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Lecture — 40
FIR Design by Windowing

This is the 40" lecture and our topic for today is FIR Design by Windowing which we have
already started and we shall also introduce the frequency sampling techniques, if time permits. In
the previous lecture we talked about the basic concept of windowing, that is the given desired
frequency response is expanded in Fourier series which is nothing but the Fourier Transform of

the desired impulse response.

(Refer Slide Time: 01:28 — 03:51 min)

So you find hg(n) which is infinite in length. You have to truncate this from some point (n = 0) to
(n =N - 1). The length is N, which is to be estimated by empirical formula. You are not going
below (n = 0), because then it becomes non-causal or unrealizable. Therefore you start at (n = 0).

If you truncate abruptly at N — 1, we say that this is the application of a rectangular window. And
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any abrupt termination leads to Gibbs phenomenon which we illustrated last time. The attempt is
to reduce Gibbs phenomenon to reduce the overshoots and undershoots in the frequency
response by tapering the window in a smoother manner. We have talked about a number of
windows: the Modified Rectangular, the Hann window, the Hamming window, the Generalized
Hamming window, the Blackman window, and the Bartlett window, which is triangular in shape.

And we said that the optimum windows are the Kaiser and the Dolph Chebyshev.

(Refer Slide Time: 03:54 - 06:57 min)
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Then we started an example of low pass filter (LPF) design and since we have no control over
the tolerances we aim for the ideal response. That is, we assume that our magnitude response is 1
from 0 to some frequency w, and then from w, to =, it is exactly equal to 0. Now you have to find
hq(n) by the inverse Fourier Transform formula over one period and the easiest thing to do is to
take the limits from — x to + =. You can take from 0 to 2z also and the result shall be the same.

Although our range of vision is 0 to =, in order to obtain hg(n) we have to extend from —w to + ©
and then hg(n) becomes [1/(2m)] | — e, €™ dw. Now this is true if we only want a zero phase

response. We want a linear phase and therefore we take Hg(€'®) not as 1 but as e 7" for |o| < ®p
and O otherwise, i.e. for o, < |o| < n. After all, FIR design is resorted to only if linear phase is a

constraint. So we pre-assume that we are going to approximate a linear phase.



(Refer Slide Time: 07:01 - 09:16 min)

Therefore if we carry out the integration, the result, as we had shown last time, is hg(n) =
sin(wp(n — 7))/(m(n — 7)), n # 7 and it is wp/n if n = 7. This case will arise only when t is an
integer because N is an integer. In other words this case will arise when N is odd and this is
usually the case. We assume N to be odd because the delay is an integer. The half sample delay
creates its own problem. Therefore, we assume that N is odd. Last time, we started with linear
phase, obtained hq(n), and verified that hg(n) = hg(N — 1 — n) requires = = (N — 1)/2.



(Refer Slide Time: 09:23 - 12:13 min)
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The example we shall carry throughout is that of N = 7 and w), for the low pass filter is 1 radian;
it is not 1 radian per second. N = 7 therefore leads to t = 3. In order to obtain the frequency
response curve we require the expression for this linear phase filter of type one, that is,
symmetrical impulse response and odd length. If you remember for type one, the frequency
response is given by e 1“2 H,(w), where Hy(w) is the pseudo magnitude; it is not a magnitude
because it can change its sign. Hi(o) is given by h((N — 1)/2) plus other terms which match each
other to produce a cosine series and this is Y™ _; h((N = 1)/2 = n) cos no. You require this
formula to estimate what you have achieved by the windowing technique. h(n) is to be obtained
from hy(n) and the chosen window function w(n). Once you obtain these, you substitute here and

then you get the frequency response.



(Refer Slide Time: 12:16 - 14:05 min)

In this particular case, hq(n) = sin(n — 3)/[n(n — 3)], n # 3, and = 1/x for n = 3 and this gives rise
to the following: hg(0) = hy(6) = 0.01497; hy(1) = hy(5) = 0.14472; hy(2) = hy(4) = 0.26785; and
hq¢(3) = 1/x=, that is 0.31831. Now, if we use rectangular window then w(n) = 1 and therefore

these themselves determine the frequency response.

(Refer Slide Time: 14:07 - 19:09 min)




So Hi(w) the pseudo magnitude becomes equal to 0.331831 + 0.53570 cos m + 0.28944 cos 2w
+ 0.02994 cos 3w. This is the result for rectangular window. Now, if you apply any other
window, for example, the Hann window, then w(n) is (1/2)(1 — cos(2zn)/(N — 1)). And therefore
w(0) = w(6) = 0. Hann actually uses two lengths less because the terminal values are 0. w(1)
comes as (1/2) (1 — cosn/3) = 1/4 and that is w(5) also. Half the number have to be calculated
because of symmetry. Also, w(2) = w(4) = (1/2)(1 — cos 2n/3) and that calculates out as ¥, and
finally w(3) = 1. It is not required to calculate the middle point that is normalized with respect to
1. In Hann window therefore this term shall remain the same. The coefficients of Hann in Hi(®)

are written above those in the expression for rectangular window (refer slide).

(Refer Slide Time: 19:11-22:58)
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In Hamming, the window values are w(n) = 0.54 — 0.46 cos nn/3 because the length is the same
and we know these values without calculating anything. Here w(0) = w(6) = 0.08; w(1) = w(5) =
0.31; w(2) = w(4) = 0.77; and w(3) = 1. Now | must tell you why | suddenly changed to two
places of decimals. There is so much of uncertainty because N may not be correct and we have
no control over tolerances; therefore ultimately what you get is a rough design. If it satisfies the
specs, you consider yourself lucky, but generally you have to iterate; you have to go to higher

orders. The only control that you have is the order and the window. So, start with Hann, then go



to Hamming. If Hann suffices you are very happy because the hardware requirement is reduced
by two. That is why Hann is not discarded from the beginning, it is used. Hann, Hamming and
perhaps one more window generally suffice, unless you want to go to the optimum. If you want
to go the optimum, then all these calculations are not needed. They are simple calculations for
the other windows and can be used if the requirement is not very stiff and if the tolerance can be
relaxed. In this particular example, using Hamming, the frequency response becomes Hi(w) =
0.31831 + 0.41249 cos o + 0.08973 cos2m + 0.0024 cos3w.

(Refer Slide Time: 22:33 - 22:42 min)

And the three pseudo magnitudes have been plotted here side by side.



(Refer Slide Time: 23:04 - 25:06 min)

If you notice carefully, these figures cannot be compared straightaway because they are not
normalized. The maximum amplitude has not been normalized to 1; that should be done before
comparison. They should be plotted on the same graph so that you can compare them. But one
thing that you notice is the zero crossing which does not change with normalization. The zero
crossing is between 1 and 2 in the rectangular window, but it is between 2 and 3, closer to 3 than
2 in the Hann as well as Hamming which is a reflection of the widening of the main lobe.

Now, what is the effect on the low pass filtering? The cutoff becomes slower; rectangular
window gives you a sharper cutoff than the other two. The side lobe height is reduced
considerably in the Hann and Hamming. In Hamming, for example, the side lobe is hardly
discernable. In Hann, the scales are different. This is not the type of plot you should make, you
must make the scales the same; normalize the maximum amplitude to 1 then compare and weigh
against the tolerance scheme that is specified and then decide which shall be used. If Hann
suffices then you need not go further. Let us look at a high pass filter (HPF) design by

windowing. For HPF you must note the specs carefully.



(Refer Slide Time: 25:25 - 27:19 min)

For HPF, we want unity amplitude between w, and 7. | am not bringing the plot down at ® = =,
because if | extend, it goes up to @ + ®,. | have the mirror image between — o, and — ©. The
magnitude is 1, but my transfer function Hq(e'®) is linear phase, that is Hg(e'®) = 7" for w
between o, and © and between — o, and — w. So my integral now shall have two parts hq(n) =
[7or_, @07 doy + [, e ™~ dw The integrand is the same but we have to put the limits

carefully.



(Refer Slide Time: 27:23 — 29:46 min)

If you do that, then the result comes as hq(n) = [sin(n — 1) — sin(n— 1)wp]/[(n — t)] provided n
# 1. If n = 1 then it is simply (7 — @p)/m = 1 — (wp/n) for n = T which indicates that N is odd. You
also notice that if N is odd, then the term sin(n — 7 )= here is identically equal to 0 but this is not
the case if N is even. Recall that there is another reason why an odd length is preferred. What is
it? 1 leave it to you to recall. Suppose N = 7 that is T = 3 and wp = 2 radians; then hg(n) = - sin[(n
—3) x 2]/[n(n — 3)] for n # 3, and it is 1- (2/=) for n = 3. So you can calculate hy and can apply

the various windows.
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(Refer Slide Time: 29:57 - 30:59 min)

The steps would be to calculate hy(n), n = 0 — 6 in which obviously you have to calculate only
for n =0, which is 1 — (2/x), and for n = 1 and 2. And then make h(n) = hy(n) w(n) where w(n) is
rectangular, or Hann or Hamming window, which are the simplest windows. You have other
choices. Even in Hamming, you do not have to assume the first term as 0.54; you could assume
any a, so there is lot of flexibility. You can calculate the pseudo magnitudes in the three cases.

The results are plotted here in the next slide.
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(Refer Slide Time: 31:14 - 33:12 min)

Notice carefully what happens to the frequency response. Once again these three figures should
not be compared as they are, because the maximum response has not been normalized to 1.
Maximum response in rectangular case is about 1.16. The maximum response in the other two
plots does not go to 1. Notice that Hann and Hamming are close to each other because the
windows have been tapered. But the Hann window will always give you a slightly inferior
response because it uses a smaller length. The undershoot in Hamming is almost unnoticeable.
The slope of the main part would be positive here because it is a high pass filter. The slope
deteriorates with Hann and Hamming. There is hardly a ripple in the upper part. In all
probability, rectangular window will not work, therefore you have to use either Hann or
Hamming window. Next we take the case of a band pass filter.
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(Refer Slide Time: 33:19 -34:49 min)

For a band pass filter, you want a rectangle between ®; and w, and another rectangle between —
o, and — o, (refer slide). Also, w, is less than © (Refer Slide). This is my band pass filter and
therefore hg(n) = [1/(2n)] [[7°" o2 €° 9 do + [©%,1 € @7, If you calculate this, it comes out

as hg(n) = [sin(n — 1) w2 -sin(n — 1) ®1}/[(n - 7) 7]; n #t and when n = 7 it is simply (w2 — ©1)/x.

(Refer Slide Time: 34:52 - 36:29 min)
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To take an example, suppose N = 7; it is a very small length and is only used for illustration. N =
7 means 1 = 3; let o, = 2 radians and ®; = 1 radian. Then you calculate hy(n) 0 < n < 6 in which
you have to calculate only three of them and the rest would be symmetrical. Then apply the Hann
window and the Hamming window. The pseudo—magnitude is not plotted on the same graph; it is
plotted side by side for Hann window and the Hamming window.

(Refer Slide Time: 36:44 — 37:21 min)

Invariably, the pseudo magnitude does go negative with rectangular window but with Hann and
Hamming, it does not. The slope of rise and slope of fall are sharpest in rectangular case. What
you pay here for reducing side lobes is a widening of bandwidth. As I said N = 7 is a very small
number and it cannot achieve any useful purpose. Finally we look at band reject filter.
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(Refer Slide Time: 37:25 - 39:08 min)

Now you shall have a pass band between — & and — ®,, — ®; t0 + @1 and w, and = (refer slide); the
stop band is between m; and w,. There is a pass band before that and a pass band after that. This
is the band reject filter and the passband magnitude is 1. But you assume that the transfer
function is e7°7 so that it has linear phase. So hg(n) shall now consist of three integrals; the
integrand is the same as we have seen earlier. The integrals are from — t to — @y, then — @; to +

1, and finally o, to 7. The integrand is €~ do.
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(Refer Slide Time: 39:13 - 40:57 min)

The result is that hg(n) becomes equal to [sin(n —t) ®; — sin(n — 1) ®, + sin(n — t)x] (This last
term appeared in high pass filter also and it will disappear if t is an integer) divided by 7 (n — 1),
forn£t,andforn=rtitis [1 - (02-®1)]/n =1 - ((w2 — ®1)/m). ®2 — 1 is the stop bandwidth in

this particular case because we are aiming at an ideal response.

(Refer Slide Time: 41:01 - 41:16 min)
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Once again we take an example of the same length; N = 7; let ®; = 1 radian, w, = 2 radians and
you calculate h(n) and find out the pseudo magnitude for the three windows: rectangular,

Hamming and Hann. This is what the result looks like.

(Refer Slide Time: 41:30 - 44:00 min)

Once again if you want to compare you have to plot them on the same figure. You have to
normalize the maximum magnitude to 1. The maximum magnitude for the rectangular window
occurs at o = 0; for the other two, it occurs at ® = n. In the normalization also, you shall to be
careful. In the rectangular window case, for example, the maximum is not unity. The pseudo
magnitude is not symmetrical around the rejection frequency. In the IIR case, there was
geometric symmetry.

What made it symmetrical in the IR case? Why was it that in IIR, we always got symmetry of a
special kind, i.e. geometrical symmetry? It occurs because of the property of the analog filter
from which we derived that filter; geometric symmetry was continued in the digital filter also.
But here we have no control; there is no symmetry, and there was no parameter to control the
symmetry.
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You also notice the tolerances; normalization is needed to compare how close the dip goes to
zero and that will determine the stop band tolerance and the stop bandwidth. So a comparison of
the three plots requires further work; just plotting them individually is not enough. Now, if I
increase the length, you would see what happens. | will now project a number of figures one by
one and show what the effect of length is. The next figure shows the case of length equal to 25.

(Refer Slide Time: 44:27 - 46:16 min)

Here normalization has been done. That is, the maximum amplitude has been made equal to 1.
There are ripples in the pass band and there are ripples in the stop band, so it is more like an
elliptic filter. The amplitude of the ripples now shall go down as N increases because the
transition is not abrupt, it is smoother than in the rectangular window. In a rectangular window,
however much you increase the length, the overshoot and the undershoot would be 17.8%. In
contrast, you see that in the Hamming window, pass band ripple is hardly discernable. Obviously
this design is the best of the three, but if Hann satisfies the specs, then it is advisable to accept
that. The next figure shows what happens to a high pass filter and the results are very similar.
There is hardly anything to distinguish between Hann and Hamming.
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(Refer Slide Time: 46:31 - 46:42 min)

The rectangular one shows the same kind of ripple in high pass also. The next slide shows the
band pass case with length N = 25.

(Refer Slide Time: 46:58 - 47:47 min)
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Here the magnitudes are not normalized. When N increases, Hamming normalizes the maximum
magnitude to 1. But for Hann there is no control. Hann also goes towards 1 but this is two length
less. Once again, you can observe the sharpest cutoff in the rectangular window. Finally consider

the band reject filter whose response for N = 25 is shown in the next slide.

(Refer Slide Time: 47:57 - 49:57 min)

(Refer Slide Time: 48:44 - 49:21 min)
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Finally, we show a figure where the length has been increased to 1024.

(Refer Slide Time: 50:12 - 51:19 min)

The first plot is that of a LPF using a rectangular window; there are no ripples, but an extended
rod still remains at the transition point and it is approximately 17.8%; this is what Gibbs
phenomenon is. The next plot is that of a band pass filter using the Hann window. Finally we
show a low pass filter with Hamming window of the same length 1024.
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(Refer Slide Time: 51:30 - 52:45 min)
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This is almost ideal in FIR design. If you start with sufficiently large N and if your estimate is
800 for example then you start with 1000 and see how it goes. If it over satisfies, then you come
down and if it under satisfies, then you go up. What are the disadvantages of large length? One is
hardware and other is speed of processing and therefore you need to bring FFT hardware into it
and then compute the convolution. You want to design a filter and it has an input, it has an
output, it has an impulse response of length 1023. So you make FFT of input and FFT of the

impulse response, multiply the two, and take the IFFT; this will speed up the processing.

One important point is that, in IR design we only took cases of low pass, high pass, band pass
and band stop. The transformations were either from analog-to-digital or from digital-to-digital.
But we assumed a limited number of pass bands and limited number of stop bands. In a band
pass filter for example we assumed one pass band and two stop bands. In a band stop filter we
assumed one stop band and two pass bands. If you go to multi-pass band filters, two pass bands
and the corresponding number of stop bands between 0 and = then you shall have to design your
own transformation. The degree has to be increased. The transformation from analog low pass to
analog band pass is second order. If you want two band passes in the range then you will require

a fourth order and you shall have to design your own transformation.
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(Refer Slide Time: 54:11 - 54:42 min)

On the other hand, in the FIR design, this is not a problem at all; you can have multiple pass
bands. For example, you have something like that shown in the slide, you just integrate the same
integrand in four different regions. Obtain the corresponding formula and go ahead. So FIR filter
design is not as bad as it poses to be, but anything that works finally is good enough for an
engineer. We have already seen what happens with an increase in the length to 1023; the filter
that we get is almost ideal. We can never get such a response with an IIR filter. IR filter will
have some tolerance in the pass band and some tolerance in the stop band. But with FIR you can
almost approach the ideal provided you use the correct window. The order can be reduced by

using one of those optimum windows, namely the Kaiser and the Dolph Chebyshev.
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