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All that we ask for and that’s not too unreasonable, is that the function has finite energy. So let 

us at least put that down, mathematically.  
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What we are saying is, we shall focus on functions with finite energy. And what does energy 

mean. Energy is essentially the integral of the modular square.  
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So if I have a function x of T, the energy is XT is the integral mode XT square, over all T. and 

this needs to be finite, all that we are saying is this.  

Incidentally, this quantity has a name in the Mathematical literature, or for that matter even in the 

literature on wavelets. The energy as we call it in signal processing is called the L2 norm by 



Mathematicians. And you know it helps to introduce terminology little by little from the 

beginning. Because if one happens to pick up literature on wavelets these terms would be used. 

So let’s introduce that notation slowly.  
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So we say the L2 norm of X, is essentially mode XT squared, DT integrated over all T and to be 

very precise, this needs to be raised to the power half.  
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Similarly one can talk of an LP norm. If you could talk about an LP norm of X and that would 

correspondingly be mode XT to the power P, TT integrated on all time and raised to the power 1 

by P. And of course P here is a real number. So for any real (pos...) in fact real and positive. So 

you could talk about an L1 norm, you could talk about an L2 norm, you could talk about an 

infinity norm.  
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What would an L infinity norm be, let’s take an example, and what would an L1 norm be. It 

would be essentially integral mode XT.  
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The l2 norm we already know, what would the L infinity norm be? That’s interesting. So you 

see, in principle, it would be something like this. But what on earth is this? What do we mean by 

this? You see, as P becomes larger and larger, what are we doing. We are emphasizing those 

values of XT which are larger, so for a larger value of P, we are emphasizing those values of 

mode XT which are larger. And as P tends to larger and larger and larger values, as P tends to 

infinity we are in some sense high lighting that part of XT which is the largest. 

So in other words the L infinity norm of X essentially would correspond to the maximum or the 

supremum, you know the very largest value that XT can attain all over the real axis. So it has a 

meaning. Even as P tends to infinity. Anyway, this was just to introduce some notations which 

we are going to find useful. And what we are saying in this language is that we are going to 

focus on functions which belong, now here, you know we are going to start talking about 

functions that belongs to a space. We say, you know we say the space L2, what is the space L2? 
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L2 over the real axis, it is the space of functions. And it is the space of functions whose L2 norm 

is finite. Simple. Similarly you could have the space LP. The space LP is the set of all functions 

whose LP norm is finite. Now the word space is used with an intend. You see space really means 

that if I take a linear combination of functions in that set it gets back to a function in that set. So 

if I take any finite linear combination of functions in a space LP, the resultant is also in that 

space, in that set, LP and that’s why we call it a space. 

So LP, all the LPs for any particular P are spaces, linear spaces. They are closed under the 

operation of linear combination. So in other words, we are saying let us focus our attention on 

the space L2, now what we have said in the Haar analysis that we have talked about a few 

minutes ago, is that if you take any functions in the space L2, I mean if your adversary picks up 

any functions in the space L2 and puts before you a value E0, saying please give me an M, so 

that when I make a piecewise constant approximation on intervals of size T by 2 raised the 

power of M. 

 My error, squared error is less than E0, the proponent is able to do so. The proponent is able to 

come up with an M which gives an answer. And this could be done, no matter how small the E0 

is. The proponent will always come out with a suitable M that is the idea of what is called 

closure. So what we are saying is when we do an analysis using the Haar wavelet, in other 

words, when we start from a certain piecewise constant approximation on intervals of size let us 



say 1 for example, and then bring it to the intervals of size half, one fourth, one eighth, one 

sixteenth, as small as you desire. 

You can in principle go as close in the sense of L2 norm, that means if I look at the L2 norm of 

the error between the functions and its approximation. That L2 norm of the error can be brought 

down as much as you desire. And in that sense, whatever the Fourier series was doing, after all 

what does the Fourier series do. It allows you to bring the L2 norms of the error between the 

function and its Fourier series as small as you desire for the reasonable class of functions. For a 

wide class of functions, give me the epsilon, give me the E0 and I will give you a certain number 

of terms that you must include in the Fourier series.  

So the adversary says, well here is an E0 for you, the proponent says, OK include so many terms 

in the Fourier series and you can bring your error down as low as you desire. The same kind of 

thing is happening here. The proponent, adversary principle. Now this is a deep issue, that one 

function Psi T is able to take you as close as you desire to the function that you want to 

approximate. And by the way this is only 1 Psi T which can do it. The whole subject of wavelets 

allows you to build up, many such psi Ts. 

Here we had a good physical, a very simple physical explanation. We started from piecewise 

constant approximation. We said well, when you want to refine your piecewise constant 

approximation you could do it by using the Haar wavelet. And this you could do to go from any 

resolution to the next resolution. Please remember, here we are increasing the resolution or 

improving the amount of information contained by factors of 2 each time. And that’s why we use 

the term Dyadic.  
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Let me write down that term. Dyadic. So what we introduced in this lecture is the notion of a 

dyadic wavelet. And dyadic refers to powers of 2. Steps of 2 every time. The Haar wavelet is an 

example of a dyadic wavelet. And in fact for quite some time in this course, we are going to 

focus on dyadic wavelets. Dyadic wavelets are the best studied. They are the best and most easily 

designed, they are the best and most easily implemented. And I dare say the best understood. So 

for quite some time in this course we shall be focusing on the dyadic wavelet. 

The Haar is the beginning. I mentioned in the previous lecture that if one understands the Haar 

wavelet and if one understands the way in which the Haar multi resolution analysis constructive, 

many concepts of multi resolution analysis would become clear. What we intend to do now after 

this, in subsequent lectures, is to bring this out explicitly. So let me give you a brief exposition of 

what we intend to do in subsequent lectures. And then we shall go down to doing it 

mathematically step by step. 

You see, we brought out the idea of the Haar wavelet explicitly here. What is the Haar wavelet 

we know, we know what function it is. And we know the dialates and translates functions can 

capture information in going from one resolution to the next level of resolution in steps of two 

each time. Now how is this expressed in the language of spaces, after all we talked about the 

space L2R. L2R is the space of square integrable functions. So how can we express this in terms 

of approximation of that whole space? 



So can we express this in terms of going from one sub space of L2R to the next sub space? And 

in that case can express this Haar wavelet or the functions constructed by the Haar wavelets and 

its translates and perhaps also dialates in terms of adding more and more of the sub spaces to go 

from a coarser subspace, all the way up to L2R on one side and all the way down to a trivial 

subspace on the other. So we are going to introduce this idea of formalizing the notion for multi 

resolution analysis. We need to think of what is called a ladder of subspaces. In going from a 

coarse subspace to finer and finer subspace until you reach L2R at one end and coarser and 

coarser and coarser subspace until you reach the trivial sub space at the other end. 

Further, we are going to see that the Haar wavelet and it’s translates at a particular resolution, at 

a particular power of 2 so to speak, actually relates to the basis of these subspaces. So we are 

going to bring out the idea of basis of the subspaces and how the Haar wavelets capture what is 

called the difference sub space. In fact the altogether compliment to be more formal and precise. 

Simple but beautiful. And what we do for the Haar will also apply to many other such kinds of 

wavelets. Let us then carry out this discussion in more detail in the next lecture where we shall 

formalize whatever we have studied today for the Haar wavelet, by putting down the subspaces 

that lad us towards L2R at one end and towards the trivial subspace at the other. Thank you. 

 


