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This is the 28th lecture on DSP and the topic for today’s lecture is digital filter structures. The last 

lecture, No. 27, was a problem solving session and before that we had discussed analog 

frequency transformation where the problem was to transform a normalized low pass filter with 

normalization like what is shown in the Figure. 

 

(Refer Slide Time: 01.32 – 03.33) 

 

 
 

The tolerance in the passband was taken as 1 – δp and the tolerance in the stopband was δs with 

stopband edge at Ωs. This is to be transformed to de-normalized low pass. If the complex 

frequency variable in normalized low pass is S then S is to be replaced by s/Ωp where s is the 

complex frequency variable in the de-normalized low pass with passband from 0 to Ωp. In de-

normalized high pass, the transformation is simply reciprocal of this, i.e. S = Ωp/s. In band-pass, 
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the transformation is S = (s2 + Ω0
2)/(Bs) where B is Ωp2 - Ωp1 and Ω0

2 = Ωp1 Ωp2 = Ωs1 Ωs2. If this 

equality does not happen with the given specs, then you shall have to alter Ωs1 or Ωs2 to satisfy 

this relation. You can alter both but that is risky because if you under satisfy one of these stop 

bands then the design is not acceptable. Your pass band is sacred; you have to satisfy this 

exactly. Stop band can be taken liberty of only in one direction; you can over satisfy, not under 

satisfy. 

 

(Refer Slide Time: 03.52 – 06.28)   

 

 
 

In a similar manner, if it is a band stop filter then S = Bs/(s2 + Ω0
2) but here B has no physical 

significance. It was bandwidth in the band-pass case, but not here. Ωp2 - Ωp1 is not the 

bandwidth. The pass band here extends from 0 to Ωp1 on the lower side and Ωp2 to infinity on the 

higher side. The stop band width is Ωs2 - Ωs1 where these frequencies are determined by the 

tolerance in the stop band. This is one of the important points to remember. Then we started 

discussion on digital filter structures and we considered the problem of analysis, which is very 

simple. One can write the equations and then eliminate the intermediate variables to get the 

overall transfer function Y(z)/X(z). On the other hand, the synthesis problem is tougher than the 

analysis problem. And one of the characteristics of the synthesis problem is that, if there exists 

one solution, then there shall exist an indefinite number of solutions. One can argue: if I get one 
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solution, why do not I stick to it? Why do I go for alternative solutions? It turns out that different 

structures have different properties and one of the things that we have to worry about is 

overflow. That is, if at any stage in the filter, there is saturation then there shall be overflow and 

the filter shall cease to perform in the manner that you like it to perform. And the other problem 

is word length effects, which arises because of finite number of bits that you have to use: 8 or 16 

or 32, and therefore arises the necessity that the coefficients as well as the signals have to be 

truncated. For example, an 8-bit number multiplied by another 8-bit number gives you a 16 bit 

number. And if your hardware is 8-bit, then you shall have to truncate to 8 bits. Different 

structures have different properties with regard to word length effects. One should choose the 

one which has the lowest quantization error and this is the reason why a multiplicity of structures 

has to be worked out and then you choose an optimum or near optimum structure.  

 

(Refer Slide Time:  07.14 – 08.26)  

 

 
 

We also showed how to derive two structures for the transfer function (p0 + p1z-1)/(1 + d1z–1) and 

we showed that one can make this structure canonic with respect to multipliers and delays. We 

shall expand on this today to see how a general IIR transfer function can be realized by a canonic 

structure, canonic in both delays and multipliers. But before that, let us introduce the topic of 
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transposition. This is an important topic which allows one structure to be converted to another. 

Transposition can be explained with reference to this particular transfer function. 
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Let us change the transfer function a little bit. Let H(z) = (p0 + p1z-1) (1 – d1z1). Then you know 

that the structure that we get is as shown in the Figure where the multiplier in the feedback path 

is d1 now, not – d1. And then we have two multipliers po and p1, the outputs of which add 

together to give you Y(z). This is a canonic structure, canonic in multipliers, because only three 

multipliers, po p1 and d1, are needed and also canonic in delay of because it is a first order filter 

and there is only one delay.  

 

Now, in this structure, let us make the following changes. First, we interchange the input and 

output. Second, reverse all the arrows. I will draw the total structure later. But as soon as you 

reverse, the ∑ node now becomes a pick up node. A signal comes and goes in two directions. All 

∑ nodes are replaced by pick up nodes and conversely, all pick up nodes are replaced by ∑ 

nodes. This is the third step. If you do these, then you have transposed the structure. So the 

transposition involves three steps. First, interchange the input and output. Reverse all the arrows 

in the second step. In the third step, replace each ∑ by a pick up point and each pick up point by 
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∑. The structure that I get is something like this where the original structure and the transposed 

structure are superimposed. If the original structure is removed and we redraw the structure in 

the conventional manner, i.e. input at the left and output on the right, then 

 

(Refer Slide Time: 11.56 – 13.28) 

 

 
 

the structure shall look like the one shown in the next figure.  
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(Refer Slide Time: 13.29 - 15.33) 

 

 
 

Now, if I find the transfer function, it is easy to show that this structure gives the same transfer 

function. This is in general true. Given any digital filter structure, you can always make a 

transposition to get an alternative structure. 

 

The properties of overflow and word length effects are different for these two structures. Ideally, 

if we had infinite bit arithmetic and infinite storage capacity, then the structures would have been 

the same in theory. But in practical implementation, they have different properties and therefore 

it is worthwhile to determine the transposed structures. We shall give one or two more 

illustrations of transposed structures but before that let us study systematically how first FIR 

filters are realized and then we shall go to IIR filters. 

 

 

 

 

 

 

 

 6 



(Refer Slide Time: 16.19 – 17.56) 

 

 
 

For FIR, as you know, the transfer function is of the form summation h(k)z-k, k = 0 to N.  I shall 

use N for filter order sometimes, and length some other time; so you have to keep track of what it 

stands for. Here, obviously, the length is N + 1. I shall now derive a structure which uses these 

coefficients h(k); incidentally, in order not to write these brackets again and again, I shall use a 

subscripted hk to show that this h is a function of k. For simplicity, we shall do it for a specific 

example N = 4, i.e. a 4th order filter. You can easily generalize.  
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My transfer function is H(z) = ∑hkz-k k = 0 to 4. A very simple minded realization can be 

obtained as follows. First, you draw all the four delays z-1, z-1, z-1 and z-1 in a chain, and put X(z) 

at the left, and multiply the leftmost signal i.e. the input signal by hO; then after one delay 

multiply the signal by h1, add the two signals. All summers shall have only 2 inputs and we obey 

that discipline.  

 

 The signal at the end of two delays is multiplied by h2 and added to the previous result. 

Similarly, derive h3z-3 and h4z -4 and go on adding to get Y(z). This is called a direct structure 

because the multipliers are obtained directly from the transfer function; no manipulation is 

needed. Now, if you make a transposition of this and then a flipping over, then obviously, you 

should get what is shown in the next figure.  
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(Refer Slide Time: 19.54 - 22.22) 

 

 
 

Both of them are valid structures in their own right, but in practical implementation, the 

properties are different. They are also sometimes known in literature as Transversal structures. 

Current authors also call one of them as direct form one and the other as direct form two. These 

nomenclatures are not important for us as long as you can obtain one structure and its equivalent 

transposed structure. There are indirect structures also for FIR filters.  
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(Refer Slide Time: 22.31 - 25.45) 

 

 
 

For example, if H(z) is an odd order transfer function, then I can factorize this into one first order 

and a number of second order factors. Take h0 common; then you can write the first order factor 

as (1 + β0z-1). If N is 5, then I shall have two second order factors each of the 

form 1 2

1 2
1

k kz zβ β− −+ + , k = 1, 2.  Why can’t I write H(z) as product of only  first order  

factors? What would be the disadvantage? I may get complex coefficients because it is not 

guaranteed that all the 0’s are real; if all the 0’s are real, then you can do with all first order 

factors. But complex 0’s must be written together so that the coefficients are real because we 

want to implement the filter in real time with real coefficients. Each of these factors can now be 

realized in the direct form. And then you have to cascade them together. So this is called a 

cascade realization. On the other hand, if N is even, then all factors, in general, will be second 

order. Each of them now has to be realized in the transversal form, and the overall structure will 

be a cascade of them.  
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(Refer Slide Time:  25.50 – 29.32)  

 

 
 

Obviously if one synthesis solution exists then there exists indefinite number of solutions. In 

implementation of cascade, you write H(z) = continued product of Hi(z) where Hi(z) is no more 

complicated than a quadratic. It is either a linear factor or a quadratic one. The order of 

cascading is important. You can start with H1 and go up to the last one and then you can make 

permutations. Ideally, in cascading the order of cascading is not important as far as the total 

transfer function is concerned because H1 H2 is the same as H2 H1.  

 

Multiplication is commutative in theory but in practice, the order of cascading is important from 

the point of view of overflow and word length effects. So your job after finding a cascade 

realization is not complete. If you want to implement, you must study the quantization and the 

overflow behaviors of the structure. Normally the section with the lowest gain is put at the 

beginning so that its signal output does not saturate the next sections. Now, it may not be 

possible to avoid overflow particularly in fixed point arithmetic. You know the dynamic range of 

fixed point arithmetic is severely limited as compared to floating point. If you are keen on fixed 

point, then one may have to scale the transfer function, to avoid overflow. 
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 In other words, suppose the ith stage the signal that you get has exceeded the dynamic range of 

storage in the accumulator. Then at (i – 1)th stage you use a scaling constant and it is usually of 

the form 2–k. You can divide by half; this is not a multiplier, it is only a shift. Then the overall 

transfer function is realized within a multiplying constant. So scaling is also an important 

consideration, you may have to do it. One might ask why not do the scaling at the input or the 

output? Well, if it is permissible you may do it. But at the input doing the scaling is prone to 

another disastrous effect.  

 

        Can you tell me what this effect is? If the signal becomes very weak, then noise may take 

over, and therefore your scaling has also to be done in a distributed manner, judiciously, so that 

you maintain a balance between overflow, signal strength and also word length effect, that is 

quantization errors. In digital implementation, we are not worried about the actual value of the 

number because the main function of a digital signal processor is filtering. If you get rid of the 

undesired frequencies, then digital amplification is no problem; it is simply multiplying by a 

power of 2. It is a shift in the proper direction.  

 

(Refer Slide Time: 30:36 -32:46) 
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What about parallel implementation? Is it possible to do a parallel implementation of an FIR 

filter? Parallel is usually resorted to when you wish to speed up the process. Parallel processing 

is faster than serial processing. In the FIR case, however that does not happen because if you 

have H(z) equal to summation hkz-k, k = 0 to 7, then 7 delays are needed in whatever way you 

decompose. Parallel means you write H(z) as ∑Hi(z); so there shall be at least one Hi which shall 

contain seven delays and therefore the processing time cannot be reduced by parallel 

implementation in FIR case. This is not true in IIR, which we shall see later. However, parallel 

implementation is useful in the context of multirate signal processing by interpolation and 

decimation. Parallel decomposition helps there and the decomposition is done in a particular 

manner, that is called polyphase decomposition. We shall briefly touch upon this topic because it 

has now become an integral part of any programmable DSP. Interpolation and decimation are 

resorted to for various reasons but one of the main reasons is that it reduces the hardware 

complexity of the structure. We shall illustrate this with reference to a particular transfer function 

of order eight.  

 

(Refer Slide Time:  32.58- 35.40)   

 

 
 

Let us say we have H(z) = h0 + h1z-1 + etc + h8z-8. We can decompose this transfer function in 

various ways. We can write this as (h0 + h2z-2 + h4z-4 + h6z-6 + h8z-8) plus (h1z-1 + h3z-3 + h5z-5 + 
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h7z-7) = E0(z2) + z–1 E1(z2). Obviously, the implementation would be that of E0 (z2) and E1(z2) 

delayed by one sample, and then added to give you the output. This, by itself, does not increase 

the speed. However, if I have a factor of two interpolation, then in the z transform, z is squared. 

And therefore if I decimate each component by a factor of two, I can realize E0(z) and E1(z). 

Therefore the speed increases. Read the chapter of Multirate Signal Processing in Mitra to find 

out how decimation and interpolation help. 

 

 There is nothing sacred about breaking it up into two transfer functions. Technically, what we 

did is called two phase decomposition. I can also make a three phase decomposition.  

 

(Refer Slide Time: 35.43 – 38.00) 

 

 
 

I can write H(z) = E0(z3) + z-1E1(z3) + z-2E2(z3) where E0 shall be now h0 + h3z-3 + h6z-6, E1 is h1 + 

h4z-3 + h7z-6 and E2 would be h2 + h5z-3 + h8z-6 and the realization is obvious. We have three parts 

and we require two extra delays. But the total number of delays you are using is still eight. You 

can also appreciate that the total number of delays required in the implementation of polyphase 

decomposition is much greater than in direct realization or cascade realization. However, the 

number of delays can still be kept at eight for this structure by sharing delays. And I shall 
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illustrate this with reference to this particular decomposition. This is a three phase 

decomposition.   

 

(Refer Slide Time: 38.18 – 41.14) 

 

 
 

We shall have two blocks, each having three delays. From here I first combine signals to obtain 

E0, E1 and E2. For example, for E0 I have taken h0 multiplier from the input; then I have 

generated h3z-3 and h6z-6. Then I combine these by two summers, to get the transfer function 

E0(z3). Similarly, we construct E1(z3) and E2(z3) and combine the three E’s, as shown in the 

figure. This is a trick that one can employ to make the structure canonic.  
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(Refer Slide Time:  41.16- 42.35) 

 

 
 

(Refer Slide Time: 42.48 – 44.58) 

 

 
 

In general if your transfer function is H(z) = h0 + h1z-1 + etc + hM-1zM-1 (the length here is M). 

And you make L phase decomposition, then your transfer function H(z) shall be of the form 
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summation 
m
z
−

Em(zL), where m will go from 0 to integer part of M/L, usually. There is denoted 

as └M/L┘. This is the general L phase decomposition of a length M FIR filter.  

 

(Refer Slide Time: 45.04 - 46.20)  

 

 
 

Now obviously if the FIR was linear phase then the number of multipliers can be reduced 

approximately by half. If the length N is even then because of symmetry or antisymmetry, the 

number of multipliers can be reduced to N/2. If N is odd you require N + 1 divided by two 

numbers of multipliers.  
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(Refer Slide Time: 46.25 – 47.53) 

 

 
 

We shall illustrate the structure with reference to two examples; first consider N = 7 i.e. H(z) = 

h0   + h1z-1 +………..+ h6z-6, where h0 = h6, h1 = h5, h2 = h4. 

 

(Refer Slide Time: 47.57 – 50.22)  
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We first draw all the delays in a chain, three in the upper line, and the other three in the lower 

line. The undelayed signal is now combined with six delayed signal, and the output is multiplied 

by h0; you have to add it to other terms. Similarly, X(z)z-1 is to be combined with X(z)z-5, and 

then, multiplied by h1 and combined with the previous signal. Similarly, X(z)z–2 shall be 

combined with X(z)z-4 and multiplied by h2, and then added to the previous signal. h3z-3 is a 

loner, and you multiply X(z)z–3 by h3 and add to the output of the previous summer; the total 

number of multipliers is (7 + 1)/2 = 4; it is canonic in delays. This is also an advantage of linear 

phase filters; not only they give constant group delay, but the hardware requirement is also much 

less.  

 

(Refer Slide Time:  50.27 - 53.13) 

 

 
 

On the other hand, if N = 8, H(z) = (h0 + h1z-1 + h2z-2 + h3z-3) + (h0z-7+ h1z-6 h2z-5+ h3z-4). We 

draw the delays in a different fashion. There are seven delays, so we draw three of them in the 

upper line, three of them in the lower line, and the extra one we draw in the vertical direction. 

Now we combine signals in the same manner, as shown in the figure. It shows not only the 

hardware structure, it also shows the software structure, i.e. how to write the program. The 

diagram will indicate to you the successive steps in the algorithm. What do you think its 

transpose shall be? Will it be identical to the previous one? No. Try it yourself. 
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