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Analog Frequency Transformations: 
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This is the 26th lecture and we will continue our discussions on analog frequency 

transformations. 

 

(Refer Slide Time: 1:09 - 1:24) 

 

 
 

We illustrate by a fairly involved example and you must follow the steps carefully. And then we 

move to the topic digital filter structures. In the last lecture, we discussed Chebyshev low pass 

filter design for a given specification and we illustrated by a couple of examples. We then talked 

about analog frequency transformations.  
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(Refer Slide Time: 01:47 - 5:53) 

 

 
 

We also assumed that S is the complex frequency variable of the normalized low pass filter 

(NLPF) in which the passband is defined by 1 ≤  magnitude ≤  δp, and it extends from zero to 1 

radian per second. The stopband starts somewhere at Ωs with a tolerance of δs. If these 

magnitude characteristics are satisfied by a transfer function in the complex S domain, then this 

normalized low pass filter can be transformed to a de-normalized high pass filter by substituting 

S by Ωp/s.  

 

On the other hand, if it is simply a de-normalized low pass filter, where only the cutoff frequency 

changes, obviously S has to be replaced by s/Ωp. Then for de-normalized band pass filter S has to 

be replaced by (s2 + Ω0
2) Q/(Ω0s). This can be written as (s2 + Ω0

2)/(Bs) where B is the 

bandwidth. This bandwidth has the same tolerance as in the normalized low pass filter.  

 

In other words, this 1 radian per second in NLPF transforms to Ωp1 and Ωp2 but the tolerances 

remain the same. On the other hand, if the transformation is to be from normalized low pass to 

de-normalized band stop filter, then the transformation required is simply the reciprocal of the 

band pass transformation i.e. Bs/(s2 + Ω0
2). Given a normalized low pass filter, you can always 

transform it. Suppose it is the reverse transformation, which is usually the case. If the 
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specifications are those of the de-normalized low pass or de-normalized high pass, there is no 

problem. The problem arises with band pass and band stop because of the constraint that they 

have to be geometrically symmetrical. In other words, Ωp1Ωp2 = Ω0
2. Usually Ω0

 is not specified. 

What are specified are Ωp1 and Ωp2 and Ωs1 and Ωs2. The product of Ωp1 and Ωp2 must be equal to 

Ωs1Ωs2. This geometric symmetry is inherent in the transformation as I showed in the last lecture. 

And therefore given specifications may not satisfy this. In that case, you have to adjust the 

stopband edges on one side or both sides if you so desire so that passband specifications are met 

exactly and stopband is over satisfied.  

 

(Refer Slide Time: 06:21 - 8:22) 

 

 
 

For example, let the specifications on tolerances of a band pass filter be δs and δp, and let the 

band edges be Ωp1, Ωp2 and Ωs1, Ωs2. Let Ωs1Ωs2 > Ωp1Ωp2 which is of course equal to Ω0
2. What 

you have to do is make the left hand side smaller and therefore you have to shift Ωs2 to a lower 

value. You cannot reduce Ωs1 because then the stopband specifications will not be met. On the 

other hand, you can reduce Ωs2 by shifting it to Ω’s2
 such that Ωs2 = Ω0

2/Ωs1. Therefore if you 

design this filter after these adjustments, the stopband on the right hand side will be over 

satisfied. The stopband on the left hand side is exactly satisfied and the passband will be exactly 

satisfied. This is the story if Ωs1Ωs2 > Ω0
2.  
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(Refer Slide Time: 08:27 - 10:17) 

 

 
 

If Ωs1Ωs2 < Ω0
2 then obviously you will have to increase Ωs1. Therefore what you have to do is 

leave Ωs2 intact. So you increase Ωs1 to Ω’s1
 in such a manner that Ω’s1

 = Ω0
2/Ωs2. This 

modification has to be made, otherwise the filter shall not satisfy the specifications. There is a 

further complication. After you have adjusted the edges of the stopband, how do you find the 

specifications of the normalized low pass filter corresponding to this? We know the tolerances δp 

in passband and δs in stopband. But what is the stopband edge? It is Ωs. That is to be found out.  
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(Refer Slide Time: 10:28 - 13:20) 

 

 
 

A practical example is shown in the figure where the magnitude is given versus frequency in kHz 

and not in radians. The tolerance scheme is this: the passband tolerance is 2dB and the stopband 

tolerance is – 50 dB. The figure is not to scale. The edges of the passband are specified as 400 

and 1200. The edges of stopband are specified as 100 and 3000. Now obviously to test geometric 

symmetry, you do not have to go to Ωp1Ωp2, but you can test with the frequency in kHz itself. In 

this case, fp1 fp2 is 48 × 104 (kHz) whereas fs1fs2 = 30 × 104 (kHz)2; so fs1fs2 < fp1fp2. In other 

words, fs1 has to be increased to f’s1 such that f’s1 fs2
 shall equal 48 × 104

.
 This gives f’s1= 160 

kHz. Now with these specifications you have to design the filter. The bandwidth is obviously 

800 kHz. Now let us find the transformation.  
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(Refer Slide Time: 13:26 - 17:09) 

 

 
 

What is Ω0?  

Ω0 = √(Ωp1Ωp2) = 2π ×√(48 × 104). We need only Ω0
2. We do not require Ω0

 so we need not find 

it out. Here Ω0
2 = 4π2 × 48 × 104. We require the bandwidth B = 800 × 2π × 103 = 1600π × 103. 

Therefore our transformation is S = (s2 + 4π2 × 48 × 104)/(1600π ×103s).  

 

Our normalized low pass filter should have a tolerance of 2 dB and stopband tolerance of – 50 

dB. The passband extends to 1 radian per second and what is Ωs? To find Ωs, you have to appeal 

to the basic relationship. What is the basic relationship?  

Here S = (s2 + Ω0
2)/(Bs).  
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(Refer Slide Time: 19:34 to 23:34) 

 

 
 

And we are trying to find out Ωs so if I put S = jΩs then on the right hand side we shall have s = 

jΩs1 or jΩs2 because Ωs corresponds to Ωs1 as well as Ωs2. The stopband edge of the normalized 

low pass filter must correspond to the two stopband edges of the de-normalized band pass filter. 

In general, I shall have ±  jΩs = (– Ωs1,s22 + Ω0
2)/(± jB Ωs1,s2) where the signs may not 

correspond to each other. The positive value of Ωs is obtained as (Ω0
2 – Ωs1

2)/(BΩs1) or (Ωs2
2 – 

Ω0
2)/(BΩs2). The two expressions are identical because Ω0

2 = Ωs2 Ωs1. Thus Ωs = (Ωs2 – Ωs1)/(Ωp2 

– Ωp1). Several text books have found incorrect expressions for Ωs. 
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(Refer Slide Time: 23:41 - 27:12)  

 

 
 

(Refer Slide Time: 24:57 to 25:08) 
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(Refer Slide Time: 27:18 - 29:52) 

 

 
 

Therefore in our case, the normalized analog low pass filter should have an Ωs which is equal to 

(3000 – 160)/(1200 – 400) = 2840/800 = 3.55. We have to design a low pass filter with the specs 

shown in the figure. To proceed further, the first thing that I have to do is to convert – 2dB in 

terms of ratio which is 10–.1 and if I want a Chebyshev design, for example, then this should be 

equal to 1/√(1 + ϵ2). My calculation shows that ϵ = 0.765. I do require ϵ2 also which is calculated 

as 0.585; – 50dB in terms of ratio is equivalent to 10-2.5 and therefore to find the order, instead of 

using cosh–1 formula, let us use the basic formula. This gives 1 + 0.585 CN
2 (0.355) ≥ 105. 
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(Refer Slide Time: 29:56 to 32:12) 

 

 
 

We can ignore this 1 on the left hand side as compared to 105. Then I should have CN
2 (3.55) ≥ 

105/0.585 = 413.45. Now you take some starting point and iterate.  

 

(Refer Slide Time: 32:15 - 33:43) 
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The starting point I took was N = 3 then C3 (3.55) = 4(3.55)3 – 3(3.55). Even if you replace 3.55 

by 4, the right hand side does not make 400 and therefore N = 3 does not suffice. Take N = 4 and 

that suffices. Fourth order Chebyshev low pass filter shall satisfy these specifications on the 

normalized low pass filter.  

 

(Refer Slide Time: 33:45 - 35:57) 

 

 
 

And the next step is to write down the low pass filter transfer function HLP as a function of S; 

since it is fourth order, in the denominator, we shall have two quadratics (S2 + b1S + c1) (S2 + b2S 

+ c2). In the numerator we shall have c1 c2/√(1 + ϵ2). We shall have to do this normalization. And 

now you have to calculate y2, b1, c1, b2, c2 and then substitute in this and get the normalized low 

pass transfer function in the S domain. Finally your band pass transfer function in the s domain 

shall be obtained by replacing S by (s2 + Ω0
2)/(Bs) and that is the end of the design. It is a fairly 

elaborate process and you can make a mistake at almost every step. Similarly you can design 

band stop filter with arbitrary specifications.  
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(Refer Slide Time: 36:24 - 37:53) 

 

 
 

Our next topic would be digital filter structures. As I have talked about earlier, digital filters 

require only three basic blocks: one is the delay which is denoted by z-1, one is the scalar 

multiplication and the third is addition or subtraction. In order to respect the actual hardware 

process of addition or subtraction, we do not use more than two signals at any adder. Now, if you 

are given a structure you can always analyze it to find the transfer function. The problem here is: 

given the transfer function, how do you find the structure? If you can find one, is this unique? No 

it is not unique. Synthesis problems are always characterized by the fact that if one solution 

exists, there exists an indefinite number of solutions. But a solution may or may not exist to a 

synthesis problem. On the other hand, to an analysis problem, a solution, however complicated 

the problem is, shall exist. We shall illustrate by two examples of analysis and then we shall go 

to synthesis.  
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(Refer Slide Time: 38:00 - 39:55) 

 

 
 

You are given a structure like the one shown in the figure. While analyzing it, I shall also point 

out some of the disciplines that we have observed. If an arrow is missing, your structure does not 

make any sense. Analysis is rather easy; you can see that y(n) gets two signals [p0x(n) + p1x(n – 

1)] and – d1y(n – 1). So it is a recursive structure because it requires a feedback. Therefore I get 

y(n) + d1 y(n – 1) = p0 x(n) + p1 x(n – 1) and all that I have to do is to take the z transform now 

on both sides. The result is H(z) = Y(z)/X(z) = (p0 + p1 z-1)/(1 + d1 z-1). 

 

 

 

 

 

 

 

 

 

 

 

 13 



(Refer Slide Time: 39:58 - 46:02) 

 

 
 

Obviously the structure that was asked to be analyzed is not canonic in delays. This is a first 

order filter and therefore it should require only one delay and not more than that. But it is 

canonic in multipliers because we have three coefficients and three multipliers. So the structure 

we analyzed is non-canonic in delays but canonic in multipliers.  

 

We will show how to obtain a canonic structure a little later but before that let us take another 

example. This is problem 6.5 from Mitra and is shown in the Figure. In analysis, it is a good 

idea, except at trivial nodes, to indicate some intermediate signals. We indicate signal at the 

output of the second adder on the top line as W(z). I also call the output of the adder in the 

middle line as V(z). I do not have to indicate any other because all other signals can be expressed 

in terms of W and V. You notice that we can write W(z) = X(z) – Vk1 z-1+ k2 z-1W. I have 

expressed W in terms of X, V and W so, W can be expressed in terms of X and V. Now V(z) is 

(– k2 + z-1)W. Finally, Y(z) = z-1 W(z) α2 + z-1 V(z) α1. So we have three relations and three 

unknowns Y, V, and W. And as V and W are related, all that you have to do now is to eliminate 

W. And in whatever way you do the algebra you can verify whether the calculation gives 

Y(z)/X(z), the transfer function, as ((α2 – α1 k2)z-1 + α1 z-2)/(1 – (1 + k1) k2 z-1 + k1 z-2). 
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(Refer Slide Time: 46:11 - 48:47) 

 

 
 

As it is a second order filter, it need not be always stable. What are the conditions of stability in 

this case? The coefficient k1 should be less than 1 in magnitude; what was the other condition? 

|d1| should be less than |1 + d2|, therefore | 1 + k1 k 2| < |1 + k1|. Can you make further 

simplification of this? No, we have to find out by taking actual numbers. Can you draw a map 

similar to the stability triangle? We had drawn the stability triangle d2 versus d1. Can you draw 

here k1 versus k2? Would it be a triangle? It is just a question arising at this point in time and is 

left to you.  
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(Refer Slide Time: 49:02 - 54:27) 

 

 
 

Another important thing in analysis and synthesis of digital signal filter structures is the so called 

Delay Free Loop. To illustrate this I have taken another example, problem 6.1 in Mitra, where in 

some part of the digital filter structure you get a flow diagram like the one shown in the Figure. I 

will state the problem later. There is no delay in the loop so y(n) will either increase or decrease 

continuously and in no time the signal either builds up to infinity or goes down to 0. Such a loop 

cannot be implemented in practice. For a loop, you must have a delay. Delay free loops are 

unstable. We either get nothing from the output or we get an infinite output. Infinity of course we 

cannot get because number of bits is limited and therefore you will get a saturated output. For 

stability, a necessary condition is that there must be a delay somewhere. If by mistake such a 

delay free loop occurs in your realization, you can always avoid it by an equivalent structure. 

Here, for example, you can write w(n) = A [x(n) + w(n) (BCD) w(n) + CD v(n)]. In other words, 

you can write w(n) in terms of only x(n) + CD v(n). Then you can write the other equation y(n) 

as C times [Bw(n) + v(n)].  
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(Refer Slide Time: 54:30 - 56:17) 

 

 
 

So y(n) = C (Bw(n) + v(n)). One of the equations was w(n) (1 – ABCD) = Ax(n) + ACD v(n) 

which can be written as A[x(n) + CD v(n)]. Therefore w(n) = [A/(1 – ABCD)] (x(n) + CD v(n)), 

similarly y(n) can be calculated. 

 

(Refer Slide Time: 56:18 - 58:00) 
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The final realization is shown in the Figure. Now you see that in this diagram, there is no loop. 

Whenever a loop occurs due to a mistake on your part or somebody has given you the structure 

like that then you break the loop by writing equations and making sure that these equations are 

implemented without recursion. There is no recursion here and there is no feedback loop without 

a delay. So delay free loops should be avoided.  

 

(Refer Slide Time: 58:07 - 1:00:57) 

 

    
 

Now we consider the question of canonic delay structure. We recall the first example; (p0 + p1 z-

1)/(1 + d1 z-1) was delay non-canonic. In order to make it canonic, we represent this as (p0 + p1 z-

1) W(z), where W|z| = X(z)/(1 + d1 z-1). Then W(z) = X(z) – d1 z-1 w(z). I have written it in a 

particular fashion, so that the realization is obvious, as shown in the Figure. To construct Y(z), 

all you have to do is multiply W(z) by p0 and add it to W(z) z-1 p1. And you have used only one 

delay. This is the delay as well as the multiplier canonic structure. 
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