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This is the 37th lecture. In the last lecture we started working on an example but we could not 

complete. So now we will continue working on this example and also introduce something new, 

called digital-to-digital frequency transformations. The results are available in the book but the 

method of derivation is new.  

 

In the previous lecture, we used an example of an IIR design and worked it out completely for 

Butterworth case using Bilinear Transformation, and Butterworth case using Impulse Invariant 

Transformation. With regard to Chebyshev design with bilinear transformation and impulse 

invariance, we brought out many points; not all of them are available in the book. We also took 

another problem of low-pass design and we went to the design of other types of filters with the 

specifications ωp, ωs, δp and δs.  

 

The first thing you do is convert actual frequencies to ω’s. Then you convert them to Ω ’s; the 

tolerances remain the same. In the process, you could assume T = 2 because the final result is not 

affected by T if you use Bilinear Transformation. If you use impulse invariance, it does and that 

is why it gives rise to aliasing. But in BLT, the final result H(z) is independent of T. So even if T 

is given, you can normalize this to 2 seconds and work it out. The advantage is that you do not 

have to handle large numbers, as the example of design illustrated.  

 

The disadvantage is that, if you assume T = 2 then the numbers you handle are small and they 

will usually be fractions. Therefore use a large enough number of digits after the decimal point. 

After the design is complete, you of course have to subject H(ejω) to a MATLAB Program, draw 

the magnitude characteristic and phase characteristic and judge whether it is satisfactory or not. 
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For the design we worked out for the Band Stop filter, we did not use T = 2 but we used the 

given T. So, you find the Normalized Analog Low-pass Filter, that is Ha(S), normalized in the 

sense that Ω p is normalized to 1 radian per second and the magnitude is normalized to have a 

maximum value of unity. Then you transform the normalized low-pass to other types. That is, 

replace S by the appropriate expression in the variable s. Next, you apply the Bilinear 

Transformation (BLT) to get H(z). Now we shall find an alternative route to this when we 

discuss digital–to-digital transformation directly, rather than going via analog. Let us first 

complete this example.  

 

(Refer Slide Time: 02:48 - 17: 13 min) 

 

 
 

The digital filter specifications were converted to analog filter specs, and we had two pass bands. 

We also converted db to fractions with passband magnitudes between 1 and 0.966. The stopband 

tolerance was worked out as 0.0178. The stopband had to be modified by increasing Ω s2 to 

Ω ’s2. Before aiming at Chebyshev, we have to go to the Normalized Analog Low-pass Filter 

which has Ωp = 1 but you have to find out the edge of the stop band, that is Ωs of the normalized 

low-pass filter. From our earlier discussion, it should be amply clear that Ωp2 – Ωp1 is not the 

bandwidth of the band reject filter. It does not have a physical significance but it is simply the 

difference between two pass band edges. This difference divided by stop bandwidth gives Ωs. So 

2 
 



Ωs is given by (Ωp2 – Ωp1)/(Ω’s2 – Ωs1). And if you substitute the numerical values, then Ωs 

comes out as 3.418. You should use the value Ωs2′ and not the original one. Now Nc has to be 

found out which will be Nc ≥ cosh-1 √[((1/0.178)2 – 1)/((1/0.966)2 – 1)]/cosh-1 3.418. Again cosh-

1y is calculated by taking ℓn (y + √(y2 – 1)). And this comes as 3.178, so Nc = 4. The number is 

neither close to 4 nor close to 3, so we can confidently say Nc = 4. And now the actual Ωs2 

realized will go beyond Ωs2′ because we are using a larger value than 3.178. Similarly, Ωs1 would 

be smaller than what was specified but Ωp1 and Ωp2 shall remain intact.     

 

(Refer Slide Time: 09:10 - 12:11 min) 

 

 
 

So, now Ha(s) can be written down. Because the order is 4, we do require 1/√(1 + ε2) which is 

0.966. We require 1/ε and it has to be calculated. We did not calculate ε and 1/ε. You require 

them. You require 1/ε to calculate y4. 1/ε comes to 3.736. So, in the denominator there shall be 

two quadratics that is S2 + b1ΩpS + c1Ωp
2 and the other factor would be S2 + b2ΩpS + c2Ωp

2 and in 

the numerator we shall have c1 c2 Ωp
4 multiplied by 0.966. There is a simplifying feature here 

because Ωp = 1.  
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(Refer Slide Time: 12: 4 – 14:07 min) 

 

 
 

We now have to calculate b1, c1, b2, and c2. The first step is to calculate y4 where 
2 1/4 2 1/4

4 (1/ 2)[( (1 1/ ) (1/ )) ( (1 1/ ) (1/ )) ]y −= + ∈ + ∈ + √ + ∈ + ∈  and this calculates out as 0.528896 

(note that I go up to fifth decimal place). b1 is 2 × y4 sin(π/8) and that calculates to 0.40479, c1 is 

y4
2 + cos2π/8 and this calculates to 1.1332.  
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(Refer Slide Time: 14:12 - 16: 11 min) 

 

 
 

Then we have to calculate b2 and c2. b2 is 2 × y4 sin 3π/8 and the value is 0.9773 while c2 is y4
2 + 

cos2 3π/8 and this is computed as 0.4261. Therefore Ha(S) = 1.133 × 0.462 × 0.966/[(S2 + 0.405S 

+ 1.133) (S2 + 0.977S + 0.426)]. 

 

(Refer Slide Time: 16:17 - 18:28 min) 
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The next step is to put S = 759.456s/(s2 + Ω0
2); Ω2

0, if you recall, came out as (293.765)2 so put 

this and get S = 759.456s/(s2 + (293.765)2) and then finally you substitute s = (2/T) (now you 

have to bring in T because you did not discard T at the beginning) (1 – z-1)/(1 + z-1) and that will 

give you H(z).  

 

The next topic for discussion is to design digital filters of any kind starting from another digital 

filter. Here also, you start from low-pass filter. That is, given a digital low-pass filter of some 

pass band edge ωp′ you have to design another digital filter of the same or some other kind. It 

could be another low-pass filter whose pass band edge is ωp, or a high pass filter with a pass 

band starting at ωp or a band pass filter or a band stop filter with corresponding ωp1 and ωp2. And 

in order that we do not have to write p again and again we shall simplify these to ω1 and ω2.  

 

When we write ω1 and ω2, it should be implied that we are referring to the pass band edges and 

this is true about band stop case also. This digital low-pass filter is specified not only in terms of 

ωp′ but also ωs′, δp and δs. It has been carefully designed so that by transformation only the pass 

band changes; the stop band change is automatic, so the stop band need not be considered. Given 

an arbitrary digital low-pass filter with a pass band at ωp
’, our purpose is to go from here to 

another by an appropriate transformation. Obviously the transformation will be from one z 

domain to another z domain. Let the lowpass z domain be denoted by Z and the transformed 

filter z-domain by z. So we are seeking a relationship between Z and z. All pass filters once 

again come to the rescue. You will see that this transformation is an all pass function, i.e. Z-1 is 

equal to an all pass function in z-1.  
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(Refer Slide Time: 19:33 - 22:53 min) 

 

 
 

The above diagram precisely illustrates what we wish to do. Let us first review what we did in 

the previous procedure of transforming an analog filter. From digital filter specs, the procedure 

we have followed so far is through an analog filter of the same type. For digital filter specs of a 

band stop type, we first transform the frequency so that there is an analog band stop. And then 

from analog band stop we found out the required transition ratio of a normalized analog low pass 

filter. So you get a normalized analog low-pass filter, that is Ha(S), and then we have put S equal 

to an appropriate function of s to transform it to a band stop filter. Finally, we have used the BLT 

to get H(z). This has been our design flow diagram. Now, suppose instead of following this 

route, we use a BLT on the normalized analog low-pass filter to get a digital low-pass filter with 

the variable Z. This BLT would be S = (2/T) (1–
1

Z
−

)/(1+
1
z
−

). So we get a digital low-pass filter in 

the Z domain and then look for a digital-to-digital transformation that is Z = g(z) to arrive at H(z) 

of the desired type of filter.  

If we have done the procedure correctly then obviously we should get the same result because 

Bilinear Transformation and S = f(s) are one-to-one transformations; given one, you can go to 

the other. And therefore if we follow either route, we should get the same result. Let us see what 

this transformation Z = g(z) is. Note that when we go from normalized analog low-pass filter to a 

digital low-pass filter, the latter is not assured to be normalized, i.e. ωp’ will not in general be 
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unity. Therefore we seek not only a digital-to-digital transformation but from an arbitrary digital 

low-pass filter. It is arbitrary because it is not normalized.  

 

(Refer Slide Time: 23:00 - 26: 56) 

 

 
 

First, consider the problem of transforming a digital low-pass filter of cutoff frequency ωp’ is to 

another low-pass filter with cutoff frequency ωp. This is a trivial thing in analog domain. What 

you have to do is to replace S by s divided by the new cutoff frequency. From a digital low-pass 

filter to digital low-pass filter with another cutoff frequency is not trivial; it has to be worked out. 

The reason is that relationship between Z and z is not linear, like that of S and s.  

 

Let us work it out systematically. If we had transformed these two low-pass digital filters to 

corresponding analog low-pass filters, the corresponding frequency Ω’P would have been (2/T) 

tangent of ωp
’/2. And similarly, for the new filter, it would have been Ωp = (2/T) tangent of ωp/2.  

Let the analog frequency variable of the first case be S’. It is any arbitrary low-pass digital filter 

which when transformed to the analog domain may not give a pass band edge Ωp’ equal to 1. 

Hence we use a prime to denote the complex frequency variable. Then replacing S’ by S’/Ωp’, 

obviously I shall get a Normalized Analog Low-pass Filter. The pass band edge will be now 1 

radian/second and this is what we call S. If Ω’p is one, then the two are identical. Let the 
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complex frequency variable in the new transformed analog low-pass filter be s; then replacing s 

by s/Ωp would give a normalized analog low-pass filter with cutoff frequency of 1 radian/sec, i.e. 

s/Ωp= S. these two S’s are identical; hence S’/Ωp’ = s/Ωp. 

 

(Refer Slide Time: 28:08 - 31:52 min)  

 

 

So, S’ = (Ωp′/Ωp)s. In terms of Bilinear Transformation, this relation translates to (1 –
1
z
−

)/(1 + 
1
z
−

) 

= Ωp′/Ωp/(1 – 
1
z
−

)/(1 + 
1
z
−

). I get a relationship between 
1

Z
−

 and 
1
z
−

.  Now replace Ωp′ by (2/T)tan 

ωp’/2 and Ωp by (2/T) tan ωp/2 and do a little algebra. The final result can be put in the form 
1

Z
−

 = 

(
1
z
−

 – α)/(1 – α
1
z
−

) where α = sin ((ωp′ – ωp)/2)/sin ((ωp′ + ωp)/2).  

 

Notice that the transformation is an all pass function. All pass seems to appear everywhere in 

digital signal processing.  
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(Refer Slide Time: 31:59 - 34:46 min)  

 

 
 

So this is the low-pass to low-pass transformation. It is not a linear transformation but it is again 

a Bilinear Transformation, because it is a linear polynomial in 
1
z
−

divided by another linear 

polynomial in 
1
z
−

, but it is an all pass function. Could alpha be negative? Yes, because ωp′ can be 

< ωp. Now the procedure should be clear. It is a very simple concept; we simply appeal to the 

analog transformation and that gives us the result.  

 

We next want to go to a digital high pass filter; once again the basic digital LPF cutoff is ωp′ and 

the passband edge of the HPF is ωp. So S′, the corresponding analog filter complex frequency 

variable, divided by Ωp′, which is equal to S, should be replaced by Ωp/s; this is the analog to 

analog transformation, low-pass to high pass. And therefore what you have is that S′ should be 

equal to Ωp Ωp′/s which means that (1 – 
1

Z
−

)/(1 + 
1

Z
−

 ) should be equal to tan(ωp/2) tan(ωp’/2) (1 + 
1
z
−

)/(1 – 
1
z
−

). 

 

In deriving this transformation, we assumed that T = 2. In the low-pass to low-pass, the question 

did not arise because it was a ratio but now it is a product and therefore the question is important. 

You can carry (2/T) through but finally you will get the same result.  
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(Refer Slide Time: 35:37 - 38:30)  

 

 

The final result comes as 
1

Z
−

 = 
1

1
1

z

z

α

α

−

−

−
−

−
, the same transformation as we got from low-pass to 

low-pass but with a negative sign. Here α is a ratio of cosines. Precisely this 

is cos[( ') / 2] / cos[( ' ) / 2]p p p pα ω ω ω ω= + − . These transformations were given by A.G. 

Constantinides, a Professor at the Imperial College of Science and Technology, London in his 

Ph.D. thesis. But the derivation was more complicated than what has been done here.  

 

Next we go from digital low-pass to digital band pass and in band pass, there are two pass band 

edges ω1 and ω2. For reasons mentioned earlier, let us not write ωp1 and ωp2 again and again so 

we shall take them as ω1 and ω2. The corresponding analog frequencies are Ω1 and Ω2. Once 

again, I assume that T = 2 so that I have to handle only tangent functions.  
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(Refer Slide Time: 38:40 - 41:27 min) 

 

 
 

Therefore the procedure is S′/Ωp′, which is S, should now be replaced by (s2 + Ω1 Ω2)/[(Ω2 – 

Ω1)s]. Recall that Ω0
2 = Ω1 Ω2. Now put S′ = (1 – 

1
Z
−

)/(1 + 
1

Z
−

), Ωp′ = tan (ωp′/2), Ω1 tan (ω1/2), 

Ω2 = tan(ω2/2) and s = (1 – 
1
z
−

)/(1 + 
1
z
−

). After a little involved algebraic and trigonometric 

manipulation, you get the final result as 
1 2 1 2 1

[ (2 / ( 1)) ( 1/ ( 1))] / [(( 1) / ( 1)) (2 / ( 1)) 1]Z z k k z k k k k z k k zα α
− − − − −

= − − + + − + − + − + + . 
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(Refer Slide Time: 41:34 - 45:32)  

 

 
 

Please note the negative sign; once again, this is also an all pass function of second order. Here, 

α = cos [(ω2 + ω1)/2]/cos [(ω2 – ω1)/2]. You can show that this is cosine of the center frequency 

of the digital band pass filter. Also k here is cot[ω2 – ω1)/2] tan (ωp′/2).  

 

(Refer Slide Time: 45:45 - 48:02 min) 
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Let us now consider transformation of a digital low-pass filter to digital band stop filter. Once 

again the band stop is also defined by its pass band edges ω2 and ω1. If you follow the same 

steps, you get the final result 

as
1 2 1 2 1

[ ((2 / ( 1)) ((1 ) / (1 ))] / [((1 ) / (1 )) ((2 / ( 1)) 1]Z z k z k k k k z k zα α
− − − − −

= − + + − + − + − + + , where α  is 

the same as in the bandpass case, and can be shown to be equal to cos ω0, where ω0 is the null 

frequency i.e. the center frequency of the stopband. Also k = tan(ωp’/2) tan((ω2 – ω1)/2)). Note 

that this is also an all pass function of the second order. Note carefully the difference between 

bandpass and bandstop transformation functions, as well as the differences between low-pass and 

high-pass transformations. It is best to tabulate them. 

 

(Refer Slide Time: 48:05)   

 

 
 

As compared to the derivations by Constantinides, which is quoted in all text books, the 

derivation given here is conceptually much simpler and the algebra and trigonometry can be 

handled with not too much of difficulty. This new method appeared in the following paper by the 

author: S.C.Dutta Roy, “A simple derivation of the spectral transformations of IIR filters”, IEEE 

Transactions on Education, vol.48, issue 2, pp. 274-278 May 2005. 
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In the next lecture, we shall consider a very simple example, that of a first order Chebyshev low-

pass filter. First order Chebyshev is the same as first order Butterworth in analog but not 

necessarily in digital. So we will start from a first order analog low-pass filter and then transform 

it to digital low-pass. From digital low-pass, we shall go to other kinds of filters just as an 

example. Then we shall change the topic.  
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