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This is the 18th lecture on DSP and we continue our discussion on complementary transfer 

functions and introduce an entirely new concept of digital two pairs. In the previous lecture, the 

17th, we continued our discussion on linear phase FIR filters and also we gave a summary. We 

saw that type one linear phase, that is symmetrical impulse response and odd length, (distinguish 

between length and order: Order is one less than the length because we started at n = 0) is the 

most versatile. Symmetrical even length impulse response cannot achieve a high pass filter.  

 

 

 1 



(Refer Slide Time: 02:13 - 5:09) 

 

 
 

This is type 2, which has a transfer function of the form (1 + z-1) H1(z). Type 3 has an anti-

symmetrical impulse response and is of odd length; with this, you can neither have HPF nor LPF 

nor BSF. Type 4 has anti-symmetrical impulse response and is of even length; you cannot have a 

low pass filter or a band stop filter with this. And then we talked about the location of zeros of 

the transfer function; we saw that the complex zeros occur in quads, that is, in a group of four. 

Exceptions are zeros at + 1, – 1, + j and – j. Then we talked about complementary filters. 

Complementary filters are filters, the addition of transfer functions of which gives rise to a pure 

delay or all-pass or constant magnitude or constant power.  

 

For example, if it is a delay complementary set, then the addition of the transfer functions should 

give rise to pure delay, may be with a multiplicative constant that can be more than 1, equal to 1, 

or less than 1. But in delay complementary filter, the sum of the transfer functions should be 

proportional to z-N. In all-pass complementary, the sum of transfer functions should be equal to 

an all-pass function. And whenever we talk of all-pass functions, we maintain the discipline that 

the function is such that its magnitude is unity. Then we talked about power complementary 

filters, in which the sum of the magnitude squared of the transfer functions should be equal to the 
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normalized value of 1. In magnitude complementary filters, the sum of the magnitudes should be 

equal to 1. So these are four types of complementary filters. And we looked at some of them.  
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An interesting observation was that H0(z) = 1
2

[A0(z) + A1(z)] and H1(z) = 1
2

 [A0(z) – A1(z)] are 

not only all-pass complementary, but they are also power complementary. For two power 

complementary filters, |H0(ejω)|2 + |H1(ejω)|2 = 1; this also implies, by analytic continuation, i.e. 

by extending this to the complete z plane, H0(z) H0(z–1) + H1(z) H1(z–1) = 1. 
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We now prove the observation that all-pass complementary filters are also power 

complementary. We have H0(z) H0(z-1) = (1/4) [A0 (z) + A1(z)] × [A0 (z-1) + A1(z-1), Now if you 

multiply them out then you get ¼  [A0(z) A0(z-1) + A1(z) A1(z-1) + A0(z) A1(z-1) + A1(z), A0(z-1)]. 

And it is very easy to comprehend that H1(z), H1(z-1) will have the same form except that the last 

two terms will have negative signs. So the third and fourth terms shall cancel and I shall have 1
2

 

[A0(z) A0(z-1) + A1(z) A1(z-1)]. Thus we have proved a very important theorem, namely that if 

H0(z), and H1(z) are all-pass complementary, then they are also power complementary. Therefore 

these two transfer functions H0(z) and H1(z) are very important transfer functions and they solve 

many problems that arise in practical applications of DSP. 
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Let us look at their realization. Before we go to the realization, let us pose a question. If three 

transfer functions are all-pass complementary, are they also power complementary? Find the 

answer yourself. In the present case, we have the sum of the two powers equals to one. Now, if at 

a particular frequency |H0|2 = ½, let us say at ώ = ώc, then does it not follow that |H1eJ cώ |2 should 

also be equal to ½?   

 

In other words, at ώc, the two transfer function magnitudes are identical and therefore, there is a 

cross over of these two responses at ώ = ώc, and this is called the Cross-over Frequency. And 

such transfer functions which are all-pass complementary, as well as power complementary, are 

called cross-over networks or cross-over filters. They have a very important application in digital 

audio and we shall come to this a little later.  This cross-over frequency is important. You notice 

that this is 3dB frequency of either filter. 
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We now look at the possible realization of H0(z) and H1(z). We have a given input X(z); we 

multiply by ½ first. Multiplication by ½ is no multiplication; it is a shift. And then we have two 

channels: One of them has the all-pass filter A0(z) and the other has the all-pass filter A1(z); there 

are two parallel channels. And if you add the outputs of the two, you get H0(z) times X(z). 
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The transfer function from X(z) to the upper output would be simply ½ [A0(z) + A1(z)], that is 

H0(z). And if you multiply A1(z) output by – 1, (once again, it is no multiplication; it is only 

change of the sign) and then add the two, the output will be simply H1(z) X(z). Thus for doubly 

complementary transfer functions H0 and H1, all that you require for realization are two all-pass 

filters. As an example, suppose H0(z) is the familiar first order IIR low pass filter, 1
2
α−  (1 + z–

1)/( 1 – αz-1). Now this can be written as 1
2

[1 + (z-1 – α)/(1 – αz–1)]. You can easily identify A0(z) 

as 1 and A1(z) as (z–1 – α)/(1 – αz–1), which is clearly all-pass. Then H1(z) will be 1
2

[1 – (z–1 – 

α)/ (1 – αz–1)], which, on simplification gives 1
2
α+  

(1 – z–1)/(1 – αz–1). Can you recognize this as the elementary first order IIR high pass filter?  
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The cut off frequency of both these filters is ώc =  cos -1 [2α/(1 + α2)] and therefore our simplest 

first order IIR low pass filter and the simplest first order IIR high pass filter are all-pass as well 

as power complementary. ώc is the cross-over frequency. All that you have to do now is to 

realize A1(z), because A0(z) is a straight connection. We shall see that this realization can be 

done using only one delay. We shall show later that we can realize A1(z) with only one 

multiplying constant and that is α. So it is a beautiful set of filters: first order low pass as well as 

high pass, realized with only one delay and one multiplier. It is the most economic realization of 

two doubly complementary filters.  

 

This is one of the most used doubly complimentary filters in the digital audio industry. What 

they do in producing a stereo music or speech, is to record a single signal and then they separate 

them into two, where one accentuates the high frequencies, the other accentuates the low 

frequencies; this is the simplest digital stereo. There may be other processing in between. For 

example, if you want to enhance the base sound in a tabla, you have to use other filters. The two 

cross over networks can be implemented most economically by a single chip which contains a 

realization of first order all-pass filter with one delay and one multiplier.  We next consider a 

magnitude complementary filter.  
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Consider a set of two filters G0(z) and G1(z) such that |G0eJώ| + |G1(eJώ)| = 1. Then G0 and G1 

form a set of magnitude complementary filters. Now, a very simple example of this would be as 

follows. You take the doubly complementary filters 1
2

[A0(z) ±  A1(z)]. And if you make G0(z) = 

H0
2(z) and G1(z) = H1

2(z), then you know that |H0(eJώ)|2 + |H1(eJώ)|2 = 1. Also, |G0(eJώ)| = 

|H0
2(eJώ)| = |H0(eJώ)|2. Similarly, for |G1(eJώ)|. Hence, G0 and G1 will be magnitude 

complementary. 
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Are G0(z) and G1(z) all-pass or power complementary? Let us see. G0(z) is (1/4) [A0
2(z) + A1

2(z) 

+ 2A0(z) + A1(z)]. And similarly, G1(z) = ¼ [A0
2(z) + A1

2(z) – 2A0(z) A1(z)]. They are 

magnitude complementary by design. Are they all-pass complementary? If we add them do you 

get an all-pass filter? Not necessarily, in general. Are they power complementary? No, they are 

not. Realizing a magnitude complementary filter is not a problem. You cascade two such blocks, 

the blocks which realize H0 and H. you start with same all-pass filter (– α + z-1)/(1 – αz–1) and we 

know how to realize H0 and H1, just add one more of such block.  In other words, it is a modular 

implementation. If you can make an IC chip for the doubly complementary filter, you just have 

to repeat the process.  

 

It is also a very economical process. If the IC processing fabrication steps have been 

standardized, you just repeat this without any change and therefore you can make the cascade of 

two such filters to get H0
2 and H1

2. In between, you get a low pass filter and a high pass filter and 

you get a set of magnitude complementary filters also. So it is a versatile chip having a number 

of output pins. One would be marked low pass and one will be marked high pass. You can also 

get an output from the first order all-pass filter. So you also get a first order all-pass, first order 

high pass, first order low pass, and in addition a set of doubly complementary filters and a set of 
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magnitude complementary filters. We shall come back to complementary filters at a later date 

and we shall show why we pay so much importance to all-pass filters. You have seen one 

example here in which a versatile IC chip requires the design of a single all-pass filter. And if 

alpha is variable, all of these filters are variable filters. You get a single chip, then you program 

for α and you get a programmable versatile chip which gives you all these functions: low pass, 

high pass and all-pass. We will show later that you can also get a band pass and a set of 

magnitude complementary and doubly complementary filters. We next come to the concept of 

digital two pairs.  
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A digital two pair is defined in analogy with analog two ports. In an analog two port, you have 

an input applied between two terminals constituting a port and an output between two other 

terminals constituting the second port. But in a digital device, since we are only talking of 

numbers, you have an input x(n) and you have an output y(n). If a digital signal processor has 

one input and one output, it is an SISO system. Consider a DSP which has two inputs, and for 

convenience we shall show the inputs not in the time domain but in the z domain. The two inputs 

are X1(z) and X2(z). For reasons to be made clear a little later, we draw the two inputs on 

different sides. There is no port concept in DSP, you just extract some numbers or you feed some 
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numbers. The schematic representation is shown in the figure. And the outputs are Y1(z) and 

Y2(z). Inside the block marked DSP we shall have multipliers, and adders and delays where 

delays stand for retrieval from the storage. Such a device having two inputs and two outputs is 

called a digital two pair. We shall represent it by D2P where P stands for pair and not port.  
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Let us consider a D2P having the defined inputs X1, X2 and outputs Y1, Y2; they of course are 

functions of z. In analog two port, we characterize by z-, y-, h- or ABCD parameters. A digital 

two pair, can be characterized in two different useful ways. In theory, two out of four variables 

can be chosen in six different ways, but the ones that are useful in practice are, Y1 and Y2 

expressed in terms of the 2 inputs X1 and X2. The corresponding parameters are called 

transmission parameters, because they show how the two inputs are transmitted to the two 

outputs. You require four transmission parameters, and the corresponding 2 × 2 matrix is called 

the T matrix; the parameters themselves are denoted by t11, t12, t21, t22.  
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If we write the complete equations, we shall get Y1(z) = t11 X1(z) + t12 X2(z) and Y2(z) = t21 X1(z) 

+ t22 X2(z). Exactly as in analog two ports you can define the parameters, t11, t12, t21 and t22, as 

ratios of two variables with a constraint on a third variable. For example, t11 is Y1/X1 with X2 = 

0. If you go back to the schematic diagram X2 is clamped to zero and Y2 is left arbitrary; apply 

an X1 and find Y1. Similarly, t12 is Y1/X2 under the condition X1 = 0; t21 = Y2/X1 with X2 = 0 and 

finally, t22 = Y2/X2 with X1 = 0. There is no concept of impedance or admittance here. These are 

pure numbers. The other way that one can characterize a D2P is as follows. 
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The set [X1, Y1] is expressed in terms of the set [Y2, X2]. In similarity with analog two ports, the 

corresponding parameters are called the chain parameters and denoted by ABCD. Why are they 

called chain parameters? It is because if you have a chain of D2Ps, then the overall ABCD 

matrix of the cascade shall be the multiplication of the individual ABCD matrices, written in the 

same order as they are cascaded.  
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Explicitly, X1 = AY2 + BX2 and Y1 = CY2 + DX2; you can define or measure ABCD parameters. 

A, for example, shall be X1/Y2 with X2 = 0 and so on. The symbol that is given for the ABCD 

matrix is capital gamma (Γ). 
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Do not confuse between capital gamma Γ and capital T. In capital Γ one of the hands is chopped 

off from T. Obviously since the variables are the same (X1, X2, Y1, Y2), these parameters should 

be inter-related to each other and one of the inter-relationships is that t11 is C/A. You can show 

this very easily. Also, t12 = (AD – BC)/A, t21 = 1/A and t22 = – B/A. Similarly the ABCD 

parameters can be expressed in terms of t parameters and the relationships are: A = 1/t21 (that 

should obviously be true because t21 is 1/A), B = –t22/t21, C = t11/t21 and D = (t21 t12 – t11 t22)/t21.  
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Here one thing you should observe is that the denominator is the same for all the four 

parameters; this is true in any conversion. Now, there is a concept of reciprocity as in analog two 

ports. In analog two ports, reciprocity says that if the input and output are interchanged then the 

ratio of the relevant variables should remain the same if the network is reciprocal. Here also, in 
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terms of the t parameters t12 and t21 relate input and output and reciprocity demands that t21 = t12; 

in terms of the ABCD parameters, reciprocity demands that AD – BC = 1.  
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Now, exactly like analog two ports we can cascade digital two pairs in two useful ways.  
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If you take a digital two pair, make a cascade as shown in the first figure, then Γ1 and Γ2 multiply 

to form Γ. This is why they were called chain parameters. But there is nothing sacred about 

drawing the input X2 on the right hand side, I could also draw it on the left hand side. If I make a 

T-cascade as shown in the second figure, then how do you find the overall parameters? Which 

parameters shall be relevant? Obviously, transmission parameters. So the overall transmission 

parameter T shall be equal to the product of T1 and T2.  Does the order of cascading matter? Yes, 

it does. In Γ cascade, Γ = Γ1 Γ2 and not Γ2 Γ1 because matrix multiplication is not commutative. 

Similarly, for T-cascade, T = T1 T2 and not T2 T1. We shall see later how cascading of D2Ps are 

useful. One example we have already seen in cascading of two doubly complementary filters 

giving rise to a magnitude complementary filter set. Finally, we come to the concept of a 

terminated digital two pair. 
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I have a digital two pair whose input is X1 and output is Y1 with Y2 connected to X2 via an SISO 

system G(z). This is a terminated D2P. Clearly, X2 = GY2. So if in the two linear equations 

describing the t and ABCD parameters, you inject this constraint, then you shall be able to find 

Y1 and X1, show that H(z) = Y1/X1 = [C + D G(z)]/[A + B G(z)]. Or if you use the t parameters 

then H(z) = t11 + [t12 t21 G(z)] divided by [1 – t22 G(z)]. The concept of digital two pair shall be 
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utilized to derive canonic realizations of all-pass filters at some later date. What is a canonic 

realization? Canonic realization is a realization which uses the minimum number of delays as 

well as multipliers. The example that I already cited is a first order all-pass filter realized with 

one delay and one multiplier; it is a canonic realization. We shall also use digital two pairs at a 

later date in some other context.   
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Finally, in this lecture, we go back to a discussion of stability. We have examined stability in two 

contexts; one is, that an LTI system is stable if and only if the impulse response is absolutely 

summable. That is, summation mod of h(n) should be less than infinity. The other context we 

have seen is that the poles should be inside the unit circle. That is, if the poles are at pi in the z 

plane, then |pi| should be bounded by unity for all i. Now, this is okay, but as far as testing is 

concerned, a simple alternative is desirable, particularly if you are given a very high order IIR 

transfer function. Do you ever have to test an FIR for stability? No, because all poles of FIR are 

at the origin. Origin is deep inside the unit circle. So FIR is unconditionally stable. This is one 

great advantage of FIR and the other great advantage is that it can be linear phase. These are the 

two virtues for which the FIR is given great respect. But at the same time, every positive thing 

comes with its own disadvantage.  
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Disadvantage is that you have to increase the complexity; you have to use a high order FIR to 

achieve what can be achieved by a second order IIR. So there are positive and negative points, 

and the two together make life comfortable. Now, we have considered stability in terms of two 

concepts: one is in time domain in terms of h(n) and the other in the frequency domain from the 

location of the poles in the z plane. We now want to see how to test for stability. If you are given 

a high order IIR filter, if you want to test in the time domain, then you have to find h(n). And 

finding h(n) means that you have to invert the z transform transfer function and the inversion is a 

laborious process, particularly if you have multiple poles. Or alternatively, you can have the 

transfer function H(z) and factorize its denominator; factorizing the denominator itself requires 

another sub routine, root finding program. Root finding programs have their own disadvantages, 

for example, numerical inaccuracy. You cannot find roots up to infinite number of decimals; you 

truncate somewhere. Then you go and happily design the filter and the filter starts oscillating 

because of quantization errors! In general, numbers cannot be represented exactly with a finite 

number of bits.  

 

Now, besides implementation, root finding itself is a laborious process and then you have to test 

whether the root is bounded by unity or not. If it is a complex pole then you have to find the 

magnitude and see whether it is inside the unit circle or not. But then, testing for stability 

becomes very easy through an algorithm in terms of all-pass filters. That is, given H(z) to be 

tested, we first construct an all-pass filter and then you shall see that by a simple algorithm, the 

derivation of which may not appear that simple but, you can test the stability without finding the 

roots. Let us first consider the simplest possible first order IIR filter.  
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Stability testing is no problem, you have 1 – α z-1 in the denominator. The pole is at z = α and all 

we have to do is to find whether α is inside or outside the unit circle. But suppose you have a 

second order IIR filter, N(z)/(1 + d1z-1 + d2z-2). How do you test the stability of this? Obviously 

this is also not a problem, you can find poles as p1,2 = – (d1/2) ±  square root of [(d1/2)2 – d2]. 

Now, once again, you will have to find these roots and again numerical accuracy or inaccuracy 

does come in. But given d1 and d2, can you say immediately whether the filter is stable or not? 

This would be possible if we can have a plot of d2 versus d1. 
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If we can demarcate a region in this d1 d2 plane, which is a parameter plane, such that inside that 

region, the second order filter is stable, then you do not have to find the roots. Given d1 and d2 

you can immediately say whether the system is stable or not. We shall show in the next lecture 

that this region is bounded by + 1 and – 1 on both d1 and d2 axes, and that the region has the 

shape of a triangle, as shown in the figure. We shall derive that if the point (d1, d2) lies in this 

triangular region, then the filter is stable. If d1 and d2 or both go outside this triangle, it would be 

unstable. Not only that, we shall show that if d1, d2 lie within the hatched parabolic region but 

inside the triangle, then the poles would be real. The derivation is not available easily in text 

books and I shall do it completely in the next lecture. This is where we close today.   
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