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This is the 32nd lecture and our topic for today is FIR Lattice Synthesis. In the last lecture, we 

took an example of IIR all pass realization by lattice. We talked about tunable filters, low pass-

high pass combination and band pass-band stop combination. We also looked into the realization 

of an arbitrary IIR filter transfer function by tapped lattice. That is, the lattice realizes the all pass 

constructed with the same denominator, tap some signals, weigh them and then add them 

together and get the desired transfer function. We showed that this is possible in all cases and 

then we concluded with an example. We also started our discussion on FIR lattice. The 

procedure for FIR lattice is synthesis by analysis which is the traditional approach. One can also 

think of a synthetic approach, but the procedure seems to be quite complicated, involving matrix 

decomposition.  
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Our structure is shown in the figure (reproduced from Mitra), where instead of Σ for summation 

Mitra uses the plus sign. My notation for a multiplier is a circle, but Mitra uses a triangle. I 

require this total diagram to be able to illustrate some points. First, you notice that in this 

diagram the total number of delays is M, the degree of the transfer function. Since there is no 

feedback, it should be a FIR transfer function; it is all feedforward. The constant term in the 

transfer function is equal to 1. This is reflected in the straight path from the input to the output. 

The desired output Y(z) appears at the end point of the upper line. The signal at the end point of 

the lower line is not important at this point but you may be able to utilize it later. You notice that 

if fabricated on a chip, this will also be a multifunction chip. Not only do we get the FIR function 

here but we also get other FIR functions at the various nodes.  

 

And finally H(z), the transfer function, is XM(z)/X0(z). The signal with the highest amount of 

delay goes totally in the lower path and finally comes through km multiplier to the output. So the 

coefficient of z–M must be km. In between we have other impulse response coefficients which can 

also be calculated from the diagram. For example, if you want the coefficient of z–1, it would be 

simply k1 + k1 k2. If I want the coefficient of z–2, then you have to find all signals which appears 

at Y(z) after two delays. So far you can do this, but it is not helpful for synthesis. In the synthesis 

by this procedure, you shall have to solve a set of nonlinear equations which is very 

cumbersome. So we follow an alternative procedure. And to start with, let our desired transfer 

function be HM(z) = 1+ Σ hnz–n, n = 1 to M.  
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(Refer Slide Time: 07.12 – 09.15) 

 

 
 

We also adopt the notation Hi(z) = Xi(z)/X0(z), that is Hi(z) is the transfer function from the input 

to X1, X2 etc so that HM(z) is the desired transfer function, but in between you get a lot of 

transfer functions. Precisely, you get 2M number of different transfer functions; it is a 

multifunction device. We also define the lower signal transfer functions with a prime. That is, we 

say Hi′(z) = Xi′(z)/X0(z). Obviously, H0(z) = H0′(z) = 1. Now, we look at this diagram and try to 

construct the first few signals; X1, for example, is X0 + 
1
z
−

k1X0.  
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(Refer Slide Time: 09.43 – 12.05) 

 

 
 

And similarly, X1′(z) from the diagram comes out as k1 X0(z) + z–1 X0(z). In other words, H1(z) = 

1 + k1 
1
z
−

and H1′(z) = k1 + 
1
z
−

. And do you see that the ratio of the two is an all pass function? 

The structure indeed is very intimately related to all pass. Since I have said that the ratio of the 

two is an all pass function, obviously H1’(z) can be written as z–1H1(
1
z
−

). This is the relationship 

between H1′ and H1. In a similar manner, if I want to construct X2(z), it is X1(z) + k2(
1
z
−

) X1′(z). 

Similarly, X2′(z) = k2X1(z) + z–1X1′(z). Now I can write two transfer functions H2(z) and H2′(z).  
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(Refer Slide Time: 12.10 – 14.25)  

 

 
 

So H2(z) = H1(z) + k2 
1
z
−

H1′(z) and H2′(z) shall be equal to k2H1(z) + 
1
z
−

H1′(z). Here also you see 

there is an all pass kind of relationship between the two. And if you combine this with the fact 

that H1′(z) = 
1
z
−

H1(
1
z
−

) then you can you can get rid of the primes; you get H2(z) as H1(z) + k2 z–2 

H1(
1
z
−

) and H2′(z) = k2 H1(z) + z–2 H1(
1
z
−

). Don’t you see that H’2(z) is the same as z–2 H2(
1
z
−

)? 

And, by induction, what has been shown for i = 1 and 2 can be shown to be true for a general i, 

i.e. Hi′(z) = 
i

z
−

 Hi(
1
z
−

). Also, from the diagram, we can write Hi(z) = Hi – 1(z) + ki 
1
z
−

Hi – 1(z) and 

Hi(z) = ki Hi – 1(z) + 
1
z
−

H’i – 1(z). Combining the first equation with H1’(z) = 
i

z
−

 Hi(
1
z
−

), we get 

Hi(z) = Hi – 1(z) + ki 
1
z
−

Hi – 1(
1
z
−

). 
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(Refer Slide Time: 14.32 – 18.23)  

 

 
 

So far what we have derived is by analysis. If we know Hi–1 then we can find out Hi but that is 

not what we want to do. What we want to do is given HM, we want to find out kM and that is the 

synthesis problem. So we should proceed in the reverse fashion that is starting from HM, we 

should be able to derive HM–1, HM–2, etc. If you find HM–1, then you can find kM–1 and so on. We 

should proceed in the reverse direction, we must start from HM and then by an iterative method 

derive the values of kM, kM–1 ,…… upto k1 because k0 has already been made a short circuit and X0 

and X0′ are the same. Now, to that end in view, we put i = M to be able to derive HM–1 in terms 

of HM. 
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(Refer Slide Time: 18.25 – 22.17)  

 

 
 

We shall get HM(z) = HM–1(z) + kM
1
z
−

HM–1′(z). I am using the first relation still. And then HM′(z) 

= kM HM–1(z) +
1
z
−

HM–1′(z). We multiply the second relation by kM and then you subtract from the 

first relation to get HM–1(z) with [1/(1 – kM
2)] as a factor if kM = 1 then you are nowhere. What 

happens if the last coefficient is ±  1? The other factor in HM – 1(z) is [HM(z) – kM HM′(z)]. We 

shall consider the case kM = ±  1 later. Returning to the present situation and assuming kM ≠ ±  

1, recognize that we have not yet got rid of HM′ but it is at this point that we get rid of it. That is, 

we write HM – 1(z) = (1 – kM
2)–1 [HM(z) – kMz–M HM(

1
z
−

)], using that the relation Hi′(z) = z–i 

Hi(
1
z
−

). Now I replace HM(z) by its expanded form.  
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(Refer Slide Time: 22.19– 25.10) 

 

 
 

That is, I write HM– 1(z) = [1/(1 – kM
2)] [(1 + h1z–1 + h2z–2 +…+ hMz–M) – kM {hM + hM–1

1
z
−

+…..+ 

h1z—(M–1) + z–M}]. I collect the coefficients now to get HM – 1(z) = (1 – kM
2)–1 [(1 – kMhM) + (h1 – 

kMhM–1)z–1 + (h2 – kMhM–2)z–2 + ... (hM– kM)z–M]. This shows that if HM—1 is to be of the order M 

– 1, then the last term should vanish, that is kM should be equal to hM. This result was also 

available from analysis.  
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(Refer Slide Time: 25.17 – 27.50) 

 

 
 

So our major conclusion now is that kM = hM the coefficient of the highest power term. Under 

this condition, kM = hM, HM–1(z) is of order M – 1 and the constant term becomes 1, as is desired. 

So HM– 1 is of the same form as HM and therefore iteration can be used. Let us call the 

coefficients of HM – 1(z) by primes, i.e. HM – 1(z) = 1 + h1′ z–1 + h2′ z–2 … + hM–1′ z–(M–1). This is 

the form where, very interestingly, the coefficient hi′ is (hi – kM hM– i)/1 – kM
2). It is the same 

relationship as in IIR all pass designs. In IIR, it was an all pass function but in FIR, it is an 

arbitrary function, except for kM = 1. And if I have obtained HM – 1; then kM–1 = hM–1′. Next, you 

derive HM–2 from which you get kM – 2, and repeat till you exhaust the function and you will 

obtain all the lattice coefficients. Now let us look at an example.  
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(Refer Slide Time: 28:03 – 30:04)  

 

 
 

Consider the third order function H3(z) = 1 + (3/4)
1
z
−

+ (1/2)z–2 + (1/4)z–3. If you recall, it was the 

denominator of an example you worked out in the last lecture. And since recursion relationship is 

the same except that d’s have been replaced by h’s, our lattice parameters should be the same. 

We start from k3, which would be equal to ¼, and go backwards to k2 and k1, which were 

obtained earlier as 1/3 and ½ respectively. We can now draw this structure. There is no short 

circuit at the end. Instead, the inputs to k1 block are shorted. Now what happens if kM = ±  1? 

Not only kM = ±  1, but if at any intermediate stage if ki becomes ±  1, then you cannot proceed 

to the next stage.  
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(Refer Slide Time: 30.30 – 36.00)  

 

 
 

One of the situations where kM = ±  1 arises is the linear phase FIR transfer function. This has 

not been considered in any textbook. As you know, in a linear phase transfer function, if the first 

coefficient is 1, then the last coefficient has to be + 1 or – 1 and 1 – kM
2 = 0. Instead of a general 

procedure, we will take some examples. You know there are four cases of linear phase FIR 

which are even length symmetrical impulse response, odd length symmetrical impulse response, 

even length asymmetrical impulse response and odd length asymmetrical impulse response.  

 

We will take an example of each case because each case has a characteristic of its own. We 

cannot generalize by doing only one case. We will first start with an even length and 

symmetrical response H5(z) = 1 + h1z–1 + h2z–2 + h2z–3 + h1z –4 + z–5. Since we cannot use the 

recursion relation, we will do something else. We shall use the relationship Hi(z) = Hi–1(z) + kiz–1 

Hi–1(z–1) to derive the lower order transfer function. In our case, this gives H5(z) = H4(z) + z–5 

H4(z–1).  

 

Now, I decompose the given H5(z) like this: H5(z) = (1 + h1z–1 + h2z–2) + z–5 (1 + h1z + h2z2). Is 

my H4(z) obvious now? If you compare these two you get H4(z) = 1 + h1z–1 + h2z–2; it is a fourth 

order transfer function with h3 = h4 = 0. That is, it is only of second order. It happens because of 
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symmetrical coefficients; we have seen earlier that in linear phase direct form realization, the 

number of multipliers can be reduced approximately by a factor of ½. This is a reflection of the 

same fact. Thus H4(z) = 1 + h1z–1 + h2z–2 = H2(z). What does this mean in terms of lattice 

coefficients and what is k4? From H2(z) we will be able to obtain k2 and k1 but what are k3 and 

k4? They are 0, which means that instead of these two blocks we shall simply have the delays z–1 

and z–1. 

 

(Refer Slide Time: 36.15 – 40.01)  

 

 
 

My conclusion is k4 = k3 = 0, and since H2(z) = 1 + h1 z–1 + h2z–2, k2 = h2. k1 is also obvious. If 

you remember, d1′ should be equal to d1/(1 + d2) so k1 = h1/(1 + h2) and the synthesis is complete. 

H4(z) is a derived transfer function from H5(z) = H4(z) + z–5 H4(z–1) which, in one step, is 

reduced to a second order transfer function and that is how k3 = k4 = 0. So my diagram becomes 

that shown in the figure. It is lattice except that you do not require lattices for k3 and k4. Now the 

number of multipliers is 4 which should have been 2 in canonic realization. Can you have a 

single multiplier realization of FIR lattice block? We did it for IIR and for FIR lattice, it is an 

open problem till now.  

 

            Now let us take the case of symmetrical impulse response and odd length.  
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(Refer Slide Time: 40.43– 43.06) 

 

 
 

Let the length be 5 so that H4(z) = 1 + h1z–1 + h2z–2 + h1z–3 + z–4. Now how to decompose? Since 

I want to write this as H3(z) + k4z–4 H3(z–1) with k4 = 1, I split the central term into two equal 

parts (1/2 is not a multiplier). So you write this as [1 + h1z–1 + (h2/2)z–2] + z–4[1 + h1z + (h2/2)z2]. 

The identification of H3 is obvious now: H3(z) = 1 + h1z–1 + (h2/2) z–2, which incidentally is a 

second order transfer function. So I was able to reduce the order by 1. The conclusion is that k3 = 

0; k2 is also obvious, equal to h2/2. k1 is also obvious, equal to h1/[1 + (h2/2)] and the synthesis is 

complete. 
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(Refer Slide Time: 43.12 – 43.40) 

 

 
 

So the diagram would be as shown in the figure. There is no reason why you cannot extend it to 

any order. Let us look at the other two cases.  

 

(Refer Slide Time: 43.56 – 47.40)  
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In type 3, we have asymmetrical impulse response of even length. Consider H5(z) = 1 + h1z–1 + 

h2z–2 – h2z–3 – h1z–4 – z–5 so that k5 = – 1. I want to write this as = H4(z) + k5z–5 H4(z–1) = H4(z) – 

z–5 H4(z–1). Therefore, H4(z) = 1 + h1z–1 + h2z–2 = H2(z). It means that the realization is identical 

to the previous example of type 1 except that the last lattice coefficient shall be – 1 instead of + 

1. So if you know how to do it for symmetrical case, then you know how to do it for the 

asymmetrical case also.  

 

        The situation is slightly different if the impulse response is asymmetrical and of odd length.  

 

(Refer Slide Time: 46.12 – 47.48)  

 

 
 

Here the middle coefficient is 0. We again take H4(z) = 1 + h1z–1 – h1z–3 – z–4, and obviously I 

can write this as (1 + h1z–1) – z–4 (1 + h1z). Therefore H3(z) = 1 + h1z–1 which is H1(z), so that k3 

= k2 = 0 and k1 = h1. No calculation is required; it is just observation. And the diagram for this 

case is very simple to draw. We shall have only one complete lattice with k1 = h1; then k2 and k3 

both are 0 so we shall have two delays, and finally k4 = – 1. 
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(Refer Slide Time: 47.50-48.21) 

 

 
 

Therefore we have been able to complete all the four cases. Linear phase will use the same 

number of multipliers as direct canonic structure, approximately half the number of multipliers, 

if a lattice can be realized with a single multiplier. It is now time to go to the general transfer 

function, not necessarily linear phase, with the last coefficient = + 1 or – 1.  

 

(Refer Slide Time: 49.13 – 53.10) 
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Once again, we have to consider four cases: even length, last coefficient = + 1; odd length, last 

coefficient = + 1; even length, last coefficient = – 1; and odd length, last coefficient = – 1. Let us 

start with the first case. Let H5(z) = 1 + h1 z–1 + h2 z–2 + h3z–3 + z–4. The last coefficient is 1 and 

there is no symmetry or anti–symmetry in the given structures. So what we do is the following: 

to avoid k4 = 1, we first write this as sum of a linear phase function plus whatever is left. And to 

minimize the number of delays in the linear phase function we take all the higher powers in the 

linear phase component. So, I write H4(z) = (1 + h3
1
z
−

+ h2 
2
z
−

+ h3 
3
z
−

 + 
4
z
−

) + ( h1 – h3)
1
z
−

.  

 

Now we have already realized the linear phase term with h1 replacing h3. This realization is not 

enough but you have to make a parallel branch in which the transfer function is (h1 – h3)
1
z
−

which 

is also linear phase. You have a z–1 to start with in the k1 block; you tap this signal and multiply 

by (h1 – h3) and add it to the main lattice output. So that is how you take care of a general 

transfer function in which the last coefficient is + 1.  

 

(Refer Slide Time: 55.38– 01.00.35) 

 

 
 

We conclude this lecture with an interesting observation by a student in the context of linear 

phase Type 2 (i.e. symmetrical impulse response of even length) realization. Let H5(z) = 1 + h1z–

1 + h2z–2 + h2z–3 + h1z–4 + z–5. He pointed out that in finding H4(z), hi′ = (hi – h5 – i k5)/(1 – k5
2). 
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Let us not put the value of k5, because you get a 0/0 form, hi being the same as h5–i: But hi = h5 – i 

simplifies the formula for hi’ to hi’ = hi/(1+ k5). Now put the value of k5. If the impulse response 

would have been anti–symmetrical, then h5– i = – hi and k5 = – 1 would lead to the same relation. 

So there is no problem you can go from H5 to H4. hi would be simply hi/2. So H4(z) = 1 + (h1/2)z–

1 + (h2/2)z-2 h3/2 z–3 + (h1/2) z–4. This is a very interesting alternative indeed.  
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