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Welcome, in the last lecture we developed a graphical tool called a smith chart by 

transforming the impedances on to the complex Γ-plane. So we see here the smith chart 

which is superposition or constant resistance and constant reactance circles. before we go 

into the use of the smith chart for the Transmission Line calculations let us develop one 

more set of circles called the constant VSWR circles which are to be superimposed on the 

smith chart for doing Transmission Line calculations. 

 

We know that the reflection coefficient at any point on the Transmission Line Γ at a 

distance l is equal to the load reflection coefficient ΓL e-j2βl where l is the distance from 

the load point, ΓL is the reflection coefficient at the load and β is the phase constant on 

Transmission Line. 
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Let me remind you we are still discussing the Transmission Line which are Loss-Less 

Transmission Line and therefore the attenuation constant of the Transmission Line is 

zero. If you write this reflection coefficient at the load explicitly as the modulus of the 

reflection coefficient and the phase angle we can write this as the |ΓL| Lje θ  e-j2βl where Lθ  

is the phase angle of the reflection coefficient at the load. So the total phase of the 

reflection coefficient at a distance l from the load will be |ΓL| ej ( Lθ  -2β l). 
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So, on the complex gamma plane if I get the reflection coefficient it has a magnitude 

whose value remains constant but the phase changes as we move on the Transmission 

Line and l is positive if we move towards the generator. So as we move towards the 

generator the phase becomes more and more negative the distance of the point from the 

center which is the magnitude of the reflection coefficient remains constant so essentially 

this represents a circle on the complex gamma plane with a center which is same as the 

origin of the complex gamma plane.  

 

So I can plot this on the complex gamma plane this is u, this is jv I get a circle on the 

complex gamma plane whose radius is |ΓL| and the angle is ( Lθ  -2β l).  
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So l is positive as we move towards the generator so this quantity becomes more and 

more negative so the point essentially moves on this circle in the clockwise direction. So 

the movement of on Transmission Line by a distance l is equal to a rotation on this circle 

in the clockwise direction.  

 

Now for this circle the magnitude of reflection coefficient is same no matter what point 

you take on this. So the phase angle changes for different points on Transmission Line 

but the magnitude of reflection coefficient remains same.  And we know that the VSWR 

on Transmission Line is L

L

1
1- 
+ Γ
Γ

 as we saw last time. So for this circle any point on this 

circle this quantity VSWR is same because |ΓL| is same for all the points on this circle 

and that is the reason the VSWR is same for all points on this circle. So you take any 

impedance which lies on this circle it magnitude of reflection coefficient will be same 

and that is the reason the VSWR will be same. 
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Consequently we call these circles as the constant VSWR circles. You have to draw these 

circles whenever we solve the Transmission Line problems using smith chart. So smith 

chart readily gives you the set of circles which are constant resistance and constant 

reactance circles and while solving the problem we have to draw the circles called the 

constant VSWR circles on the smith chart and then do the transmission line calculations.  

 

As we can see there are special properties for the constant VSWR circles, firstly the 

center of all constant VSWR circle is same as the origin of the complex gamma plane, 

secondly for all passive loads the magnitude of reflection coefficient is always less than 

or equal to one so these circles are concentric circles with origin as the center of the 

circles and the maximum radius for this circle is one. Larger the radius gives you more 

reflection coefficient that means worse is the impedance match so what that tells you now 

is if you take a point which is closer to the origin of the reflection coefficient plane it 

denotes smaller magnitude of reflection coefficient which means smaller reflection which 

again means better magnitude.  

 



So visually whenever we have impedance marked on the smith chart or on the complex 

gamma plane visually if the point is closer towards the center of the smith chart better is 

the match because that is representing smaller value of the magnitude of the reflection 

coefficient. With this understanding and superposing the constant VSWR circle on the 

smith chart then we can solve the Transmission Line problems.  

 

However as I mentioned last time you may require many times the connections of 

Transmission Lines which could be in the form of parallel connections and we know 

from electrical circuit analysis that whenever we have parallel connections it is easier to 

deal with the admittances rather than impedances. Till now, we have been talking about 

the load impedances or any impedance on Transmission Line however now if you want to 

make parallel connections we have to represent this loads and other characteristic in 

terms of admittances.  

 

So what we first do before we go into analysis of Transmission Line using smith chart let 

us find out how the smith chart would look like if I do all the calculations in terms of the 

admittances. Since the smith chart deals with the normalized impedances as we have seen 

the same thing we can do for the admittances. So we can first define the normalized 

admittances on Transmission Line and for that we will require the characteristic 

admittance of Transmission Line.  

 

So what you do first is we define a quantity called the characteristic admittance which is 

denoted by Y0 and that is nothing but one upon the characteristic impedance Z0. 
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Then every admittance which we see on Transmission Line is normalized with respect to 

the characteristic admittance of the Transmission Line. So following the same notation as 

we did for the impedances normalize the admittance which is denoted by y bar that will 

be equal to the actual admittance divided by characteristic admittance on the 

Transmission Line. Similarly the load admittance normalized will be equal to the actual 

load admittance divided by the characteristic admittance of the Transmission Line.  
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Once we make this definition for the characteristic admittance and the admittances on the 

Transmission Line then one can ask how do I write down the reflection coefficient in 

terms of the admittances. Going from the definition of the reflection coefficient which we 

have derived in terms of the impedance the Γ at any location is 0

0

Z Z
Z + Z
− .  

 

The admittance will be 1
Z

 the characteristic admittance will be 
0

1
Z

 so you can write this 

as 0

0

1 1
Y Y

1 1
Y Y

−

+
 which will be equal to 0

0

Y Y
Y +Y
− . 
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If I want to write in terms of normalized admittances I can take Y0 common so that will 

be equal to 1 Y
1+Y
− . 

 

If I take negative sign common this will be 
( )Y 1
Y+1

− −
 so we can write this as Y 1

Y+1
−  and 

the minus sign is nothing but the phase change of 180˚. So this is same as ejπ. 
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So a reflection coefficient if I write it in terms of normalized admittances it is same as if I 

got the reflection coefficient by using normalized impedance except there is going to be a 

phase change of π. 

 

What that means is if I take the same normalized value of impedance and admittance and 

calculate what that reflection coefficient would be the magnitude of the reflection 

coefficient would be same but the phase difference between the reflection coefficients 

will be 180˚ or in other words on complex gamma plane the 180˚ phase change would 

correspond to a rotation by an angle 180˚. So essentially the normalized admittances and 

normalized impedances can be dealt in a same way except whenever we are doing 

calculation for the normalized impedance there is a rotation of 180˚ on the complex 

gamma plane otherwise all other things remain same. So what essentially we are saying is 

if I take the gamma plane as we did it earlier here and I take certain value of the 

normalized impedance I get the reflection coefficient here if I take the same normalized 

value for the admittance the point has to rotate by 180˚ so if I take a diagonally opposite 

point on this circle that is the point which will correspond to the complex reflection 

coefficient for the normalized admittance.  



So essentially as far as the set of circles are concerned called the smith chart if I rotate 

every point on the smith chart by one eighty degrees I get the set of circles for the 

normalized admittances.  

 

Let us say the normalized admittance is denoted by g + jb so y  is the normalized 

admittance and let us denote that by the conductance g plus the susceptance jb which is 

same as the actual conductance plus the actual susceptance divided by the characteristic 

admittance y0.  
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So if I have a admittance on line which is given by the conductance g plus susceptance b 

and normalized characteristic admittance y0 I can calculate the normalized admittance on 

the transmission line which is g + jb.  

 

So if I interchange r with g and x with b I will get set of circle which will be constant g 

circle for constant conductance circles and constant susceptance circles and these circles 

will be rotated version on the complex gamma plane by 180˚. What that means is if I 



have initially a chart there is rotation of every point on this around the center of the smith 

chart which is origin of the complex gamma plane by 180˚. 
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So if I keep gamma plane fixed that this is the real axis of the gamma plane, this is the 

imaginary axis of the gamma plane then every point on this will rotate and the constant 

conductance and the constant susceptance will look like that. Now in this case these 

circles which were earlier constant resistance circles are now the constant conductance 

circles these circles which were constant reactance circles are now constant susceptance 

circles so nothing is changed as far as the smith chart is concerned except the first smith 

chart is rotated by 180˚. 

 

Now there are two things if I keep the axis for the complex reflection coefficient same 

then the smith chart will be rotated by 180˚ alternatively I can keep smith chart same and 

rotate the complex gamma plane axis by 180˚ whenever I do the calculation for the 

admittances. So if I develop an understanding that I will not rotate the smith chart I will 

use always in this form which means the most clustered portion of the smith chart is on 

my right then if I do the impedance calculations the positive real axis is towards right and 



the positive imaginary axis is upwards, however if I do the calculation by using this chart 

for admittances then the real axis will be on my left and the imaginary axis will be 

downwards. Normally whenever we do the smith chart calculations we do not rotate the 

smith chart. We follow this convention that the smith chart is fixed but for the impedance 

the gamma axis is like that where as when i go to admittances i get the gamma axis which 

will be like this.   

 

So depending upon whether we are doing any calculation for the impedances or the 

admittances and if I require the phase measurement phase angle measurement in the 

complex gamma plane then appropriately the axis has to be rotated by 180˚ depending 

upon whether I am using the impedance or I am using the admittance.  

 

But if I do not want to find out the phase of the reflection coefficient then the axis of 

gamma plane does not come into picture it is just the impedances and admittances which 

we want to use on the smith chart. So we can use the smith chart for the admittance as 

well as for the impedance calculations without worrying of the complex gamma plane 

axis. That is the reason why if you look at the smith chart carefully you will see that the 

upper half of the smith chart is denoted by (+x, +b), lower is denoted by (–x, -b), the 

circles are denoted by either r or g. So any normalized value of r which is equal to the 

same normalized value g will represent the same circle.  

 

So as long as we are dealing with the normalized quantities the impedance and 

admittance can be treated exactly same way on the smith chart. However the normalized 

values of g and r or b and x have different meaning physically, they do not represent 

same physical conditions. For example suppose I consider r = 0, x =0 which corresponds 

to the short circuit conditions the impedances is zero at that point but if I take a 

normalized value g = 0, b = 0 which represents the admittance equal to zero is not short 

circuit that is the open circuit condition on the line.  

 

So the normalized values of impedances admittances can be treated exactly same way but 

when we go for the physical conditions the physical conditions are not same for the same 



normalized value of the impedance and admittance. So as we looked at the point last time 

which was some special points on the smith chart, now let us look at these points for the 

admittance smith chart.  

 

If I take the smith chart and say suppose these values are not impedances but they are 

admittances that means if I replace r by g and x by b this point represent g = 0, b = 0 

which is open circuit, this points represents g = ∞, b = ∞ which is short circuit, the upper 

half which is the positive value of susceptance represent capacitive loads and the negative 

value of susceptance represent the inductive load. 
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So if I keep the smith chart fixed then while doing calculation with the admittances the 

upper half of the smith chart represents the capacitive load, the lower half represent the 

inductive load this is open circuit point and this is short circuit point. Since the resistance 

circles are symmetric there is no difference so replacing r by g essentially tells you the g 

value is increasing from zero to infinity as we move on this side but the point is going 

from the open circuit to the short circuit. Then keeping these things in mind the use of 

smith chart for impedance and admittance calculation is very straight forward.  



So what we will do with this understanding is now we will try to make use of the smith 

chart for solving the Transmission Line problems.  

 

The simplest problem one can think of for a Transmission Line is, find the reflection 

coefficient at the load point for a given load? 

 

Now we discuss the use of smith chart for Transmission Line calculations.  
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The simplest problem one can solve by using smith chart is if somebody gives you the 

load impedance and ask you what is the reflection coefficient, analytically I can use the 

formula   L 0

L 0

Z Z
Z + Z

−  but by using smith chart we will see the problem is much simpler 

remember the impedances and admittances which we have on the smith chart are all 

normalized quantities.  

 

So the first step in any calculation using smith chart is normalize all the impedances with 

respect to the characteristic impedances or normalize all the admittances with respect to 



the characteristic admittances. So let us say my impedance was ZL so first step which I do 

is normalize it get L

0

Z
Z

  which is Z .  
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Now read on the smith chart this point, recall the smith chart as set of circles, this is the 

constant resistance circles which are going like that or constant reactance circle which go 

like that. Let us say this is given by some r + jx like that. First identify a constant 

resistance circle which is having this value r, let us say that circle is this side for which 

the resistance value is this value r. Then identify a circle for which the reactance value is 

this x which is will be this value the intersection of these two circles the constant resistant 

circle which is having value r and a constant reactance circle which is having value x. 

Now this point represents this normalized impedance Z  so this point here is Z .  

 

Once this point is marked on the smith chart then calculation of reflection coefficient is 

very straight forward because now the point has been marked on the complex gamma 

plane so if I read of this value on complex gamma plane that directly gives you the 

complex reflection coefficient so if I measure the distance from the smith chart this is my 



origin and let me draw now the complex gamma axis which is not drawn on the smith 

chart so this is my u axis this is my jv axis and this is the origin. If I measure the distance 

of this point that gives me the magnitude of the reflection coefficient ΓL and the angle 

that means generally we measure the angle on the complex plane from the real axis this 

angle is the angle of the complex reflection coefficient at the load end. So this angle is 

nothing but θL and this distance is |ΓL|.  
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So first thing on standard smith chart you find out the radius of this by using any scale 

then measure this distance the maximum distance of the smith chart is unity so any 

distance which you get on the smith chart normalized with respect to the maximum 

distance that quantity directly will give you the magnitude of the reflection coefficient 

and the angle which this radius vector makes with the right hand horizontal axis is the 

real gamma axis that is the angle of the reflection coefficient at the load end.  

 

So without doing any calculations just by measuring this distance and this angle I can get 

the reflection coefficient from the complex impedance. Exactly same thing I can do for 

calculating the reflection coefficient from complex admittance also. So instead of 



impedance if I had admittance for calculation then normalize value of admittance is g + 

jb.  

 

Now in this case as you mention earlier we keep the smith chart same so let us say this 

circle which we have here corresponding to this is the value which is this g value and a 

circle which passes through this and say this value is the b value so this is the g value this 

is the value which is the susceptance value. So this is the point which is y .  

 

However now if I want to find out the complex reflection coefficient remember the real u 

axis or the real reflection coefficient axis is not on the right because we have kept the 

smith chart fixed and   the coordinate axis has been rotated by 180˚ for admittances. So 

for admittances the real u axis is this axis and the imaginary gamma axis is jv axis. So for 

this point here which is the admittance point I have to measure the angle from this axis so 

this distance from center to this point gives you complex reflection coefficient magnitude 

so this is |ΓL| and the angle of reflection coefficient is measured from this axis so this 

angle is θL. 
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So keeping in mid whether we are using normalized impedances or normalized 

admittances appropriate rotation of the coordinate axis has to be made on the smith chart. 

But once you do that then the calculation of the complex reflection coefficient is very 

straight forward mark the normalized point on the smith chart, find out the radial distance 

from the center of the smith chart to that marked point which gives you the magnitude of 

the reflection coefficient, measure the angle from the real axis of the reflection coefficient 

for the radius vector and that gives you the angle of the complex reflection coefficient.  

 

One can have exactly opposite problems many times somebody might give you a 

reflection coefficient then you have to find out what is the corresponding load. So the 

problem is very straight forward, mark the point on the complex reflection coefficient the 

magnitude is given to you, the angle is given so you can draw this point. Once you get 

this point read out the circles which are passing through these points so essentially you 

read out the coordinates on this constant resistance and constant reactance circle and that 

give you the corresponding value of the impedance. So without doing any analytic 

calculation just by graphical measurements of angle and distance you can find out the 

reflection coefficient from the impedance or admittance and vice versa.  

 

Now, one can go to the next stage that if the load impedance is given to you then you 

would like to find out the reflection coefficient or impedance at some other location on 

the Transmission Line. So the problem is given, say ZL is normalized or yl and you want 

to find out “Find z at a distance l from the load”  

 

Go to the smith chart generally we draw only these three circles where r equal to one 

circle, r equal to zero circle then the reactance circles which are two circles like that so 

this corresponds to x = +1, x = -1, r = 1, r = 0 and x =0 so normally just for clarity we just 

draw only this few circles to represent a smith chart. 
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Now the first step involves that you have given the normalized impedance if the 

impedance was not normalized we normalize first, mark this impedance on the smith 

chart as we did it in the previous case. So, find out the constant resistance and constant 

reactance circles corresponding to this load the intersection point of these two circles will 

represent the load which is Z'L so this point is Z'L. So that corresponds to the circle 

passing through this a reactance circle passing through that so this is my load point.  

 

Now as we have seen earlier when we move on the Transmission Line the magnitude of 

reflection coefficient remains same and the point moves on a circle keeping that 

magnitude constant. That means as we move on Transmission Line the point moves on 

the constant VSWR circle passing through this load. So now what we do is once this 

point is marked we take compass and draw a circle passing through this point which is a 

constant VSWR circle.  
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Now as we move on Transmission Line the angle changes by 2βl in the clockwise 

direction, normally for the standard smith chart the distance is directly marked on the 

periphery of the smith chart instead of marking the angles on the periphery. how do we 

do is a distance of 2βl if I take one rotation on the smith chart the angle change will be 

equal to 2π, if I move on the smith chart by 2π that is equal to 2βl 22. .l π
λ
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So l will be equal to 
2
λ . That means one full rotation on the smith chart or the constant 

VSWR circle corresponds to a distance of 
2
λ  that means if I move by a distance of 

2
λ  on 

the constant VSWR circle I reach to the same point.  

 

And that makes sense because if you recall the characteristic of Transmission Line we 

had seen that the impedance characteristic of Transmission Line repeat itself for every 

distance of 
2
λ . That is what essentially we are reaffirming saying that by taking one 

rotation on the constant VSWR circle we reach to the same point and beyond that again 

the characteristics are repeated. So the angles here which are the load angle minus 2βl 

now can be calibrated directly in terms of the wavelength. So generally we have the outer 

circle of the smith chart marked with the wavelength and with the calibration that the full 

one rotation on the smith chart is equal to 
2
λ . So the distance from this point to this point 



is 
4
λ  from, this point to this point is 

4
λ . Once we get that then I want to find the 

impedance at a distance l which is this impedance. 

 

So now you move from the load impedance by a distance l or rotate this point in the 

clockwise direction by an angle which is equal to 2βl. Let us say this was the initial angle 

which was there, I rotate now my point on the constant VSWR circle by an angle which 

is 2βl.  
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Keep in mind we are rotating in the clockwise direction because we are moving from the 

load towards the generator and distances measured towards the generator are positive 

distances that means the l is positive. Therefore the angle becomes more negative so the 

point moves in a clockwise direction. This sense of rotation is very important in doing all 

Transmission Line calculations.  

 

So if I move in the clockwise direction by a distance of 2βl I would reach to a location l 

on the Transmission Line. Then this point would correspond to the reflection coefficient 

at a distance l from the load. The magnitude of reflection coefficient remains same which 



is same as this so this angle was theta l, this angle will be the angle of the reflection 

coefficient at location l I can read this angle the magnitude is same is what I had got from 

here. So I got the complex reflection coefficient at location l. So this is my Transmission 

Line, this is my load impedance ZL the reflection coefficient here was ΓL if I move a 

distance l over here the reflection coefficient at this then Γ is represented by this point.  
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Once I get the reflection coefficient like this I can just find out what are the constant 

resistance and constant reactance circle are passing through this point and I can read of 

that value. So I can get the impedance corresponding to this point which is nothing but 

the transform impedance at a distance l from the load. This point represents Γ at a 

distance l and if I read of the value at the impedance that will be the impedance at that 

point at a distance l so here this is the impedance z which is at this point.  

 

Analytically if you remember the impedance transformation requires calculation of the 

cosine sine functions and the expression is rather complicated. With the help of smith 

chart the impedance transformation is very simple you simply draw this VSWR circle 

passing through the load point move by an angle which is equal to 2βl read of the value 



of this new point which you have got here that gives you the transform impedance at a 

distance l.  

 

So the calculation of impedance and reflection coefficient at any other location on the 

Transmission Line is extremely simple and straight forward by using the smith chart.   

 

Now in this case we were transforming the impedance which was load impedance to a 

location l towards the generator. One may have a general situation that a impedance is 

given at any arbitrary location on Transmission Line and you would like to find the 

transformed impedance at some other location on the line. How does the procedure 

changes? The procedure is exactly same wherever you know the impedance first mark the 

impedance, draw the constant VSWR circle passing through this point move by an angle 

2βl either clock wise direction or anti clock wise direction depending upon whether I am 

moving towards generator or away from the generator find the new point read out the 

value that will give you the transformed impedance at the new location.  

 

So in general case either I might move in the clockwise direction or I might move in the 

anti clockwise direction and that will depend upon whether I am moving towards the 

generator or away from the generator. So let me again mention that the sense of rotation 

in impedance transformation calculation is extremely important because that tells you 

whether you are moving towards the generator or away from the generator. So in all 

Transmission Line calculations you should always remember that which direction the 

generator is because that will decide the movement on the Transmission Line and that 

will decide which way you should rotate on the constant VSWR circle on the smith chart.  

 

Now if I replace the impedances by the admittances if I am not interested in the 

calculations of the reflection coefficient as I am interested only in the transformed 

admittances then the axis for reflection coefficient do not come into picture. So the 

procedure for transforming the impedance and the admittance are exactly identical. What 

you do is just simply take this point as a normalized admittance point, mark the 

normalized admittance Z draw this circle which is constant VSWR circle, rotate it by an 



angle which is equal to 2βl read this point so that this point will correspond to the 

admittance at that location and that value can be straight away read out from this smith 

chart.  

 

So the transformation of impedance or admittance is exactly identical on the smith chart. 

As we saw earlier if I have to find out the phase of the reflection coefficient then only 

marking of reflection coefficient axis comes into picture and then you have to remember 

that the real axis is rightwards for the impedances where as the real axis is leftwards for 

the admittances. But otherwise for impedance transformation calculation once the 

impedance and admittance is normalized the procedure for the transformation is exactly 

identical.  

 

Next thing then one can ask is that I have the load impedance which is connected to the 

line the parameter which is of interest is one is magnitude of reflection coefficient which 

gave you the reflection but we have define a another quantity which is the measure of 

reflection and that is the VSWR so one way of finding VSWR is you get the 

measurement of reflection coefficient, magnitude of reflection coefficient from the 

constant VSWR circle then use the formula L

L

1
1 -
+ Γ
Γ

 and you will get the reflection 

coefficient.  

 

However once you have smith chart with you then you do not have to do even this 

calculation you can just read of the value on the smith chart. So let us say this is my smith 

chart and let us say I have some impedance which is marked here this is my some load 

impedance ZL. 
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As routine we draw the constant VSWR circle passing through this so we get a circle 

which is this as I move on the Transmission Line I move on this circle. Now recall the 

VSWR is nothing but ratio of the maximum impedance seen on the line divide by the 

characteristic impedance we have derived it earlier so we have Rmax which we see on the 

line which is equal to Z0 into the VSWR or in terms of normalized quantity if I take Rmax 

normalize that is Rmax divide by Z0 that is nothing but is equal to ρ. So, the maximum 

value of the resistance in terms of normalized quantity is nothing but the VSWR.  Now as 

we move on this circle here the highest value of resistance will be seen when this circle 

intersect this line.  

 

The right most point on this circle corresponds to an impedance which is Rmax normalized 

and the reactance for that is zero so this point here the right most point on this axis that 

corresponds to normalized Rmax and normalized Rmax is nothing but ρ. So if I read out the 

value of this point from the smith chart they straight away gives you the VSWR so this 

quantity straight away gives me the value of ρ.  

 



Similarly as we know the minimum value which we see on Transmission Line is 0Z
ρ

 so 

we have seen earlier Rmin = 0Z
ρ

. 

 

So again normalized Rmin will be 1
ρ

 so on this circle the minimum resistance which I see 

is corresponds to this point so if I read of this value will directly give me 1
ρ

. 
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So again once the load impedance or any impedance is marked on the smith chart and this 

circle which is called the constant VSWR circle is drawn on the smith chart. Then 

calculation of VSWR reflection coefficient transformation impedance all is very straight 

forward problem it is just a matter of reading of the values from different locations on the 

smith chart. So this is the way you can calculate VSWR using smith chart.  
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Next thing one can do is find out the location of the voltage or the current maximum or 

minimum on the Transmission Line and then one can use the information to find out that 

just looking at the standing wave pattern on Transmission Line what kind of load that 

Transmission Line is terminated line.  

 

So taking a simple case let us say some load impedance marked the load impedance at the 

smith chart then you want to find out what is the distance of the voltage maximum or 

current maximum or voltage minimum or current minimum from the load end of the 

Transmission Line.  

 

What we want to do now as we did earlier is we want to find out find distance of voltage 

or current maximum on the line. Let us do the same thing we take the smith chart mark 

the load impedance on the line lets say the load impedance is here this is nothing but your 

ZL normalize. Again as a first step draw the constant VSWR circle passing through this 

point I get this point.  

 



Now if you go back to your basic understanding of Transmission Line we know that at 

the voltage maximum as the current is minimum so at that location the impedance seen is 

the maximum impedance which is nothing but Rmax and wherever you have voltage 

minimum at that location current is maximum and impedance seen will be Rmin. That 

means the extreme point which is this point corresponds to an impedance which is Rmax 

that means this corresponds to a location on Transmission Line where voltage is 

maximum or current is minimum. So this point here now corresponds to the voltage 

maximum or current minimum location. Similarly this point here which represents the 

current minimum resistance on the line corresponds to voltage minimum or current 

maximum location. 

 

(Refer Slide Time: 51:33 min) 

 
 

We want to find out this location from the load. The job is very simple you draw a radius 

vector passing through the load its here, if I move towards the generator up to this point 

on the constant VSWR circle I will reach to the location where the resistance is 

maximum or the voltage is maximum. So essentially we can find out what is this angle 

this arc here is. Whatever angle I get I divide it by 2β then I will get a distance of the 

voltage maximum from the load point. I can use our understanding that the voltage 



minima and voltage maxima are separated by distance of 
4
λ  so I can add a distance of 

4
λ  

to find out the location of voltage minimum once I know this distance or I can measure 

this angle all the way up to this divide by 2β to find out the location of the voltage 

maximum.   

 

So if this angle was θmax then the location of voltage maximum lmax will be equal to the 

max

 2
θ
β

. So finding the location of voltage maximum or current minimum is extremely 

straight forward.  

 

(Refer Slide Time: 53:17 min) 

 

 
 

Once you mark the impedance on this draw the constant VSWR circle just find out the 

angle from this radius vector up to this horizontal line on right hand side and you would 

get this angle which if you divide by 2β you will get a distance of voltage maximum.  

 

We will continue with this and then in next lecture we will view this information to find 

out what is the impedance just by looking at the standing wave patterns on the 

Transmission Line. Thank you. 


