
Digital Signal Processing 

Prof. S. C. Dutta Roy 

Department of Electrical Engineering 

Indian Institute of Technology, Delhi 

Lecture – 27 

Problem Solving Session on Discrete Time System in Transform Domain 

 

This is the 27th session and it is a problem solving session on Discrete Time Systems in the 

Transform Domain.  

 

(Refer Slide Time: 01:07 - 01:10 min) 

 

 
 

The problems I have chosen were suggested by one of the students and each of them has a small 

amount of twist which requires a little bit of in-depth thinking. The first problem that I take is 

4.14. 
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(Refer Slide Time: 01:34 - 03:50 min)   

 

 
 

This is relatively simple. The problem states that the magnitude response of a digital filter, with 

real coefficient transfer function H(z), is as shown in this figure. The response is not to scale, but 

it does not matter. Plot the magnitude response of H(z4). z4 means you will have ej4ω on the unit 

circle and therefore π shall be reduced to π/4 and each point on ω axis shall be divided by 4; 

there shall be four such repetitions between 0 and π. For drawing the repetitions, you have to be 

careful. First, you draw the spectrum of |H(ejω)| for 0 ≤  ω ≤  4π. Then what happens in this range 

shall give you the picture of what happens between 0 and π for |H(ej4ω)|. And between π and 2π 

the same thing will be repeated but in a flipped fashion and therefore the final diagram shall be 

like the one shown in the figure.  
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(Refer Slide Time: 03:53 - 06:18 min)  

 

 
 

Obviously this is a case of interpolation. That is, three zero valued samples are put in between 

two successive samples and this is what the spectrum becomes. And if you want to retain only 

one part of this spectrum then we have use a low pass filter and we shall cut out all others; 

otherwise these shall arise problems. An interpolator is always succeeded by a low pass filter; 

otherwise aliasing shall occur.  

 

The next problem is 4.42.  
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(Refer Slide Time: 06:24 - 13:38 min)  

 

 
 

The next problem is also not difficult. Two magnitude responses are given: |Gle(jω)| and |Gh(ejω)| 

versus ω in the range 0 to π. One is a low pass filter and the other is a high pass filter. The 

passband/stopband edge is π/2. They are ideal filters. And then you are given a block diagram in 

which X(z) feeds into two filters Gl(z2) and Gh(z2). It is a continuation of the previous problem. 

Here there shall be two repetitions. Then each channel breaks up into two channels Gl(z) and 

Gh(z). There are four outputs Yk(z), k = 0 → 3. 

 

The problem is to find out first the transfer functions Hk(z) = Yk(z)/X(z) and then plot their 

magnitude responses. Note that the LPF response is flat between 3π/2 and 2π and the HPF 

response is flat from π/2 to 3π/2. Why should ω continue beyond π? We normally do not have to 

do this but G(z2) is an interpolator and therefore you require the sketch of G(z) between 0 to 2π. 

And it is only then that we are able to compress the spectrum to 0 to π. The transfer functions are 

very simple H0 = Gl(z2) × Gl(z); H1 = Gl(z2) × Gh(z) and so on.  
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(Refer Slide Time: 10:33 - 13:44 min)   

 

 
 

Let us do the plotting. First you have to plot Gl(ej2ω) and Gh(ej2ω) and you shall have to go upto π. 

Obviously, for Gl(ej2ω), the compression will give rise to the transfer function magnitude which 

is 1 from ω = 0 to π/4 and then from 3π/4 to π, as shown in the Figure. You do not have to go 

beyond this point because π is our highest normalized digital frequency. Similarly, what would 

be Gh? Gh(ej2ω) magnitude shall be 1 from π/4 to 3π/4. Once this is known, then it is only the 

multiplication of two frequency responses, and you can find out the answers. For example, I have 

plotted the magnitudes of H0(ejω) and H1(ejω) in the next figure.  
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(Refer Slide Time: 12:46 - 14:11 min)  

 

 
 

Note that H0 is low-pass and H1 is high-pass. You can show that H2 and H3 are band pass, with 

pass bands π/4 to π/2, and π/2 to 3π/4 respectively. 

 

(Refer Slide Time: 14:24 - 14:46 min)   
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(Refer Slide Time: 14:48 – 19:24 min)  

 

 
 

Next, we consider problem 4.74, where five transfer functions are given: H1, H2, H3, H4 and H5. 

These are: H1 = 1 – 0.52 
1
z
−

 + 0.92 
2
z
−
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−
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4
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−
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−
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; and H5 = 3.12 – 2.5
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z
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0.5
3
z
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+ 0.06
4
z
−

+
5
z
−

. You have to determine the zero locations of each. Obviously you cannot do it 

analytically. The order is six and you have to use a Matlab program or a root finding program to 

determine the roots and then answer the question: does any of them have linear phase? If it is the 

linear phase, then the coefficients should be symmetrical or anti-symmetrical. The first transfer 

function H1(z), if you notice carefully, has symmetrical coefficients and therefore it is a linear 

phase one. For the others, which one is minimum phase and which one is maximum phase cannot 

be answered without finding the roots.  

 

 In problem 4.75, the statement of the problem is: a third order FIR filter has a transfer function: 

G1(z) = (6 – 
1
z
−

– 12
2
z
−

) × (2 + 5
1
z
−

). You have to answer the following questions: Determine the 

7 
 



transfer functions of all other FIR filters which have the same magnitude response as that of 

G1(z).  

 

The second part is: which ones are minimum phase and which ones are maximum phase? 

The third part relates to the impulse response and partial energy. This part is simply a matter of 

computation. Let us first find out all transfer functions whose magnitude is the same as that of 

G(z).  

 

(Refer Slide Time: 19:28 - 22:08 min)  

 

 
 

Note that since it is a third order transfer function, it has a real zero, indicated by the factor as [1 

+ (5/2)
1
z
−

]. The zero is at z = – 2.5. Then the other factor is 6 –
1
z
−

– 12
2
z
−

. A little bit of thought 

will show that you can write this as 6[1 + (4/3)
1
z
−

] [1 – (3/2)
1
z
−

].  
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(Refer Slide Time: 22:14 - 24:38 min) 

 

 
 

So my given transfer function is G1(z) = 12 [1 + (5/2)
1
z
−

] [1 + (4/3)
1
z
−

] [1 – (3/2)
1
z
−

]. Before I find 

the alternative transfer functions notice that this is the maximum phase, because all zeros are 

outside the unit circle. What you should do now is to replace each of these factors by another 

factor such that the magnitude is the same. The magnitude of [1 + (5/2) z-1]/[(5/2) +
1
z
−

] for z = ejω 

is unity. Therefore, if you write G2(z) = [(5/2) +
1
z
−

] × 12 [1 + (4/3)
1
z
−

] [1 – (3/2)
1
z
−

], its magnitude 

shall be the same as that of G1(z). We have to repeat this procedure for the other two factors 

taken one at a time; so we have G1, G2, G3, G4. Then take two at a time so we have G5, G6 and 

finally take three at a time to get G7. So in all, there are seven transfer functions. And the last one 

shall be a minimum phase. In between you shall have mixed phase transfer functions. Now, the 

third part. The impulse response can be easily found by taking the inverse z-transforms of the 

transfer function expressed as a polynomial in
1
z
−

. For example, G1(z) = 12[1 + (7/3) 
1
z
−

 – (29/12) 
2
z
−

– 5
3
z
−

] so that g1(n) = {12, 28, –29, –60}. The partial energies refer to E1(n) = 
0

n

m=
∑ g1(m), 

0≤n≤3, which can now easily be calculated. Similarly, for the other transfer functions. 
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If you take all the transfer functions and calculate the partial energies for all, then partial energies 

for the minimum phase shall be the highest of all of them. The maximum phase one shall have 

the minimum partial energies.  

 

(Refer Slide Time: 28:54 - 38:11 min)  

 

 
 

 

(Refer Slide Time: 28:59 - 36:19) 
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Next we take example 4.76. The z transforms of five sequences of length 7 are given in the 

Figure. Magnitude of the DFT for each of the above sequences is the same. Which one of the 

above z transforms will have all its zeros outside the unit circle? All its zeros outside the unit 

circle means that the product of the roots shall be greater than 1. Therefore the magnitude of the 

coefficient of 
6
z
−

 > 1 and only H1 and H3 are qualified. If all the roots are outside the unit circle 

then │zi │> 1, i = 1 to 6. The question is which one of the above z transforms will have all its 

zeros outside the unit circle? Magnitude of the coefficient of 
6
z
−

>1 is, however, a necessary 

condition, but not sufficient. We cannot answer this question without actually finding out the 

roots. We can only say which are the possible candidates.  

 

Calculating partial energies may provide an answer because the maximum phase one will have 

minimum partial energies. The candidates with all zeros inside the unit circle will have the 

highest power coefficient magnitude less than 1. So H5 goes out of the picture; H5 is neither 

minimum phase nor maximum phase, it is mixed phase. Amongst the others, you cannot say 

definitely which one(s) is(are) minimum phase without finding the roots. Therefore the solution 

to this problem requires finding the roots to arrive at a definite answer. Partial energy is an 

indication but not a confirmatory test.  

The last part of the question is: how many other real sequences of length 7 exist having the same 

DFT magnitude as those given above? DFT magnitude means magnitudes of X(k) and this 

number has also to be determined by actual calculation. It turns out to be 26 or 27. This question 

cannot be answered without using Matlab.  

 

The next problem is 4.82 which states as follows. Let F1(z) denote one of the factors of a linear 

phase FIR transfer function H(z). So H(z) = F1(z) multiplied by some other factor F2(z). And the 

question is: determine at least another factor F2(z) for the following choices of F1. It is given that 

a) F1(z) = (1 + 2z-1 + 3z-2); and b) F1(z) = 3 + 5z-1 – 4z-2– 2z3. One of the approaches can be to 

find out the roots. We can find the roots for a quadratic. For a cubic we have to search for the 

real root and then find the roots of the quadratic. But there is a simpler approach, again based on 

all pass functions. In all pass functions the poles and zeros are reciprocal pairs. The magnitude of 

the numerator is the same as the magnitude of the denominator in an all pass function.  
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The second important fact is that for a linear phase function, zeros occur in reciprocal pairs, that 

is if z0 is a 0 then 1/z0 is also a 0. Now if I want to make an all pass function out of (1 + 2
1
z
−

+ 

3
2
z
−

) in the numerator, then the denominator obviously shall be 3 + 2
1
z
−

 + z-2. Therefore my 

choice would be F2(z) = (3 + 2
1
z
−

 + 
2
z
−

). For the b) part, we shall have F2(z) = – 2 – 4
1
z
−

 + 5
2
z
−

+ 

3
3
z
−

. Here we have used two facts: one is that the numerator of an all pass function can be written 

as 
N
z
−

D(
1
z
−

), so that the zeros and poles are in reciprocal pairs and for a linear phase function the 

zeros occur in reciprocal pairs. I can of course have more terms, which are themselves linear 

phase.  

 

(Refer Slide Time: 41:36 - 44:34 min) 

 

 
 

Suppose the question is to find a fifth order linear phase polynomial by using the simplest 

possible modification of H(z) of part a) of the previous problem. Multiply by 
1
z
−

and that will 

become a fifth order. Is it linear phase? Yes, it is. Suppose that is not permitted; what should we 

do? We can use 1 ±
1
z
−

. If I use a plus sign, shall the impulse response be symmetrical or anti-

symmetrical? If I use the plus sign the impulse response shall be symmetric and if I use the 

minus sign it becomes anti-symmetric. Suppose you take the minus sign and you want to make 
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the transfer function symmetrical impulse response; then you have to add one or more terms. The 

degree is no restriction so that you get a symmetrical impulse response. How do you do that? Just 

square (1 – z–1) then this antisymmetry shall go. If you square it, this becomes a case of 

symmetrical impulse response. So symmetrical multiplied by symmetrical shall also remain 

symmetrical. On the other hand, if the given transfer function is H(z) (1 – 
1
z
−

) and we want to 

make asymmetrical, then you raise (1 – 
1
z
−

) to the power 3. So (1 – 
1
z
−

) raised to even powers 

gives you symmetrical impulse response and odd powers gives rise to anti-symmetric impulse 

response. If on the other hand, we raise (1 +
1
z
−

) to any power, even or odd, then does the 

symmetry or anti-symmetry change? No, it does not.  

 

The next problem is 4.85 that says: show that the phase delay τp(ω), which is defined as – 

( ) /φ ω ϖ , of the first order all pass function A1(z) = (d1 + 
1
z
−

) (1 + d1 z1
-1) is given approximately 

by (1 – d1)/(1 + d1) = δ. The second part says: design a first order all pass filter given that δ = 0.5. 

The sampling frequency is given as 20 kHz. Then determine the error in samples at 1 kHz in the 

phase delay from its design value of 0.5 samples. You have to find the error, that is deviation 

from 0.5 at 1 kHz. Why is the sampling frequency given? The sampling frequency is given so 

that you can find the normalized digital frequencies ω. Let us do the first part, then the second 

part would be very simple.  
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(Refer Slide Time: 48:06 - 50:02 min) 

 

 
 

You can write A1 (ejω) = (d1 + e–jω)/(1 + d1 e–jω). In finding the phase, it is convenient it is 

convenient to take e–jω out from the numerator. Then the phase becomes – ω + 
1

2 tan
−

(d1 sinω)/(1 

+ d1 cosω) so that τp(ω) = – 1 + (2/ω) 
1

tan
−

 (d1 sinω)/(1 + d1 cosω).  

 

(Refer Slide Time: 50:12 - 52:04 min) 
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When θ is small, tan-1 θ is approximately = θ, sinθ is approximately = θ and cosθ ≅ 1. Therefore 

τp(ω) is approximately = – 1 + (2/ω) d1ω/(1 + d1) = (1 – d1)/(1 + d1), which has been defined as δ. 

I have to assume ω small to be able to convert it into a function independent of ω. In other 

words, this τp(ω) will be exact when ω = 0. When I increase ω there will be an error. I do not 

know whether the error will be positive or negative.  

 

(Refer Slide Time: 52:11 - 53:27 min)   

 

 
 

So in the second part δ = 0.5 gives rise to d1 =1/3 and 1 kHz corresponds to ω = π/10. Now you 

have to calculate τp at π/10 from the exact expression and my calculation comes out as 0.503. 

This is not much of a deviation from the d.c. value of 0.5. 
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