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This is the 14th lecture on DSP and today we discuss the topic Discrete Time Systems in the 

Frequency Domain. We introduced this topic in the 13th lecture and today we shall look at it very 

carefully. In the previous lecture, we continued our discussion on z transform properties and the 

property that we particularly discussed in the last lecture was Differentiation, which gives you a 

clue in finding the inverse transform of (1– αz–1)r where r ≥ 2.  
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We discussed the convolution property that is, if you convolve g(n) with h(n) (linear 

convolution) then the z transform of this is simply the product of G(z) and H(z). Then we 

discussed modulation, that is, x(n) = g(n) × h(n) and what the z transform of this is. That is, in 

terms of an integral containing a convolution of G and H and a particular case of the modulation 

theorem in which g and h are identical leads you to the Parseval’s relationship for energy.  
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We took several examples; one was to illustrate the fact that v*(n) has the z transform V*(z*). 

The other one involved multiple poles and we showed how to invert G(z) with multiple poles, 

without differentiation. That is, you write a set of linear equations in the constants by putting 

specific values of z and then solve this set, which is much simpler than differentiation, and then 

putting in the required value of z. We illustrated the importance of the signal ejωn and we said 

that for an LTI system, ejωn is an Eigenfunction. An Eigenfunction is any function such that when 

it is fed as the input to the system, the output is exactly the same function multiplied by a 

complex constant. In our case this complex constant was the Fourier Transform of h(n) which we 

denoted by H(ejω). H(ejω) is a complex constant in such a manner that ejωn fed to an LTI system 

whose impulse response is h(n) is simply, ejωn × H(ejω), which I can write in terms of an 

magnitude and an angle. If I know the response to ejωn, then I know the response to cosωn and 

also sinωn, because it is a linear system. If I take the real part of the input, then I must take the 

real part of the output. Similarly, for the imaginary parts. Therefore this signal is an extremely 

important one for linear time invariant systems. We illustrated the importance of the signal by 

considering the example of an M point Moving Average System (M-pt MAS).  
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We showed that the magnitude response can be very easily calculated. It is of the form of 

magnitude sine divided by another sine. But in determining the phase one must be extremely 

careful to take account of the sharp transitions in phase by an amount exactly equal to 1800 that 

occurs whenever the real quantity ratio of sines changes sign. And therefore the phase that you 

get with an M point Moving Average System is piece-wise linear. That is, it is a straight line up 

to a certain point then there is a transition and then again linear and so on. This piece-wise linear 

phase response and the ambiguity in phase response have to be remembered throughout your 

course on Digital Signal Processing.  

 

We now discuss the concept of Filtering. Once we have come to the definition of frequency 

response, one can talk of filtering. A filter is an electrical device which selects the appropriate 

frequencies and rejects others. For example, an ideal Low Pass Filter shall have a frequency 

response like the one shown in the figure.  
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For an ideal Low Pass Filter, between ω  = 0 and some frequency ωc, the magnitude should be 

ideally equal to 1. The value 1 is a normalized value. Beyond ωc, the magnitude should be equal 

to 0 up to the end of our base band, namely π. The plot extends on the other side also in the same 

manner. We require negative frequencies as well as positive frequencies to make up a real signal. 

And jω, ejω, are all contrived instruments to facilitate our analysis, design and synthesis and 

making life simpler in general. An ideal Low Pass Filter is not realizable due to a basic 

philosophical reason, viz. that nature abhors sharp transitions. People who are highly 

temperamental get angry very quickly but the society does not like them. They moderate them to 

an extent that they can be tolerated. In the particular case under consideration, there are other 

more tractable and analytical reasons. One is that if I have a characteristic like this, its impulse 

response h(n) is non causal. How do you find the impulse response? It is [1/(2π)] ∫π―π H(ejω) ejnω 

dω. H(ejω) = 1 between – ωc and + ωc and the rest of it is 0. Hence put H(ejω) = 1 and replace – π 

by – ωc; and + π by +ωc.  
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The integration is very easily seen as h(n) =[1/(2π)][ cjne ω /(jn) – c– jne ω /(jn)] = sin ωc/(nπ). 

Obviously at n = 0 it is 0/0 form, but by the usual L’ hospital rule, it is found as ωc/π. But this 

h(n) obviously is not equal to 0 for n < 0. It exists for n < 0 and therefore the system is non 

causal and therefore not realizable. There is another reason why it cannot be realized. This h(n) = 

sin nωc/(nπ) is neither absolutely summable nor require square summable. In other words, the 

system is unstable. Instability does not require square summability; it only requires absolute 

summability. This is true for Ideal High Pass, Ideal Band Pass, Ideal Band Stop or any ideal kind 

of filter. They all are non causal and also unstable, therefore they cannot be realized.  
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So what we can realize for a Low Pass Filter? 

 

Fortunately, in Digital Signal Processing, we have a finite range of vision of frequency, viz. 0 to 

π. And when we are considering magnitude or phase it suffices to consider only the positive 

frequencies because we know for negative frequencies the magnitude is even and the angle is 

odd. Therefore if we know the positive part we know the other part also. The ideal LPF response 

has to be rounded off; so what we can have in practice is a smooth curve which is an 

approximation to the ideal low pass filter characteristic. A typical practical response is shown in 

the figure; we can have other kinds of characteristics also.  

 

For example, the characteristic within the rectangle (0, 1, 1, ωc, 0) does not have to be 

monotonic; it can have ripples, it can go up and down. Similarly in the band in which you do not 

require any frequencies, it does not have to be monotonic it can also go up and down. But the 

simplest, of course, is the characteristic shown. We are not considering phase. The magnitude 

characteristic is monotonic throughout. If it is an ideal characteristic, then ωc is the cutoff 

frequency.  
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We now have to define the cutoff frequency. It is defined by the band of frequencies within 

which the magnitude does not fall below some quantity α. The cutoff frequency ωc is defined by 

0 ≤ |H| ≤ α, 0 ≤ ωc. α traditionally is 0.707 or 1/ 2 because 20log10 1/√2 is – 3dB. The passband 

is the band of frequencies within which the magnitude response does not fall by more than 3 

decibels. This is the 3dB bandwidth of the Low Pass Filter.  

 

Now we have to define a Stop Band. Ideally, Stop Band is ωc to π having zero response; 

however, zero response for this extended range is not achievable. What we could have is zero 

response at some isolated points if we allowed ripples. But in a monotonic response, we have to 

define another constant β and the edge of a Stop Band ωs such that between ωs and π the 

magnitude response does not go beyond β. For example, if β is .001 = 10–3 then in decibels it 

corresponds to 60 decibels down |20 log1010–3 = – 60|. So typically, what you shall specify is that 

in the Stop Band the attenuation must be at least 60dB. If it is at least 60dB then your β is .001; 

ωs shall also be specified.  

 

For example, if it is a Speech Filter for digital telephony, you might specify ωc (ωc is a 

normalized digital frequency) to correspond to 3.3 KiloHertz, and ωs may correspond to 4 

KiloHertz; 04 to 20 KiloHertz (corresponding to the end of the audio band) is called the Stop 

Band. That is, whatever may happen elsewhere, within the stop band the signal must be 

attenuated by at least the amount specified which could be 60dB or it could be 80dB. The in 

between region ωc to ωs which, unfortunately, is a fact of life, has to be permitted because from 

ωc, the magnitude cannot come down to β immediately. It cannot make an abrupt jump and if it 

does, then again non-causality shall step in! So you must allow a gap between ωc and ωs and this 

region is called the transition region, transition occuring between Pass Band and Stop Band. The 

narrower the transition region, the better is the filtering. Transition region sometimes is also 

specified by the cutoff slope. That is, if you find the slope at the cutoff point ωc, then this is also 

an indication of how sharp the filtering is. The more the cutoff slope, the better is the rejection of 

unwanted frequencies. So a digital or analog filter in practice shall have a Pass Band, a 

Transition Band and a Stop Band. What typically you shall be specified is the bandwidth of the 

Pass Band and the Pass Band tolerance. There is nothing sacred about 3dB; it could be 1 db. In a 

more sophisticated situation, it could be .1dB also. Similarly you shall be specified the Stop 
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Band and the minimum attenuation in the Stop Band. If you over satisfy the Stop Band you are 

perfectly in order. But the transition region is a fact of life; it has to be tolerated. The narrower 

the transition region, the better is the filter. But then you also have to pay for any improvement 

that you desire. That is, sharper cutoff requires higher order of filtering; higher order means 

higher cost because of more hardware/software. This is the concept of filtering.  

 

(Refer Slide Time: 22:52 - 26:44)  

 

 
 

To illustrate the concept of filtering, let us take an example. Suppose you have an x(n) which 

contains two sinusoids A cosω1n + B cosω2n; the frequencies are ω1 and ω2. The signal x(n) is 

not necessarily periodic. Digital signal, even if it is a sine or cosine representation, is not 

necessarily periodic. For periodicity, ω1/(2π) must be a rational number; similarly ω2/(2π) must 

be a rational number; then the period of the sum is the LCM of the denominator of the two 

rational numbers. Suppose we have two signals and we want to pass ω1 and reject ω2; that is the 

condition should be that 0 < ω1 < ωc < ω2 < π. This specifies that we require a Low Pass Filter, 

and 0 to ωc is our Pass Band, so that ω1 lies there. ω2 is greater than ωc means that it is in the 

Stop Band.  
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Now, what would be y(n), if I feed this signal to a linear time invariant system? The magnitude 

A would be modified by |H(ejω1)| and the phase would be modified to cos(ω1n + angle H (ejω1)). 

All we have to do is to find the frequency response of the system H(ejω); then we can write 

directly the output. So cosω1n shall be affected in magnitude by magnitude of H at ω = ω1 and its 

angle shall be shifted by angle of H(ejω1). Similarly, the second signal shall give the output B 

|H(ejω2)| cos(ω2n + angle of H(ejω2)). All that I have to do now is to choose the system in such a 

manner that H(ejω1) should be approximately equal to 1. Ideally, I can also make it 1. And 

magnitude H(ejω2) should be approximately equal to 0. Let us take a specific example and to 

bring variety into experience, we consider a High Pass Filter.  

 

(Refer Slide Time: 26:49 - 28:27) 

 

 
 

A and B are constants; we need not bother about them. So let x(n) = cos 0.1n + cos 0.4n. Is this 

signal periodic? No, it is not. .1/(2π) is not a rational number. We want to retain (cos 0.4n) and 

reject (cos 0.1n). So what we want is that H(ej.1) should be equal to 0. Why not make an effort to 

make it equal to 0 and H(ej.4) = 1. Let us see if we can satisfy these. Let us design the simplest 

possible kind of filter. Let us aim an FIR filler of length 3, arbitrarily; I can also choose length 2.  
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We have length 3 and suppose h(n) = {α, β, α} corresponding to n = 0, 1, 2. I require two degrees 

of freedom. I require two constants which are to be adjusted to satisfy the two conditions, that is, 

at .1 the magnitude = 0 and at .4 the magnitude = 1. That is why I chose two constants here. And 

therefore H(ejω) which is the Fourier Transform of h(n) can be written as α +  β e–jω + α e –j2ω 

which, if I take e–jω out, becomes β + 2 α cosω The magnitude of H need not necessarily be this 

quantity; it is real but it does not mean that it cannot go negative. It can be positive as well as 

negative. This is a step where you can falter throughout your journey of Digital Signal 

Processing. Whenever a real quality is given, the fact that it can be positive as well as negative, 

has to be respected. The negative sign has to be respected by including a π in the angle. So the 

angle of H is – ω as long as (β + 2 α cosω) is positive and it is – ω + π whenever the quantity 

changes from positive to negative. That is, whenever it becomes 0 there is an increase of phase 

by an amount π. Now let us aim at β and α in such a manner that (β + 2 α cosω) quantity shall 

remain positive.  So what I want is β + 2 α cos .1 = 0 and β + 2 α cos .4 = 1. You can subtract 

one from the other and find α very easily. (cos .1 and cos .4 can be found out from the tables: 

remember that the angles are in radian, not degree). 
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By solving the two equations, we get α = – 6.76195 and β = 17.456335. With these values you 

can verify that β + 2 α cosω indeed remains positive between .1 and .4. How did we decide about 

how many digits we retain after the decimal point? It depends on how many bits are available to 

represent the numbers. If you have a limited amount of cloth, then we have to decide how many 

pieces of dress can be made out of it. Depending on the number of bits of hardware you have on 

your computer, you decide the precision on the decimal numbers you can accommodate. For 

example, if it is an 8 bit number you should not truncate after the first decimal. On the other hand 

if it is a representation in floating point then you can use more decimals. After we have found out 

α and β, the system is now known. What would be its difference equation? It is y(n ) = αx(n) + 

βx(n – 1) + αx (n – 2), as simple as that. You can implement this with two multipliers only 

because x(n) and x(n – 2) can be added together and then multiplied by α.  
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Reducing the number of multipliers is an extremely important criterion in the realization of a 

DSP. In general, you know that a DSP can be represented by a difference equation like this: y(n) 

+ b1y(n – 1) + … + bN y(n – N) = a0x(n) + a1 x(n – 1) +  + aMx(n – M). This is the general 

representation of an LTI Discrete Time System. It can be FIR, or IIR. You can find the frequency 

response H(ejω) by taking the Fourier Transform of both sides. The FT of the right hand side is a0 

+ a1 e–jω + …. + aM e–jωM. Note that we have taken b0 = 1; this is the discipline we have tried to 

inculcate. b0 ≠  1 can always be handled by dividing both sides so that the coefficient of y(n) = 1. 

The left hand side of the difference equation transforms to 1 + b1 e–jω+ … + bN e–jωN. The 

frequency response H(ejω) is the ratio of the two polynomials and is, in general, IIR. There is no 

reason why it cannot represent an FIR system also by making all bi’s equal to zero. This can now 

be generalized in terms of z transforms.  

 

So far we have considered representation of the Discrete Time System in the ω domain by taking 

the Fourier transform. There is no reason why you cannot use z transform and generalize H to 

H(z). That is, instead of taking the Fourier transform, we can also take z transform provided the z 

transform exists. And H(z) can now be written as (a0 + a1 z–1+….+ aMz–M)/(1 + b1z–1  

+…+ bNz–N). It would be, in general, of the form P(z)/Q(z). This is a rational function, being a 
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ratio of polynomials in z inverse (z–1). When we want to find out frequency response, we will 

simply put z as ejω, provided the ROC of H(z) includes the unit circle; if this is not the case then 

we cannot do it. Fortunately, most of the systems that are of our interest can be treated by both z 

transforms and Fourier transforms. However, there is a change in nomenclature. Why is H(ejω) 

called the Frequency response? It is called frequency response because this gives the spectrum in 

terms of actual ω. To be fair, you must also give a name to H (z). This is simply called the 

Transfer Function because, as we can see, it is also the ratio of Y(z)/X(z). How X(z) is 

transferred to the output is characterized by the ratio H(z). One should remember that the z 

domain Transfer function and the Frequency response are intimately related, provided, of course, 

both of them exist.  

 

(Refer Slide Time: 40:08 - 42:46) 

 

 
 

As an example, consider the M point Moving Average System that is y(n) = (1/M) ∑x (n – k) 

where k goes from 0 to M – 1. What is the impulse response h(n) of the system? It is simply 1/M 

for n going from 0 to M – 1, otherwise it is 0. You can take the z transform and get H(z) = (1/M) 

∑z–n ,where n goes from 0 to M – 1. This is a geometric series. The z transform exists because 

the summation is finite. H(z) can also be written as (1/M) (1 – z–M)/(1 – z–1); it is a rational 

function but it represents an FIR system because the pole at z = 1 cancels with the zero at z = 1. 
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The zeros of the system, M in number, are at z = –ej2πk/M, k = 0 to M – 1. There is just one pole at 

z = 1 and you notice that in the zeros, k = 0 gives z = 1. So there is a pole zero cancellation and 

the system is still FIR. To determine the Frequency response, you just put z = ejω and then put it 

in the form of sine/sine and an angle and carry out the rest of it, as we did earlier.  

 

(Refer Slide Time: 42:50 - 44:45) 

 

 
 

Now, when you express the Transfer function as P(z)/Q(z) the zeros of Q(z) are of course the 

poles of the system and the zeros of P(z) are the zeros of the system and you know how we 

represent them in the z plane by means of crosses and small circles. But the important point is 

that if qi is one of the poles then the magnitude of qi must be bounded by unity. What is the 

logic? It is because the impulse response will have the component qi
n u(n) and if qi magnitude is 

not bounded by unity then it grows without limit, so it becomes an unstable system. It is not that 

the unstable systems are not useful. If you want to make a digital oscillator, then you do require 

an unstable system but not for any other purposes. So all qi’s must be inside the unit circle. This 

is a repetition of what we have stated earlier. We continue our discussion on Filtering and take 

some simple examples of filters.  
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We consider some simple FIR filters to begin with. It is much simpler to consider rather than IIR 

filters. Let us consider first a function like ½(1 + z–1). Any FIR system will be a filter. In fact, 

any system which has a frequency response will favor some frequencies and reject others. What 

kind of filter does this example represent? The best way to do it is to look at the function and put 

z = ejω to consider the Frequency response. Here H(ejω) = (1/2) (1 + e–jω) and you see that at ω = 

0 it is equal to 1 and at ω = π it is 0; therefore it is a Low Pass Filter. It starts at 1 at ω = 0 and 

goes to 0 at ω = π. Now, in order to decide whether it is a Low Pass or High Pass or any other 

kind of filter, later on this step will not be required because ω = 0 corresponds to z = 1 and ω = π 

corresponds to z = – 1. So you just have to find H(z) at z = + 1 and – 1. Suppose both of them are 

0 then we know that in between there must be a maximum; so it must be a Band Pass Filter.  
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For this Low Pass example H(z) = ½(1 + z–1) the frequency response is H(ejω) = e–jω/2 cos (ω/2). 

Now cos (ω/2) in the range 0 to π is positive. So if I plot the magnitude it starts from 1 and at π it 

goes to 0 so the characteristic would be something like what is shown in the figure, which is 

indeed a Low Pass Filter. And if I plot the angle φ from ω = 0 and π, the angle will be strictly – 

ω/2. So it starts from 0 and goes to – π/2 at ω = π. In the range of vision the real quantity does 

not change sign, so we are comfortable.  

 

Now if this is a Low Pass Filter, we want to find out the 3-dB cutoff frequency ωc which satisfies 

cosωc/2 = 1/√2; thus ωc = π/2, which is exactly half way between 0 and π. This Low Pass Filter 

has a large bandwidth and large Stop Band. This is not a very good one but it is the most 

elementary FIR Low Pass Filter. Is there a way to sharpen the characteristic, or make it better, 

for example like the second curve in this figure? Yes, the way is to cascade, say two of them. 

Obviously, since |H|<| for ω>0, if I square |H|, the frequency response will come down. If in Stop 

Band, |H| is 0.1 somewhere, then 0.12 = 0.01; therefore by cascading two such filters, I can get a 

better characteristic.  
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If M number of such H(z) are cascaded, where would be ωc i.e. what would be the cutoff 

frequency? This is easily found out from |H|M = 1/√2. So ωc = 2 cosine inverse 2–M/2. This is 

approximately equal to 0.3 if M = 3 (three sections); so the cutoff frequency comes closer to ω = 

0. This is the way people still design, people who do not know much of Digital Signal Processing 

or wish to keep life simple. For example, for medical signal processing, ½(1 + z –1) is still a very 

important filter.  
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Next consider H(z) = ½(1 – z–1); without going through any Fourier Transform, we can conclude 

that this filter is High Pass, because H(1) = 0 and H(– 1) = 1. You can also show that H(ejω) = j 

×e–j ω/2 sinω/2 by putting z = jω. Here magnitude is the magnitude of sin ω/2 which does not 

change sign in the range 0 to π. You can show that ωc, the 3db cutoff frequency is once again π/2 

but what about the phase now? Phase at ω = 0 is π/2 contributed by the term j; beyond ω = 0 the 

phase will be π/2 – ω/2 so it comes linearly down to 0 at ω = π. One fact of great importance is 

the following: that H(z) = ½(1 + z–1) was a Low Pass Filter but (1/2) (1 – z–1) is a High Pass 

Filter. This is in general true, i.e. if in a LPF transfer function, you change the sign of z, you get a 

HPF.  
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We repeat: Given a Low Pass Filter HLP(z) you can always derive a High Pass Filter HHP(z) if 

you change z to – z. The logic is not difficult to find. You see z corresponds to ejω and –z 

corresponds to ej(ω ± π). In ω ±  pi, whatever occurs at ω = 0 shall now occur at ω = ±  π. The 

magnitude was 1 for the Low Pass Filter at ω = 0 and now the magnitude will be 1 at ω = ±  π. 

So the characteristic is just flipped over. It is in general true that in any Low Pass Filter, if you 

change z to – z then you shall get a High Pass Filter.  

 

In terms of an FIR filter for example suppose the Low Pass Filter is a0 + a1 z–1 + … + a N z–N; 

then changing z to – z is also equivalent to changing the sign of alternate coefficients. The 

coefficient of z–2 remains a2 but the coefficient of z–1 becomes –a1. Changing the sign in alternate 

coefficients means that you modify the impulse response such that the sign of alternate samples 

are changed. So it is very simple to transform a Low Pass to High Pass filter. The characteristics 

are complementary as the cut off frequency remains the same. They would be ωc and π – ωc. 

Does it remain symmetrical? Not necessarily. For the simple case 1 + z–1 or 1 – z–1, they 

remained identical but it is not necessarily true. The next thing I would discuss is a Band Pass 

Filter.  
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I want a characteristic like this: at π it should be 0, at 0 it should be 0 and somewhere in between 

it should be 1. One of the very simple things I can do is to cascade a low pass with a high pass. 

That is, I multiply (1 + z–1) by (1 – z–1).what would be the constant multiplier: 1/4 or ½? Suppose 

I take a function like this H(z) = A (1 + z–1) (1–z–1), then obviously at z = 1 it is 0, at z = – 1 it is 

also 0; where does the maximum occur? For that we have to write this as A(1 – z–2) and therefore 

H(ejω) = 2Ae–jω j sinω. Obviously this frequency response shall have a maximum magnitude 2A; 

thus 2A = 1 or A = 1/2 at π/2. It is a simple Band Pass Filter.  

 

Now we shall have to be careful with the phase. sinω remains positive between 0 and π. Hence 

phase = 
2
π  – ω. It starts at 

2
π  at ω = 0, becomes zero at ω =

2
π  and 

2
π−  at ω = π.  What is the 

bandwidth of this band pass filter? You can easily show, by putting sin ω = 1
2

, that this is 

satisfied by ω = π/4 as well as 3π/4. Hence the bandwidth is π/2. Bandwidth is the difference 

between the two frequencies at which the magnitude is 1
2

. It is a poor Band Pass Filter, 

nevertheless it is Band Pass. Suppose I wanted a Band Stop then what should I do? One method 
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is; All Pass minus Band Pass. Another method is to use cosω as the frequency response because 

cos 90 = 0, cos 0 = + 1 and cos π = – 1.  
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