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This is the 31st lecture and we continue our discussion on Lattice Synthesis.  
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In the 29th and 30th lectures we talked about various forms of IIR realizations namely direct, 

cascade and parallel. And in case of parallel IIR, you speed up the processing because instead of 

a number of delays equal to the order of the transfer function, you can afford to use only two 

delays per channel so that the minimum processing time is twice the sampling interval. You have 

to add to this the time required for multiplications but addition is almost instantaneous. It is the 

multiplication which is time consuming. Then we switched over to all pass IIR realization and 

the first approach that we used was multiplier extraction approach. The aim was to make the 

realization canonic in multipliers as well as delays. Ordinary IIR direct form realizations do not 
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achieve canonic multiplication. First order requires two multipliers; second order requires four 

multipliers because in the denominator one term is unity and in the numerator the coefficient of 
2
z
−

 = 1, so there are four multipliers.  

 

On the other hand, using the multiplier extraction approach, you can use one multiplier and one 

delay for the first order and two multipliers and two delays for the second order. Next we 

considered digital two pair extraction approach, and this is only applicable to All Pass Filters. 

This approach leads to a modular structure, that is a repeated structure, in which only one 

parameter is variable in each module, called a lattice. Each lattice can be realized either with two 

multipliers or with a single multiplier. But for some reasons, particularly historical and VLSI 

implementation, two multiplier realizations are preferred except in dedicated programmable DSP 

chips like the tunable filters.  

 

We will start with tunable filters today. Let us first consider an example, then we will go to the 

tunable filters. Here is a second order example: A2(z) = [(1/8) – (3/4)z–1 + z–2]/[1 – (3z–1/4) + 

(1/8)z–2)]. This is an all pass filter. If you wish to realize by a lattice you require two lattices in 

cascade terminated in a straight connection, i.e.Y2 = X2 which is the terminating condition. The 

first lattice has k2 = 1/8, because k2 = A2(∞). You can see that the coefficient of the highest power 

term in the denominator is the same as this, but then you must make sure that the constant term 

in the denominator is unity. So k2 = 1/8 < 1. I also told you that if at any intermediate stage, k 

comes out as equal to or greater than 1, then your job is simplified. You do not proceed further 

because the system becomes unstable and an unstable filter cannot perform a useful job unless 

you design an oscillator. 

 

The oscillator is an unstable system with which you generate sinusoidal or other kinds of 

waveforms. To find out the other lattice parameter k1, you have to find out A1(z) of the form 

(d1’+ z–1)/(1+ d1’z–1). Now d1’ from the recursion formula is (d1 – d2 d1)/(1 – d2
2) = d1/(1 + d2). 

This is an important feature which shall always occur in the last stage of lattice synthesis. 

Whenever you are going from the second order to a first order all pass, this shall always occur 
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and the formula is simplified. And since d1 = – 3/4 and d2 = 1/8, d1’ = k1 comes out as – 2/3; k1 

magnitude is less than unity therefore the system is stable.  

 

(Refer Slide Time: 4:49 – 8:36) 

 

 
 

Once you have found k2 and k1, all that remains to do is to draw the filter. I draw the lattice 

simply as a box starting with k2 then k1 and the output is terminated in a straight connection, as 

shown in the figure. Put the values of k2 and k1 in these boxes. Each stands for a lattice with 2 

summers and 2 multipliers, ±  km in the mth order stage. In addition to these, you have a delay. 

You must indicate signal flow directions by appropriate arrows. We have compressed these 

details into a box so that we do not have to draw these again and again. This modularity leads to 

simplified fabrication in VLSI. Without modularity, processing steps change at every step and it 

becomes a costly proposition.  
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On the other hand, all that you have to change in the processing of a lattice structure is the value 

of k for each stage and therefore it facilitates VLSI implementation.  

 

Now let us consider the tunable low pass, high pass combination, starting with the first order. If 

you recall, the transfer function is ((1 – α)/2 )(1 + z–1)/(1 – αz–1) for a first order low pass filter 

HLPF(z) and its complementary all pass as well as power complementary filter is the high pass 

filter HHPF(z) = ((1 + α)/2 )(1 – z–1)/(1 – αz–1).  The sum of the two is an All Pass Filter and they 

are also power complementary. That is, if I take │HHPF(z)│2 + │HLPF(z)│2 for z = ejω , the sum 

shall be unity. These are doubly complementary filters. The sum is all pass and the magnitude 

squares sum up to unity. 
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In our previous discussion we also showed that these low pass and high pass filters can be 

expressed as the sum and difference of the two All Pass Filters. HLPF(z) = ½ [A0(z) + A1(z)] and 

HHPF(z) = ½ [A0(z) – A1(z)]  where A0(z) = 1 i.e. it is a straight connection and A1(z) is the first 

order All Pass Filter (– α + z–1)/(1 – αz–1). Therefore the realization of first order All Pass Filter 

suffices to make a multi output system. One of the outputs is low pass and the other is high pass 

and this is one of the most popular filters in digital stereo. The low pass one goes to one channel 

of the stereo while and the other stereo channel is the high pass one. So low frequencies and high 

frequencies are separated out and that makes a stereo record.  
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We also discussed the implementation earlier. Take the factor 1/2 out which is a shift, not 

multiplication, and then you have two channels. One of them goes straight because the all pass 

function A0(z) is 1, which feeds both the summers. Then you shall have A1(z), which feeds a 

summer to form ½ [A0(z) + A1(z)], thus realizing HLPF(z). In order to create HHPF(z), you shall 

have to multiply A1(z) output by – 1, which is not also a multiplication but a change in the sign. 

This total thing is being realized by only a single delay and a single multiplier, and can be 

fabricated by a dedicated chip, in which α is programmable. You get two functions, low pass and 

high pass, for splitting a given audio channel into its low frequency and high frequency 

components. What does ά control? ά changes the bandwidth which is cos–1 2ά/(1 + ά2) radians 

for both the channels. 
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Therefore for A1(z), a single multiplier lattice structure shall do and this is available 

commercially as a programmable chip. Programmability only involves changing the bandwidth 

ά. When I draw a lattice I will simply put it in a box and put k inside the box. k is the lattice 

parameter, which is – ά in this case. The detailed diagram is shown in this figure. This is the 

single multiplier lattice structure which makes sure that even if α changes, the all pass property is 

not destroyed. This will not be the case with a two multiplier structure, because the two 

multipliers, even if identical (except for sign) in the design, may not remain so after quantization. 
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So this is one of the structures for tunable filters. The other is tunable band pass and band stop 

combination. Band pass and band stop cannot be made in first order and the minimum order 

needed is two. Recall that the second order band pass transfer function was [(1 – α)/2] (1 – z–

2)/[1 – β(1 + α)z–1 + αz–2]. The numerator is 1 – z–2 which makes the DC response as well as the 

response at π equal to zero. That is what is needed in a bandpass filter.  

 

Now we shall appreciate why the denominator is written in this form and not in the form 1 – βz–1 

+ αz–2 after we derive the lattice realization of the corresponding All Pass Filter. Let me also 

write the band stop transfer function, which is [(1 + α )/2] (1 – 2βz–1 + z–2)/[1 – β(1 + α)z–1 + αz–

2]. These are also doubly complementary, that is all pass as well as power complementary filters. 

We shall show that these two filters can also be realized in a single chip using only one second 

order All Pass Filter whose denominator is the same as that of either filter. When you actually 

derive the two lattices, you shall see that one of them has a parameter ά while the other has the 

parameter – β. If you recall our previous discussion on these two filters, ά and β independently 

control the bandwidth and the center frequency. The center frequency in case of band pass is the 

frequency of maximum response and in the case of band stop it is the frequency of rejection.  

HBP(z) and HBS(z) can also be written as the sum and difference of two all pass functions. But 
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here unlike low pass and high pass, the band pass the difference ½ [A0(z)– A2(z)], whereas the 

band stop is the summation of the two ½ [A0(z) + A2(z)].   

 

(Refer Slide Time: 18:49 – 22: 37)  

 

 
 

I repeat, the band pass requires a difference and the band stop requires an addition of the two all 

pass functions A0(z) = 1 and A2(z) = [α – β (1 + α )z–1 +  z–2]/ [(1 – β(1 + α)z–1 + αz–2]. The 

structure would be very similar to the first order case. A multiplier 1/2 is followed by two 

channels, one leading to A2(z) which now has to be multiplied by – 1 to get a band pass filter 

HBPF(z), and the other a straight connection. To get a band stop filter HBSF(z), A2(z) output goes 

straight to the summer. A2(z) obviously shall require two lattice sections. Let us see what the 

lattice parameters are.  
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A2(z) denominator is D2(z) = 1 – β(1 + ά) z–1+ ά z–2 so k2 = ά. For finding k1, you have to find d1′ 

and if you recall, d1′ would be d1 divided by (1 + d2), which is simply– β. In other words, what 

we require is a lattice with a parameter ά, and another with the parameter (– β). The second 

section is terminated in a straight connection. Each of the two boxes in the figure have been 

realized by a single multiplier structure. This gives you a programmable DSP chip with two 

functional outputs where one is the band pass and one is the band stop. The center frequency can 

be controlled by one multiplier β which has to be programmable. The bandwidth is changed by 

ά. And these are independent of each other that is when you change ά the center frequency does 

not change. I wish to remind you at this point that the term bandwidth, applied to the band-stop 

filter is not the stop bandwidth, but is simply the difference between the 3-dB frequencies of the 

two passbands. The stop bandwidth is determined by the specified tolerance in the stop band. It 

is difficult to attain this feature in analog filters. Digital filters totally isolate the bandwidth 

control and the center frequency control. This set of bandpass – bandstop combination is 

available as a commercial chip. 
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So far we have talked about only All Pass Filters. We have also used All Pass Filters to obtain a 

low pass, a high pass, a band pass and the band stop filter, can the lattice realization of all pass 

filters be so modified to obtain a general IIR transfer function? Let us see. Consider a general 

transfer function for which the denominator is 1 + d1z–1 + d2z–2 and the numerator is general, of 

the form p0 + p1z–1 + p2z–2. Can it be realized by a lattice structure that would make the lattice a 

more versatile structure rather than only being limited to All Pass Filters?  

 

Now, in order to realize this, the first step is to find out the corresponding all pass and realize it. 

That is, realize the transfer function [d2 + d1z–1 + z–2]/[1 + d1z–1+ d2z–2]. For the corresponding 

lattice structure you tap some of the outputs. The tapping is done in the lower line as shown in 

the figure. These tapped signals are weighted, that is multiply them by ά1, ά2 and ά3, and add 

them together, two at a time, to get the final output. I have to realize three coefficients p0, p1 and 

p2, and I have used three weights ά1, ά2 and ά3. Now I shall find out the output numerator 

polynomial and then match the coefficients to find out the required weights ά1, ά2, ά3.   
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Let us carry this out completely then we shall see what these multipliers ά1, ά2 and ά3 should be. 

Is it guaranteed that we shall get a numerator from which I can choose three unknown 

parameters? Yes, it should be possible.  

 

Once we are sure it can be done, then we proceed. Now I have to draw the total structure because 

I have to analyze it.  First we shall draw the all pass structure and then we shall see the taps. This 

has been shown in the next figure. Let us call the tapped signals as S1, S2 and S3, which of course 

is Y1.  

 

Now you know that Y1/X1 = (d2 + d1z–1 + z–2)/(1 + d1z–1 + d2z–2). Let us look at what is S1/X1 and 

S2/X1. As far as S2 is concerned, you see that S2(z) is very simply S1 (d1’ + z–1). What is this 

polynomial d1’ + z–1? It is the numerator of the first order all pass function where d1’= d1/(1 + 

d2). Incidentally, this method of tapping is a very beautiful concept first given by Gray and 

Markel. This is their very elegant contribution to DSP literature that an all pass lattice can be 

used to realize any arbitrary IIR transfer function and you will see how things fit into place. We 

have established a relationship between S2 and S1.Let us proceed further. 
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Let us find out S1. S1 obviously is contributed by three signals where one is X1, the other is S2z–

1(–d2) and the third one is S1z–1(–d1′). Let us write this down: S1 = X1 – d2S2z–1 – d1′S1z–1. And we 

have already obtained a relationship between S2 and S1 therefore, by elimination, I get S1/X1 = 

1/(1 + d1z–1 + d2z–2). 
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My desired output is ά1Y1 + ά2S2 + ά3S1. The denominator shall be the same 1 + d1z–1 + d2
–2 and 

the numerator is N(z) X1 where N(z) = ά1(d2 + d1z–1 + z–2) + ά2 (d1’ + z–1) + ά3, which should be 

equal to p0 + p1z–1 + p2z–2. Now you match coefficients to get the required multipliers.  

 

(Refer Slide Time: 39: 24 – 42: 12)  
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Let us match the coefficients and see the results. Obviously p0 = ά1d2 + ά2d1’ + ά3, p1 = ά1d1 + ά2 

and p2 = ά1. Now you can go from the last one ά1 = p2, and since you know ά1, you can find ά2 

and since you know ά1 and ά2 you can find out ά3. And the results are: ά1 = p2 and ά2 = p1 – p2d1, 

ά3 = p0 – p2d2 –d1′(p1 – p2d1). Thus any arbitrary IIR filter can be realized with all pass lattice.  

 

(Refer Slide Time: 42: 35 – 44: 09) 

 

) 

 

Lattice in that sense is very versatile. Any arbitrary IIR transfer function can be obtained from 

the lattice structure of a versatile element, namely the All Pass Filter. That is why DSP is 

obsessed with All Pass Filters. If you have a third order transfer function (p0 + p1z–1 + p2z–2 + 

p3z–3)/(1 + d1z–1 + d2z–2 + d3z–3), then you would have realized the lattice with three parameters 

d3, d2′ and d1′′ and then a straight connection. Now you take taps with weights ά1, ά2, ά3 and ά4 

and add them together. By observation and by looking at the second order realization can you tell 

me what these signal would be? Let us call them S1, S2, S3 and Y1. The numerator of S1/X1 = 1, 

the denominator is the same, the numerator of S2 would be d1′′ + z–1, and for S3/X1, it would be 

d2′ + d1′z–1 + z–2. For Y1/X1, the numerator of course would be d3 + d2 z–1 + d1 z–2 + z–3; so you 

can find out the required coefficients.  
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Please do verify that these coefficients are ά1 = p3, ά2 = p2 – ά1d1, ά3 = p1 – ά1d2 – ά2d1′ and ά4 = p0 

– ά1d3 – ά2d2′ – ά3d1′′. We shall work out an example of a general transfer function.   

 

(Refer Slide Time: 47:12 – 47: 54) 
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This example I have chosen intentionally so that the results obtained here can be utilized later 

also. This is Prob. 6.44c in Mitra and it says realize H3(z) by Gray Markel structure, where it is 

given as [1 + (3/4)z–1 + (1/2)z–2 (1/4)z–3]–1 (2 + 5z–1 + 8z–2 + 3z–3). The first thing to do is to 

realize an All Pass Filter with this denominator and the numerator z–3D3(z–1). You do not have to 

write this. You can see that for the all pass k3 = ¼; then you have to find D2(z). In finding D2(z), 

your coefficients are d2’ = (d2 – d3d1)/(1 – d3
2) and that comes out as 1/3. Also, d1′ = (d1 – d3d2)/(1 

– d3
2) and that comes out as 2/3. Just write the denominator D2(z) = 1 + (2/3) z–1 + (1/3) z–2; 

therefore k2 = 1/3 < 1. If at any point, ki comes equal to 1 or greater than 1 you give up say it is 

not possible.   

 

(Refer Slide Time: 48:22 – 50: 57) 

 

 
 

And finally in calculating D1(z), all that we have to find out is d1″ and this you know is d1′/(1 + 

d2′) = 1/2. Therefore k1 is simply ½. Now I can draw my all-pass lattice. The next job is to 

calculate α1, α2, α3 and α4 and then add them to get my desired output. If you proceed as in the 

third order case, then α1 comes as 3, α2 is 5.75, α3 is – 1/3 and α4 is – ½. Now in these 

multipliers, the only problem is this multiplier – 1/3 because whatever way you quantize, you are 

going to have an error. On the other hand, 1/2 is no multiplication, 5.75 is no multiplication 

because 5 is 4 +1 and .75 is ¾ = (1/2) + (1/4); these shifts shall be done in parallel. 3 is no 
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problem, it is 2 + 1; so you shift one channel and put the other one directly. Only – 1/3 is a 

problem.  

 

While appreciating the Gray-Marvel innovation, a question which has always troubled me is: can 

we not synthesize an arbitrary IIR transfer function by a true lattice only? That is, can we avoid 

the tappings and the additions? Also, can we obtain it canonically, without going through the 

Mitra procedure of a feedforward in every section? I obtained the answers to both the questions 

in the affirmative after several years of investigation. The method turns out to be very simple 

indeed. The results were published in two papers: 1) IETE Journal of Research, Jan-Feb 2007 

issue and 2) IETE Journal of Research, Jan-Feb 2008 issue. The second paper, in fact presents a 

new method of realization of an arbitrary IIR transfer function in terms of a simpler IIR transfer 

function with an FIR feedback path. These will hopefully appear in future text books.   

 

(Refer Slide Time: 51: 03 - 54:13) 

 

 
 

This leads us now to the question: what about FIR lattice? Can we realize an FIR filter also by a 

lattice structure? It is a historical fact that FIR lattices were not synthesized; they were obtained 

by assuming the structure and then carrying out analysis. We shall follow the same procedure.  
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Do you understand the methodology? Synthesis can be done ab initio; that is, we do not know 

the structure and try to get it as we did in the case of IIR lattice starting from digital two pair 

extraction approach.  In FIR case, traditionally and historically, we start from the structure, 

analyze it, compare it with the given requirement and match things; this is called synthesis by 

analysis. For example, if you want a second order analog band stop filter then you know various 

structures that you can use, for example the parallel T RC network. So you draw the structure 

and then match the coefficients with the values of the resistors and capacitors. This is called 

synthesis by analysis. So we will follow synthesis by analysis for the FIR structure. I will first 

draw the complete structure for a transfer function HM(z) = 1 + ∑  hnz–n, n = 1 to M  where M is 

the order of the filter. There is no denominator as it is FIR. We shall take the constant term as 1, 

always.  

 

(Refer Slide Time: 54:33 – 56:46) 

 

 
 

The structure looks like the one shown in the next slide (lecture 32). Because it is FIR, there is 

no feedback. It should be a non recursive structure. So, start with input X0 (the notations also 

change), delay it by one sample, and then the lattice starts. The lattice is similar to the IIR lattice; 

there is a criss-cross, but two multipliers are all in the forward direction. The difference between 

IIR lattice and FIR lattice is that the two multipliers are identical. This can also be realized by a 
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single multiplier structure. It requires a little bit of innovation. The two outputs of the first 

section shall be called as X1 and X1′. Both of them shall be useful. One thing that I forgot to 

mention in the general IIR structure or the all pass IIR structure is that if you fabricate a chip and 

take outputs from S1, S2, S3 and so on, this becomes a multifunction chip. For example, S1/X1 is 

an all pole filter; the numerator is 1. And S2/X1has one 0 and the same denominator as that of the 

desired transfer function, and so on; so it becomes a multifunction device. This is the beauty of 

DSP in that one chip can perform a variety of functions.  
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