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Welcome back to CMOS RF integrated circuits we are lecture 10 part of module 3; we 

were discussing passive components part of that we were discussing wires. So, far we 

have already covered inductors, capacitors, resistors all of this stuffs we have already 

covered; we were discussing wires. And, the as our discussion about wires we were first 

talking about this skin depth, skin effect and skin depth which we have mentioned 

before. So, if I have a wire and current is traveling through the wire at a frequency, at an 

angular frequency of omega then, the depth up to which the current is going to travel 

actually my statement is not really true. But that that is how I am going to phrase it to an 

engineer the depth up to which recurrent is going to travel; that is d is given by this 

formulation squared root of 2 by mu sigma omega. 

So, as omega increases this depth decreases; why I said that this is an engineer speaking; 

and not physicist is because if you look at the real derivation. Then, at this depth the 

current density is about one- third or other 1 by e times the current density on the 

surface; that is what it really means. But to an engineer this is the depth at to which we 

can assumed that current is going to travel; after this we were basically we had started 

looking at the effective inductance per unit length of a wire. Now, by we are saying per 

unit length is going to become parallel even a short wire. But for now let us just try to 

figure out what is the inductance? 



(Refer Slide Time: 02:43) 

 

So, we have a wire which is carrying i and there is a return path for the current. So, there 

is another wire which is coming back its parallel to the original wire; this is the case 

situation that we are going to talk about. And, why we are talking about this as a special 

situation is because when I have a wire over a conducting ground plane. Then, an image 

of the wire is going to be beneath the ground plane. 

So, this situation is gruntingly going to arise in our integrated circuits. So, that is why we 

are especially talking about this situation. Now, we are going to assume that this wire as 

a circular cross-section unfortunately on an integrated circuit; the wires do not have a 

circular cross-section they are going to have a rectangular cross-section. But this is an 

assumption because if I do a rectangular cross-section; the derivation is going to become 

unnecessarily complicated and I would rather not do that derivation. 

So, this is what I am going to do. Now, at a distance x from a current i. So, I have a 

uniform current going through a wire current is high of t. So, at a distance x from this 

current; how do I measure the magnetic field, how do I find out the magnetic field? I 

create an amperian loop at a radius x around the wire. So, presumably the integral of the 

magnetic field along this loop is going to be I am sorry; the magnetic field is along this 

loop is going to be constant. So, the integral of the magnetic field is going to be magnetic 

field times 2 pi x. Now, this quantity is mu naught times i that amperes law. So, that 

quickly gives us result that magnetic field because of this forward current i at a distance 



x is mu naught i by 2 pi x. Now, this is not telling the anything about the return current; 

return current we are going to do it later. 

So, I am going to assume that the return current is going to add some more magnetic 

field to the original right. So, if this is x and let us see this is y then the return current is 

going to create another portion. So, this is superposition at this used; superposition over 

here and this is correct this going to be the field. So, in any case I am not going to 

consider the return current right now; we are going to think about little later why a little 

later is because let me think about the flux because of this magnetic field. 

So, let me try to compute the flux over this entire hatched area with red; that red marked 

portion let me try to compute the flux through that area. Now, length of this is L; and let 

us say the bottom wire is at a distance what you want to say h from the top wire. So, the 

gap between the bottom and the top wire is h meters. So, the flux is going to be the 

magnetic field integrated over the entire area ok. 
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So, I am assuming that this wire as a radius of smaller. So, let us look at the area from r 

to h; r to r plus h I am sorry let us say this is h. So, this gives me this integral results in 

log integral of 1 by x is lawn of x. So, basically what I get is something like this. So, this 

is the total flux because of the top current; the forward current. Now, if I look at the 

return current; return current is also going to give me a similar integral. And, the result is 



basically going to be identical; the forward current is going to create some flux the return 

current is also going to create an identical flux. So, total flux is going to be twice of this. 

So, that is mu naught I right and d phi by d t the rate of change of flux creates an e m f 

which is the. So, if I try to change the flux then an e m f is created which is equal to the 

rate of change of flux rather a back e m f is created; it resist the rate of change of flux 

which basically means that I get a potential drop across this wire which is equal to d phi 

by d t. 

And, that is going to be equal to mu naught l lawn h by r by pi times d i by d t. Now, if I 

have an inductor of value l then the potential drop a cross the inductor is l times d i by d 

t. And, here I have got something across which there is a potential drop which is some 

constant times d i by d t. So, the inductance of this piece of wire is this and if I want to 

consider inductance per unit length; then it is the total inductance divided by the length. 
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So there have been a lot of simplifying assumptions in this derivation. However, what I 

need you to understand from this is that even a wire has some inductance per unit length; 

longer the wire more the inductance right also more the separation between the wire and 

its return path more the inductance. So, things will change if you change the geometry. 

So, if instead of circular cross-section you go for a rectangular cross-section things will 

change; as an engineer I do not really care about the small changes I need some intuitive 

understanding of what is going on. And, this results gives me an intuitive understanding 



that is good enough; one more thing as you make your wire thinner and thinner 

inductance per unit length becomes more. 

So, thinner wires have more inductance, thicker wire have less inductance interesting all 

right. So, wire has inductance per unit length; does the wire have resistance per unit 

length? Yes, we already discussed that we even discussed our the cross-section. And, the 

skin effect and so on how the resistance is not really appear resistance; it keeps going up 

as a function of frequency etcetera what else, could a wire have maybe it has 

capacitance. 
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So, let us consider our wire. Now, for convenience I am not going to use a circular cross-

section; I am going to use a rectangle cross-section. So, whenever what whatever is 

convenient I am going to do that right. So, let us say I have a wire carrying a current i of 

t and of course if you have a current going the current has to come back. And, is a return 

path of the wire; which is basically the mirror image of the wire on the ground plane 

something like this. 

Now, this reminds you of parallel pair of plates more the separation more the fringing 

but even otherwise this is a parallel plate capacitor. And, if you just think about a parallel 

plate capacitor; the capacitance between the 2 plates is going to be equal to the area of 

the plate times the epsilon of the dielectric material divided by the gap between the 2 we 

said the gap plate size h right; this is what it is what is the area of the plate? Area of the 



plate is the length times the width or this is not taking into account the fringing; fringing 

is only going to add to this further. And, what is the fringing going to be proportional to 

the fringing is going to be proportional to the perimeter of the plate. 

So, it is going to be proportional to the perimeter of the plate. And, it is also going to be 

proportional to the height of the plate. I hope you remember this I mean just look back a 

little bit on you will recall that the fringing capacitance is proportional to the perimeter 

which is l plus w. And, it is also proportional to the height I am sorry not that height the 

thickness. So, let us say the thickness is also w and it is inversely proportional to the 

distance between the 2; it is also proportional to the dielectric constant. 

And, then we said that there is some fetch factor something some number of what there 

which we do not; which we need from computational export to figure out what of is fine. 

All I want is some understanding some feel for what is going on over here. Now, l plus w 

can be approximated as l right; w is small l is large; the this w is really the thickness of 

the plate. But if you considered that earlier we were talking about a circular wire which 

has both dimensions equal radius is r means the height is the thickness is the same as the 

width. So, that is why even though we are going for a rectangular cross-section; let me 

just assumed that the thickness is w and the width is w. 

So, I just want to try to mean it the earlier computation; and that is why no other reason I 

chose that to be w. So, this is my capacitance and the capacitance per unit length is 

basically w time is epsilon by h divided by 1 plus 1 by this futz factor right; what is this 

tell me? So, look at the conclusions earlier and look at the conclusions now. 
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The earlier conclusions where when we are doing inductance the separation between the 

2 wires increases, inductance increases; the radius of the wire decreases, inductance 

increases; what are the conclusions now? The separation if I increase the separation the 

capacitance per unit length decreases; if I decrease the radius of the wire by inductance 

increased where was that yes; inductance increased when I decrease the radius of the 

wire. If I decrease the width; width is comparable to radius because which was a squared 

cross-section. 

So, if I decrease the capacitance is going to capacitance per unit length is also going to 

decrease. So, just the opposite effect as before right the precisely the opposite effect. So, 

when inductance increases capacitance decreases; when inductance decreases 

capacitance increases alright so far so, good. If I had chosen the same geometry for both 

as and if I had chosen both circular or both rectangular which I did not. 
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Because I wanted to simplify my computation but if I had chosen both geometries as the 

same. Then, you would find that L prime inductance per unit length times capacitance 

per unit length would be a constant unfortunately I cannot prove this. Because we did it 

differently; no when inductance decreases capacitance increases; when inductance 

increases capacitance decreases. So, it kind of gives you a sense feeling that L times c is 

probably going to be a constant it. 

So, happens that it is constant for a given geometry is constant you have to do correct 

computations for both; we will come up the best results so far so good. So, we have 

figured out that when I say that we have got wire; wire is really something else it is not 

short-circuit it has some inductance per unit length it has some capacitance per unit 

length; it has some resistance per unit length if the dielectric material is no good.  

Suppose the dielectric material was conductive little bit than there would be current also 

leaking out over here if the dielectric material was not a perfect isolator then there would 

be current leaking out. And, that would create a conductance per unit length as well 

right. So, our model for the wire looks like this; I am not being very is proficient with 

this. 

So let us so this is a little bit of a section of a wire. Let us say I have got a wire of very 

small length d l; then this is the model for the wire. And, wire of huge length is basically 

cascade of these sections till I complete the entire length of the wire, right. So, this is my 



model for a wire; it is a cascade of lot of these sections each section has its own 

inductance, resistance, capacitance and conductance its so turns out that the conductance 

is mostly going to be equal to 0. For most dielectrics reasonable dielectrics is 

conductance is going to be equal to 0 unless you choose a bad dielectric material; you 

should not be having a conductance. For example, on an integrated circuit the dielectric 

material is silicon dioxide it is more or less perfect insulator. So, you can safely assume 

that g prime is 0. 

So, one simplification at least g prime is 0 right but we still have to live with inductance 

per unit length, resistance per unit length and capacitance per unit length; this kind of a 

system is called a distributed system; the inductance is distributed. So, wire as certain 

inductance but this inductance is distributed all over the wire; it also has distributed 

resistance, it also has distributed capacitance right. 

If the capacitance were not their then I could lump both the inductance and the resistance 

because all of these come in series and they add up nicely. But because there is the 

capacitance you cannot do that. So, how do we analyze a distributed system? Let us say 

that I have applied voltage v this is my x axis; at a distance x the voltage that is on that 

piece of wire is v and at a distance x plus let us call this d x for convenience instead of d 

l. 

So, at a distance x plus d x I have got voltage v (x) plus d x also let us assume that the 

current going in is i (x) over here. And, the current coming out is i x plus d x. Now, this 

quantities are almost equal but let us develop some kind of an equation relating them. So, 

the first thing that you seen is v of x plus d x is equal to v (x) minus i (x) times L prime d 

x minus i (x) times R prime d x; this is the first important things to observe. And, the 

second important things to observe is i x plus d x is equal to v of x plus d x minus; so 

some portion of the current is i (x) minus oh I need see just mistakes. 

So, the current through the capacitor is c d v by d t. So, that much current is leaking out 

through this capacitor. So, the current that is going out of the network is i x plus d x that 

is equal to i x minus whatever is the current through the capacitor; that is my equation 

number 2 and equation number 1 is the voltage drop. So, I have applied a voltage v x at 

the input side and on the output side its v (x) minus the drop across the inductor that is L 

d i by d t minus the drop across the resistor that is resistance times the current. So, that is 



what I have got. Now, if you look at these 2 equations they are partial. So, really v and i 

have to be functions of x as well as time; because you are doing derivative with respect 

to time. So, all of these derivatives are going to become partial derivatives. So, you now 

got a pair of partial derivative the partial differential equations in 2 variables x and t. 
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And, let us simplify little bit let us bring all the voltages together. So, I have got v of x 

plus d x minus v (x) is equal to this and let us divide the left hand side by d x. So, I have 

divide the right hand side d x as well. And, what I have got is this is what I have got 

equation 1. And, if I rewrite equation 2 similarly I am going to get dou i of (x, t) by dou 

x and that is going to be equal to minus dou v (x, t) by dou t times c prime. So, these are 

going to be the pair of partial differential equations that we have to worry about; there 

would have been forth term over here which would looks very similar. But of course I 

am assuming g prime is 0 does not matter you can let it be there in the equation set of 

equations ok. 

So, now that we have this does this remind you of anything; this pair of equations does it 

remind you of anything may or may not remind you of anything. Let us first look at how 

can we simplified further; it should remind you of Maxwell’s equations right anyway. 

Let us first try to simplify this further. So, what I am going to do is I am going to take 

further second derivative; I am going to do further differentiation of equation number 1 

with respect to x. 
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And, that will give me dou squared v by dou x squared; on the right-hand side on the left 

and side. And, on the right hand side I am going to get dou i dou squared i by dou x dou t 

times L prime minus dou i by dou x times R prime. And, I am going to do another 

differentiation of equation number 2 with respect to t. If I do differentiation of equation 

number 2 with respect to t I get dou squared i by dou x dou t is equal to minus dou 

squared g dou t squared C prime minus dou v dou t G prime. Now, we are going to plug 

in the value of dou squared i by dou x dou t. 

So, let us call this equation 3 and 4; 4 gives me relationship of dou squared i dou x dou t 

purely in terms of voltages; equation 2 gives me dou i by dou x purely in terms of 

voltages. And, equation 3 is something which is mixed up. So, I am going to replace 

each term in equation 3 and make everything purely in terms of voltages. 
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So, what I am going to get is something like this. So, this is my final differential 

equation; it is all in terms of voltages. And, only voltages but there are 2 variables x and t 

right. So, voltage as a function of x and time; distance and time and the entire equation is 

only in terms of voltages. Similarly, I can work out something for currents and what you 

are going to get is something like this; just going to write it out all in terms of currents.  

So, we now have one equation for voltage as a function of x and time; one equation for 

current as a function of x and time; of course the voltage in the current are also related to 

each other you have to keep that in your mind at the back of your mind. But that we will 

use as a fact later on but all the voltages are in one equation, all the currents have in one 

equation. Now, does the do these equations remind you of anything? 

So, let us say to start with; let us say that this resistance per unit length and the 

conductance per unit length are both equal to 0. Let us simplify matters and say that R 

prime and G prime are both equal to 0. So, when R prime and G prime are both equal to 

0 and this term is missing, this term is missing because these 2 terms are also missing. 

Now, does this equations remind you of anything; both the equations are actually the 

same do these equations remind you of anything? Yes, they should remind you of the 

wave equation; if you go back to your engineering method, mathematics or I do not 

know what book you have studied before. Both of this equations are basically the wave 

equation there out of a textbook. And, the theory of differential equations say that if you 



know the solution to a differential equation and that is the solution, right. So, the solution 

to the wave equation is basically as follows there is. 
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So, v (x, t) is going to be a function let us call it v plus this is function; I am sorry I am 

going to write it as v I will write it as c; where c is equal to 1 by squared root of L prime 

C prime. So, C is kind of similar to the speed of light its basically the speed of the wave 

propagating over the wire. So, if you do your computations correctly then L prime and C 

prime should give you the speed of the wave. And, the speed of the wave is going to be 

very related to the speed of light; typically this is what you are going to get as the speed 

of the wave which kind of tells you that if you happen to know the inductance per unit 

length; you can easily compute the capacitance per unit length without doing detailed 

derivations at anyway. 

We get 2 different geometries and then we got and then we did some hand waving. And, 

then we said that really they are going to be to things are going to be identically the 

product of L and C is going to be constant etcetera we just hand waved or wave through 

anyway. So, this is actually the reason why the product is going to be a constant it is the 

speed of light on that particular material. 

So, there is a lot of physics behind it we just hand waved or way. And, we said one is 

inductance per unit length, one is a capacitance per unit length really what is happening 

is and electromagnetic wave is propagating over the piece of wire. And, the speed of that 



wave is unknown quantity; the speed of that wave is 1 by squared root of mu times 

epsilon all of these are actually coming from Maxwell’s equations. And, we are 

reformulating Maxwell in our own convenient way in terms of voltages and currents. 

Maxwell wrote as equations in terms of electric and magnetic fields right; the electric 

field integral of the electric field is going to give you the voltage; what about magnetic 

field, how does it relate to the current? A current is going to give you a magnetic field at 

a distance. So, they are kind of related to each other; however we have spun it in our own 

way. 

So this is the solution to the wave equation v plus indicates of for forward moving wave, 

v minus indicates a backward moving wave; these waves are moving at velocity c meter 

per second. Similarly, i (x, t) is also going to give you very similar solution. Now, this v 

plus and this v minus these are functions of x and t and that is really the relationships of 

how it is a function of x and t? Its really function of x minus c t function of x plus c t; 

that is what it means alright you can plug these back into the original equations. 

And, you will get your desired results; you will see that they work. Our equations are 

somewhat different we assumed that over here that G prime and R prime are 0 right G 

prime and R prime create a loss in the wire. When the wire is completely loss less an 

electromagnetic wave can propagate over the wire without any attenuation. If the wire is 

loss c then the electromagnetic wave is going to get attenuated as it propagates over the 

wire. 

So, all this velocity etcetera they are going to be fudged up; once we plug-in nonzero 

conductance and resistance per unit length; hope fully the conductance per unit length is 

anyway equal to 0. So, for silicon G prime is 0. So, how are you going to solve this? 

Now, I already give you a hint with the electromagnetic wave; when I talk about 

electromagnetic waves they are typically sinusoids or a sum of sinusoids right; it is easy 

to think about sinusoidal waves anyway form, any shape complicated shape. 

Let us say pulse or a squared or whatever you want can be dismantled into a lot of 

sinusoids at a lot of different frequencies it is possible. Now, I am going to use that fact 

and I am going to assume that maybe sinusoids is going to fit may bin. Let us see if it 

this. So, now we are going to start talking about phasers. So, let us see v is the phrase of 

V is the phaser for voltage, capital I is the phaser for current. So, these 2 equations are 



going to be modified as d squared V by d x squared that is equation number 1 is equal to 

L prime C prime what is what is the second derivative of the phaser of the phaser V? 

What is the second derivative? So, if I got V cos omega t or let say I have got V time e 

power j omega t; then the second derivative is going to give me omega squared time the 

original is it omega squared or minus omega squared minus omega squared. So, cosine to 

sin and then sin to cosine again. So, that is one negative or you can think of j omega 

times j omega is minus omega squared. And, the second term will give you so what is the 

first derivative of phaser V its j omega times V. And, the third term is V times G prime. 

And, similarly you can work out the equation for the current is going to be a very similar 

equation. So, let me rewrite this equation. 
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Similarly, the current equation is I am just going to replace all the inductance by 

capacitances; all the resistances by conductances and by see what is are right? We have 

got 2 beautiful equations; what is the solution to this dou squared V by dou x squared is 

something times V. So, what should V look like V should look like an exponential right; 

I do not know what this case? And, you plug it back in V equal to e power k x. So, dou 

squared V by dou x squared is going to be k squared times V and that is whatever is 

inside the brackets times V. 

So, really k should be equal to the square root of the quantity inside. Now, the square 

root of the quantity inside it could be the positive squared or it could be the negative 



square root; you always have 2 squared root. First of all it is a complex quantity there is j 

omega times something right. If the resistance was 0 if the conductance was 0; then it 

would not have been complex, it could have been purely real, it could have been a 

negative quantity in fact real and negative. So, this square root of a real and negative 

number is plus or minus j times something; square root of complex quantity is going to 

be what? Square root of the magnitude times exponential of plus or minus j times the 

phase. So, we need to understand that there are 2 solutions for k; one is the positive root 

the other is the negative root right. So, what is the voltage finally going to be equal to? 
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Finally, the voltage is going to be equal to e power the positive square root of these thing 

times x plus e power the negative square root of whatever is in the bracket times x. And, 

is positive and the negative square root these are both complex numbers, agreed? So, 

these are both complex numbers means there is going to be real part width, there is going 

to be an imaginary part width. So, the positive and the negative square roots; let us say 

these are sigma plus minus j omega. 

So, I have got; so these 2 are basically going to give me forward moving wave and a 

backward moving wave; sigma we will be able to figure out that sigma is going to be a 

negative quantity. And, as a result we are really going to get an attenuation over space. 

So, basically the intuivation like this you get a forward moving wave, you get a 

backward moving wave; the net voltage is a some of the forward and the backward 



moving wave attenuated in terms of distance because of the loss. So, we shall stop here 

and we will carry on from the next class. 

Thank you. 


