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This is the 21st lecture and as promised this will be a problem solving session, with problems on 

Fourier transforms, Discrete Fourier transforms and Z transforms.  

 

(Refer Slide Time: 01:10 - 01:14) 

 

 
 

I have selected some problems from Mitra. The first problem that we take is 3.3(a). The problem 

is to derive the Fourier Transform of u(n). The book usage is DTFT but as I said I will not use 

DT but use simply Fourier Transform. One way is to use the method adopted by Oppenheim, 

Willsky and Young. The other method that I find more convenient is to breakup u(n) into its 

even part and odd part. The even part is ½ [u(n) + u(–n)]. If we plot it then at n = 0 the amplitude 

would be 1 and at all other points it shall be ½.  I can write this as ½ + ½ δ(n); then it takes care 

of the amplitude 1 at n = 0. 
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(Refer Slide Time: 01:36 - 03:37) 

 

 
 

If I take the Fourier Transform of this, I get Ue (ejω) = ½ + 1
2

 [2 π∑δ(ω + 2πk)], where  k goes 

from – ∞ to + ∞. We have obtained the Fourier transform of the even part and now let us look at 

the odd part, i.e. uo(n) = ½ [u(n) – u(–n)]. Obviously at n = 0 the sample would be 0 and at n = 1, 

2 etc the value would be ½. At n = – 1, – 2 etc, it would be – ½ because of u(–n). This waveform 

can be written as u(n) – ½ – ½ δ(n). Once you have guessed this, the solution is over. Therefore 

u0(n) = u(n) – ½ – ½ δ(n), and u0(n – 1) =  u(n – 1) –½ – ½ δ(n – 1). In the latter, I have replaced 

n with n – 1. Then I subtract u0(n – 1) from u0(n), and get u0(n) – u0(n – 1) = u(n) – u(n – 1) – 

½[δ(n) – δ(n–1)]. 
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(Refer Slide Time: 03:47 - 06:56)    

 

 
 

Now u(n) – u(n – 1) is δ(n); therefore uo(n) – u0(n – 1) = δ(n) – ½ δ(n) + ½ δ(n – 1) = ½ [δ(n) + 

δ(n – 1)]. Now I take the Fourier Transform, so I get U0(ejω) [1 – e–jω] = ½(1 + e–jω). Thus U0(ejω) 

=  1 (1 ) / (1 )
2

j je eω ω− −+ − . Now I add Ue and U0.   

 

(Refer Slide Time: 07:02 - 8:48) 
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Therefore U(ejω) which  is the  Fourier Transform of u(n) becomes π ∑δ(ω + 2πk) (k = – ∞ to + 

∞) + 1
2

+ 1
2

 (1 + e–jω)/(1 – e–jω). Then if I sum this up I get ∑δ(ω + 2πk) (k = – ∞ to + ∞) + 1/(1 

– e–jω). Conceptually and step-wise, it is a much simpler procedure rather than bringing this 

signum function which Oppenheim has done.  

 

(Refer Slide Time: 08.53 - 10:00) 

 

 
 

The next problem I choose is 3.17. Problem 3.17 says: let x(n) be real and have a Fourier 

Transform X(ejω). I have chosen this problem to illustrate a particular point which went 

unnoticed in minor one answer. The question is: find y(n) such that its F T Y(ejω) is X(ej3ω). The 

point that I want to illustrate is the following. The solution to this obviously is X (ej3ω) = ∑ x(n) 

e–j3nω, by definition where n goes from – ∞ to + ∞.  Now, we put 3n = r; then my summation 

becomes ∑x(r/3) e–jrω. Now you cannot write r = – ∞ to + ∞ because (r/3) may be an integer or 

may not be an integer. Therefore this exists only for r = 0, ±3, ± 6 and so on. Notice that this is a 

case of an up sampler.  
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(Refer Slide Time: 10:16 - 13:13) 

 

 
 

Therefore your answer now shall be y(n) = x(n/3) for n = 0, ± 3, ± 6 and so on and 0 otherwise; it 

is an up sampler. The intermediate samples are 0. Between 0 and + 3 there are two more 0 valued 

samples. That was the purpose of this particular problem.  

 

The next one is 3.24. It says: using Parseval’s relation for FT evaluate the integrals a) ∫(0 to π) 

(4/(5 + 4 cosine ω)) dω, b) ∫(0 to π) dω/(3.25 – 3 cosine ω) and c) ∫(0 to π)/[4/(5 – 4cosine ω)2] 

dω.  
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(Refer Slide Time: 13.35 – 15.30) 

 

 
 

 (Refer Slide Time: 15:41 – 20:49) 

 

 
 

Let us recall Parseval’s relation; it is [1/(2π)] ∫( – π to π) |X (ejω)|2 dω = ∑|x(n)|2 n = – ∞ to + ∞. If 

I have to use this it means that you have to identify the integrand. Let us take the first one, you 

have to identify the integrand with some X(ejω) magnitude squared. Once you do that, find the 

corresponding x(n) and then sum it up. Now integration limits of 0 to π is not a problem because 
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the integrand is an even function and therefore integral 0 to π shall be half of integral –π to π. 

First, note that (1– αe–jω) magnitude squared = 1 + α2 – 2α cosine ω.  

 

Now this is exactly of the form that is wanted. You see 5 is 1 + 4. So for the first problem α is – 

2. For the second problem, 3.25 = 1 + 2.25, 2.25 is the square of 1.5. So here α is + 1.5. For the 

third problem, 5 – 4cos ω is magnitude squared of 1 – α e–jω with α = + 2. So |α| for each of these 

three cases is greater than unity and therefore the corresponding sequences of which the Fourier 

Transform is 1/(1 – αe–jω) must be anti causal, they cannot be causal. If alpha magnitude is 

greater than 1 and the sequence is right sided then the z transform does not exist. The Fourier 

Transform does not exist because the corresponding series does not converge. Then, when I 

invert 1/(1 – α e–jω), the inversion shall not give me αnu(n). You might be in a hurry to write 

αnu(n) but that is not correct. It shall be – αn u(– n – 1). Once you recognize these three basic 

facts, the rest is easy.  

 

(Refer Slide Time: 21:00 – 23:15) 

 

 
 

I will work out only the first one I will leave the rest to you. In the first one │X (ejω)│2 = 1/(5 + 

4 cosineω). The corresponding x(n) = –(– 2)n u(– n – 1); since I have to integrate from 0 to π, and 

 7 



there was a constant factor 4, the integral will be = 4π ∑│x(n)│2, n = – ∞ to + ∞. Also recognize 

that x(n) is left sided; it is anti causal. So n goes from – ∞ to – 1. 

 

(Refer Slide Time: 23:32 - 26:29) 

 

 
 

With a little jugglery, you can put this as = π ∑(n = 0 to ∞) 1/4n and this happens to be 4π/3. In 

the second problem α = + 1.5 and you workout the same way; the final answer will be 4π/5. In 

the c) part, our function (4/(5 – 4 cosineω)2) corresponds to magnitude of (1– α e–jω)2 and the 

inverse transform of this is – (n + 1) αn u(– n – 1) where the first term shall be 0. Therefore it can 

be written in some other form also. Then you have to find ∑((n + 1) αn)2 .  
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(Refer Slide Time: 26:39 - 39:08)   

 

 
 

The next problem is 3.44. Let x(n), 0 less than equal to n less than equal to N – 1 be a sequence. 

That is x(n) is a sequence of length N. Its DFT is X(k), 0 less than equal  to k less than equal to N 

– 1. Then it says if x(n) is symmetric that is x(n) = x(N – 1 – n), then show that X(N/2) = 0 for N 

even; this is the first part. This is extremely simple; you write X (N/2) = ∑x(n) wN
nN/2, n = 0 to N 

– 1. 
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(Refer Slide Time: 29:16 - 32:03)   

 

 
 

Now wN
N/2 is – 1 and therefore I get ∑(n = 0 to N – 1) x(n) (– 1)n that is = x(0) – x(1) +…+ x(N 

– 2) – x(N – 1); because it is symmetric, x(0) is the same as x(N – 1), x(1) = x(N – 2) and so on 

so that the total sum will be = 0 because there are even number of terms here. In part b, the 

statement of the problem is: if x(n) is antisymmetric, that is  x(n) = – x(N – 1 – n), then show that 

X(0) = 0, no condition on N. Let us see how this is satisfied.  
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(Refer Slide Time: 32:11 - 33:18) 

 

 
 

Now since X(k) = ∑x(n) WN
nk, n = 0 to N – 1, X(0) is simply the ∑(n = 0 to N – 1) x(n). That is 

x(0) + x(1) +…+ x(N – 2) + x(N – 1). Since it is antisymmetric, x(0)cancels with x(N – 1), x(1) 

cancels with x(N – 2). If N is even I do not have a problem. There are pairs to cancel, but if N is 

odd then there shall be a loner which is 0 because x(n) is antisymmetric. x((N – 1)/2) must be = – 

X((N – 1)/2), so it must be = 0.  
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(Refer Slide Time: 33:35 - 36:59) 

 

 
 

The third part says that let x(n) = – x(n + M) where N = 2M, that is N is even and M is an 

integer. If x(n) is – x(n + M) show that X(2ℓ) = 0 for ℓ = 0 to M – 1. The proof is quite 

straightforward but you have to use the Kronekar delta at some point. X(2ℓ) by definition is 

∑x(n)WN
2ℓn. This goes from n = 0 to N – 1. This summation I can write in two parts ∑(n = 0 to 

(N/2) – 1) + ∑(n = (N/2) to N – 1). Now in the second summation, put r = n – N/2. Then I can 

write this summation as ∑(r = 0 to (N/2) – 1) x(r + N/2) WN
2ℓ(r+N/2)

.  
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(Refer Slide Time: 37:06 - 38:41) 

 

 
 

Since WN
ℓN = 1, we can bring both of them under one same summation, viz. ∑(n = 0 to (N/2) – 

1) [x(n) + x(n + N/2)] wN
2ℓn. But [x(n) + x(n + N/2)] = 0. Therefore x(2ℓ) = 0. 

 

(Refer Slide Time: 39:40 - 41:19)   
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The problem that I now go to is 3.101. The problem is stated in several lines but the solution is 

very simple. The problem says consider G(z) = (p0+ p1z–1 +…+ pMz–M)/(d0 + d1z–1 +….+ dN z–N), 

M is less than N. If G(z) has only simple poles, show that p0/d0 = the sum of the residues in the 

partial fraction expansion (PFE) of G(z). The solution is extremely simple once we write it. G(z), 

by hypothesis, has only simple poles and therefore it can be expanded in this form ∑Ai/(1 –    

qiz–1) i = 1 to N. 

 

(Refer Slide Time: 41:32 - 45:38) 

 

 
  

The significance of M less than N is that there is no constant or FIR part in the PFE; if M was 

greater than N, then you have to take an FIR part out to make it a proper rational function in z–1; 

therefore M less than N makes life simple. We extract the sum of the residues by using z = ∞; 

this sum equals G(∞). And if you look at the transfer function, G(∞) is simply equal to p0/d0. If 

M = N then our result would have been pN/dN + p0′/d0 where p0′ is the constant term in G(z) – 

pN/dN. Now if M is greater than N then you have to take out an FIR term. If the FIR term is (a0 + 

b0z–1+…) and the numerator of the proper fraction is n0 + n1z–1 +…, then the sum of the residues 

would be a0 + n0/d0. So M less than N is very significant, if it was not there then you have to 

modify the problem as per the discussion just made.  
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The next problem is 3.100. It says: consider G(z) = P(z)/Q(z)  let ρℓ be the residue of G(z) at a 

simple pole z = λℓ. Show that ρℓ = – λℓ P(z)/Q′(z) at z = λℓ where Q′(z) = dQ(z)/dz–1; this is the 

problem and the solution is very simple.  

 

(Refer Slide Time: 45: 45 – 47:30) 

 

 
 

Read the problem carefully; the problem says that ρℓ is the residue of G(z) at a simple pole z = λℓ 

and therefore the denominator Q must have a factor (1 – λℓ z–1). The rest of it will be Q1, some 

other polynomial. So we will write this as P(z)/[(1– λℓ z–1) × Q1(z)] and the residue at λℓ is given 

by (1 – λℓz–1) × G(z) evaluated at z = λℓ that is equal to P(z)/Q1(z)  evaluated at z = λl . Now we 

have to establish the relationship between Q1 and Q′. You notice that Q(z) = (1 – λℓ z–1) × Q1(z). 

Q′(z), by definition is dQ(z)/dz–1. Q(z) is a product of two terms; so Q′(z) is equal to –λℓQ1(z) + 

(1 – λℓz–1) × dQ1(z)/dz–1. 

 

 

 

 

 

 

 15 



(Refer Slide Time: 48:06– 49:51)  

 

 
 

If I put z = λℓ in the result Q′ (λℓ) simply becomes –λℓ Q1 (λℓ). Therefore ρℓ = P(λℓ)/Q1(λℓ) = – λℓ 

P(λℓ)/Q′(λℓ) which is = – λℓ P(z)/Q′(z)  at z = λℓ.  

 

                           Next problem is 3.93; once again it is a problem of interpolation. It is a problem 

related to up sampling. Let X(z) =  Z[x(n) = (0.4)n u(n)]. There are two parts in the problem; part 

a) asks you to determine g(n) which is = Z–1[X(z2)] without computing X(z) and the b) part says 

determine y(n) = Z–1[(1+ z–1) X(z2)], again without computing X(z).  

 

 

 

 

 

 

 

 

 

 

 16 



(Refer Slide Time: 51:57 – 52:58)  

 

 
 

To solve this problem, we write X(z2) = ∑x(n) z–2n, n = – ∞ to + ∞, in general, which I can write 

as ∑x(n/2) z–n where n must be 0 and ±2, ±4 …and so on. Therefore g(n) = x(n/2), n = 0, ±2, 

±4… and 0 otherwise. In our case x(n) is causal; in this special case of x(n) = (0.4)n u(n), g(n) 

should be = (0.4)n/2, n = 0, 2, 4,… and 0 otherwise. Let us look at the other part determine the 

inverse transform of (1 + z–1) X(z2). 
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(Refer Slide Time: 53:25– 55:29) 

 

 
 

Z–1 [(1+ z–1) X(z2)] can be written as Z–1 [X(z2)] + Z–1 [z–1 X(z2)]. Now Z–1 [X(z2)] is g(n) of part 

a) and Z–1 [z–1 X(z2)] is g(n–1). Now g(n) in general g(n) = {x(n/2) n = 0, ± 2, ± 4,…. and 0 

otherwise. g(n – 1) would be = (x(n – 1)/2), values of n should be odd, that is ± 1, ±3 and so on. 

In the present case, y(n) = {(0.4)n/2, n = 0, 2, 4,… etc plus (0.4)(n–1)/2), n = 1, 3, 5…and so on.  
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(Refer Slide Time: 55:39 – 57:10) 

 

 
 

So it exists for all integer values of n. Because the original one is a right sided sequence, this is 

also a right sided sequence.  

 

(Refer Slide Time: 57.20 - 57.58)   
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