 

taken care to keep them as fractions. Nevertheless, the results here are k4 = 0.08331, k3 = 0.4336, 

k2 = 0.7456, k1 = – 0.8444. In addition α1 = 0, α2 = 0.5, α3 = 1.8986, α4 = 3.6060, and α5 = 4.8460.  
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(Refer Slide Time 23.01 to 25.54) 

 

  
 

The next problem is 6.30: It says: develop a 2 multiplier canonic realization for two transfer 

functions: The first one is: H1(z) = (1 – α1 + α2)(1 + z–1)2/(1 – α1z–1 + α2z–2). If I write the 

difference equation, I get y(n) = x(n) + 2x(n – 1) + x(n – 2) (As this will be occurring every time, 

I call this some function A(n)) + α1[y(n – 1) – A(n)] – α2[y(n – 2) – A(n)] All that now you have 

to do is to construct is A(n) = x(n) + 2x(n – 1) + x(n – 2) and obtain y(n) delayed by 1 sample 

and 2 samples, and then make appropriate additions and multiplications. But first, you must 

reduce the number of delays in the overall structure to 2. This can be done by physically lifting 

the A(n) realization and putting it on the right side. 
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(Refer Slide Time 26.58 to 28.22) 

 

 
 

Then these two delays can be shared and therefore you get a canonic realization. Try to draw the 

diagram yourself. 

 

(Refer Slide Time 28.39 to 30.24) 
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The next transfer function is H(z) = Y(z)/X(z) = (1 – α2) (1 – z–2)/(1 – α1z–1 + α2z–2). Here, the 

difference equation is y(n) = α1 y(n –1) – α2[y(n – 2) + w(n)] + w(n). Here w(n) = x(n) – x(n – 2). 

First I construct x(n) – x(n – 2); I require two delays. Then I make appropriate combinations. 

From y(n), we require 2 delays in order to find y(n – 1) and y(n – 2). We apply the same trick as 

in the previous example. Again, you can draw the diagram yourself. 

 

The next problem is 6.48 which says: Develop a realization of the given 1st order complex 

coefficient transfer function with real multipliers only. One might ask: why real multipliers? 

Why can we not do with complex ones? You can do it with complex multipliers, but the problem 

is that there is no hardware for realizing square root of –1. 

 

So, you find the real part and the imaginary part separately, and then combine them.  The signal 

will also be a complex signal, this happens in FFT for example. The real part is stored in one 

storage and imaginary part in another storage. Wherever required you will either require the 

magnitude or the phase or both so you shall have a software to calculate real part square plus 

imaginary part square and square root of that, and the other is tangent inverse of imaginary part 

divided by real part and then utilize the result.  

 

(Refer Slide Time 33.58 to 35.36) 
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The problem transfer function is H(z) = (A + j C)/[1 + (α + jβ)z–1]. So we write this as Y(z)/X(z) 

= (A + jC)/[1 + (α + jβ)z–1]. Then y(n) = (A + jC) x(n) – (α + jβ) y(n – 1). We assume that x(n) is 

real, y(n) shall consist of a real part and an imaginary part. So write this equation in terms of yr 

and yj.  

 

(Refer Slide Time 35.43 to 37.00)  

 

 
 

Then you get two equations; obviously yr(n) = Ax(n) – α yr(n – 1) + βyj(n – 1). And the second 

one is yj(n) = Cx(n) – βyr(n – 1) – αyj(n – 1). These are the two equations that you have to 

realize. And the diagram is to be drawn carefully.  
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(Refer Slide Time 37.08 to 41.28) 

 

 
 

Start with x(n) and the two outputs yr(n) and yj(n). You require yr(n – 1) and yj(n – 1). Obtain 

them by two delays and then it is a matter of combination. So multiply x(n) by A and add it to – 

αYr(n – 1), with another summer, add the result to + β Yj(n – 1). The result is yr(n). Similarly you 

can construct yj(n) as C multiplied by x(n) and use two summers as shown in the figure to 

combine it with – β yr(n – 1) and – α yj(n – 1). Now you notice that – α occurs twice, and there 

are multiplications by β and – β (– β is nothing but sign changed β). It should be possible to 

combine each pair into one multiplier. Try it yourself. 
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(Refer Slide Time 41.44 to 41.59) 

 

 
 

(Refer Slide Time 42.04 to 42.22) 
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(Refer Slide Time 42.24 to 42.27) 

 

 
 

This problem also has another part which asks you to determine the transfer functions from x(n) 

to yr(n) and yj(n). What you do is take the difference equation, find their Z–transforms and 

evaluate Yr(z) and Yj(z).  

 

(Refer Slide Time 42.59 to 45.20) 

 

 
 

14 
 



The last problem for today is a problem concerned with an all pass filter. You are to realize the 

following first and second order transfer functions in the form of parallel connection of all pass 

filters. The poles will determine what kind of decomposition is possible. If poles are complex, 

you could decompose into a constant + a 2nd order all-pass. If the poles are real, even then you 

could do that. If the poles are real, then the simplest thing to do would be decompose them into 

1st order all-pass transfer functions.  

 

Suppose you are given a 2nd order IIR with real poles, then both decompositions are possible. 

You should prefer two first orders because the processing is faster; only one delay is required in 

both the parallel sections. Given real poles, you may require two constants in general. That is, 

instead of ½ [A0(z) ±  A1(z)], you try k1A0(z) ±  k2A1(z). Both A0 and A1 you can construct very 

simply by looking at the denominator; the coefficients get interchanged.  

 

(Refer Slide Time 45.30 to 46.21) 

 

 
 

Here, H1(z) = (2 + 2z–1)/(3 + z–1). You decompose this as k1 + k2 (3 + z–1)–1 (1 + 3z–1). It should 

always be possible because you have two unknowns and two equations. The result here happens 

to be ½ [1 +(1 + 3z–1)/(3 + z–1)], but this is not guaranteed to occur in general.  
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(Refer Slide Time 46.29 to 48.18) 

 

 
 

In part b), we have H2(z) = (1 – z–1)/(4 + 2z–1). You can write this is as ½ (1 – z–1)/(2 +  z–1) = ½ 

[k1 + k2 (1 + 2z–1)/(2 + z–1)] and find out k1and k2. Here k1 comes out as 1and k2 comes out as – 1. 

Part c) has H3(z) = (1 – z–2)/(4 + 2z–1 + 2z–2). If you find the poles, you see that they are complex 

and therefore it has to be ½ [k1 + k2 (1 + z–1 + 2z–2)/(2 + z–1 + z–2 )] and find k1 and k 2  as 1 and  –

1 respectively.  
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(Refer Slide Time 48.25 to 49.35)  

 

 
 

The next problem is d): H4(z) = (3 + 9z–1 + 9z–2 + 3z–3)/(12 + 10z–1 + 2z–2). So once again you 

take 1/2 out and write the denominator as 6 + 5z–1 + z–2 which also makes it obvious that this can 

be replaced with (3 + z–1) (2 + z–1). Write H4(z) = (1/2) [k1 ((1 +   3z–1)/(3 + z–1)) + k2((1 + 2z–

1)/(2 + z–1))] + k0z–1. The k0z–1 is needed because the numerator degree is 3, and not 2. 

 

(Refer Slide Time 49.53 to 52.44) 
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Here there will be three all passes.  

 

(Refer Slide Time 52.49 to 53.15) 

 

 
 

I can also write H4(z) as k1 z–1 + k2(1 + 5z–1 + 6z–2)/(6 + 5z–1 + z–2).  
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