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Welcome, till now we analyzed the Transmission Line characteristics using analytical 

approach. There is another approach which is very elegant approach and that is the 

graphical approach for analyzing the problems of Transmission Line. In fact the graphical 

approach has many advantages firstly we all know that an image has much longer lasting 

impression than an equation or a text. 
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So if the characteristic of Transmission Line are represented in a form of an image it 

creates a much long lasting impression on the human mind, secondly we will see later 

that the graphical approach is much simpler compared to the analytical approach where 

the calculations can be reduced by a significant amount when we analyze the problems on 

Transmission Line, thirdly and most importantly the graphical approach is a very 

compact way of representing the impedance characteristics of Transmission Line.  



So in fact whenever we are doing Transmission Line calculations even analytically it will 

be appropriate to keep the graphical representation in mind and any analytical result 

which we get on Transmission Line should always be cross checked with the graphical 

representation. So, one does not go at least conceptually wrong in solving the 

Transmission Line problems. The graphical approach for solving the Transmission Line 

problem essentially is for solving the impedance characteristic of Transmission Line. 

This approach does not give you the voltage and current solutions it gives you only the 

representation of impedances on Transmission Lines or the standing wave characteristics 

of Transmission Line, that means it can give you the impedance transformation 

relationship it can give you the calculation of the reflection coefficients the calculation of 

VSWR the location of the voltage minima, the location of voltage maxima and so on.  

 

So today we developed a basic framework for analyzing the Transmission Lines by a 

graphical approach the basic idea here is to take the impedance which is normalized to 

the characteristic impedance and do transformation of this impedance into the complex 

reflection coefficient plane called the gamma plane. By doing this then we transform all 

the impedances from the impedance plane to the reflection coefficient plane and then we 

will see that this representation of impedances and reflection coefficient plane makes the 

calculation much simpler than if you carried out the calculation in the impedance plane.  

 

As we all know that if you take the passive impedances their resistive part is real and 

positive and the imaginary part could be positive or negative that means we are saying 

that the resistance in any impedance is always positive here we are not talking about 

negative resistances and the reactance could be positive that means it could represent 

inductance or it could be capacitive so it will be negative.  

 

So if I plot a impedance point on the complex impedance plane then I get the impedance 

plane where the real axis represents the resistance and the imaginary axis represents the 

reactance. Before we get into this plotting first let us understand that the impedances in 

Transmission Line calculations always are the normalized impedances with respect to 

characteristic impedance. As we saw earlier the absolute impedances do not have much 



meaning in Transmission Line calculations the impedances always have to be normalized 

with respect to the characteristic impedance.  

 

Now in our framework let us first make an assumption that the Transmission Line is a 

Loss-Less Transmission Line that means the characteristic impedance of this line is a real 

quantity and all impedance which we have are now normalized with respect to the 

characteristic impedance Z0 so any impedance Z normalize is nothing but the actual 

impedance divided by the characteristic impedance Z0. Let me write explicitly the real 

and imaginary part of this normalized impedance and let me denote by this small 

alphabets. The normalized impedance is represented by r + jx where r represents the 

resistive part of the normalized impedance and x represents the imaginary part of the 

normalized impedance.   

 

Then in the complex z plane this is the complex z plane or the normalized z plane I can 

put any point in this plane whose this value is r so the real axis is normalized resistance r 

and imaginary axis is j times x, this value is jx. 
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So here this point p represents an impedance which is having a normalized resistive value 

R and a normalized reactance value x. If I consider all possible passive loads for which 

the resistive part is always positive then any point in the right half plane of this complex z 

plane represents all possible loads, also the point which lie on the imaginary axis for 

which r = 0 represent purely reactive loads. That means if I consider all points on the 

imaginary axis and the point which are lying on the right half of the imaginary axis they 

cover all possible passive loads which one can realize on Transmission Line. So, 

essentially the entire impedance plane which is a right half of this represents the passive 

loads.  

 

Now we know for every passive load we have a corresponding reflection coefficient. 
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As we have seen earlier, the reflection coefficient Γ = 0

0

Z Z
Z+ Z
−  where Z0 is the real 

quantity for a lossless line, Z in general could be complex if I write this expression in the 

normalized impedances I can take Z0 common from numerator and denominator so this 



will be Z - 1
Z +1

. Writing explicitly for real and imaginary parts this reflection coefficient 

can be written as ( )
( )
  r jx 1
  r jx 1
+ −
+ +

.  
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So in general the reflection coefficient will have a real value and it will have an 

imaginary value this can either be written in the Cartesian form or can be written in the 

polar form. So let us say the real part of the reflection coefficient is denoted by u and the 

imaginary part is denoted by v so reflection coefficient can be written as u + jv.  

 

If I represent the reflection coefficient into the polar form this is also equal to the 

magnitude of the reflection coefficient R and some angle θ. So the reflection coefficient 

gamma can be represented by a Cartesian number which is u + jv or it can be represented 

like a polar number which having a magnitude R and an angle θ, using this expression 

now we have one to one correspondence between the reflection coefficient and the 

normalized impedance. So if you know normalized impedance we can find out the 

reflection coefficient I can invert this relationship and get the normalized impedance Z 



that is equal to 1
1- 
+Γ
Γ

. So if I know the value of normalized impedance I can get uniquely 

the value of reflection coefficient and if I know the value of complex reflection 

coefficient then I can uniquely find the value of the corresponding impedance.  
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So this transformation between the reflection coefficient and the normalized impedance is 

a one to one transformation.  

 

Now if I plot the reflection coefficient for all passive loads as we have seen earlier for 

passive loads the magnitude of the reflection coefficient is always less than or equal to 

one. We saw when the impedance is purely reactive or short circuit or open circuit that is 

the time the magnitude of the reflection coefficient becomes equal to one otherwise for 

any other impedance the magnitude of reflection coefficient is always less than one. That 

means if I plot the reflection coefficient into the complex reflection coefficient plane 

which we can call it as the complex gamma plane this is now my complex gamma plane 

where the real axis is u, the imaginary axis is jv and here we are marking the complex 

reflection coefficients so this is complex gamma plane. 

  



Since for all passive loads the magnitude of the reflection coefficient will be less than or 

equal to one all impedance point have a corresponding point of reflection coefficient 

which lies within the unity circle in the complex gamma plane. So if I draw a unity circle 

whose radius is equal to one all passive loads reflection coefficient will lie within this 

circle so any point if I take within this circle then that will have a corresponding passive 

load value or if I take any passive load value it will have a corresponding reflection 

coefficient point inside this unit circle so this radius is equal to one.                                         

 

So a reflection coefficient point here has a magnitude as we mention if I represent in a 

polar form this distance from the center of the complex gamma plane gives you the 

magnitude of the reflection coefficient and the angle of this sector from the real u axis 

that gives you the angle θ so this point is the complex reflection coefficient point denoted 

by R ejθ is having equivalent value of u and v so the complex reflection coefficient point 

can be marked on the gamma plane. 

 

(Refer Slide Time: 13:15 min) 

 

 
 

Now we have two planes you are having a complex z plane and you are having a 

complex gamma plane and as we know since there is a one to one transformation 



between these two planes every point on this plane essentially is mapped to a point on 

this plane. So first exercise we do is we try to map all possible impedances on to the 

gamma plane and then we essentially create a graphical structure where the analysis is 

carried out in the complex reflection coefficient plane. 
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So for doing this transformation let me go back again to the original relation which I had 

and that is the impedance I can write as normalized impedance Z  = r + jx that is equal to 

1
1-   
+Γ
Γ

, substituting for Γ = u + jv I get r + jx that is equal to ( )
( )

1 u jv
1 u jv
+ +
− +

,  I can 

rationalize this function and separate out the real and imaginary parts.   
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So I will get r equal to some function of u and v, similarly x equal to some function of u 

and v. So from this relation I will get two equations on the complex gamma plane for a 

given value of r or x. Essentially when I map the impedances on the complex gamma 

plane I will see two set of curves on the complex gamma plane one will correspond to a 

given value of r other will correspond to a given value of x. 

 

So if I separate out the real and imaginary parts essentially I will get the two equations 

and these equations will be given by this. 
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This is equation corresponding to the real part of this equation. So if I take r equal to real 

part of that and rearrange I will get a equation which will be this, similarly if I take x 

equal to imaginary part of this and rearrange the terms I will get a equation which will 

look like that.  

 

Now if I look at this equation immediately it strikes to us that both equations represents 

circles on the complex gamma plane so I get a circle on the complex gamma plane for 

any given value of r. Similarly for any value of x I get a circle on the complex gamma 

plane. What then this represents is that for a given value of r if I take different values of 

reactance’s or x then I am going to move on this circle. It is a locus of all reactance point 

for a given value of r that is the reason we call these circles as the constant resistant 

circles.  

 

So this circle represent different values of reactance’s but all the point which are lying on 

this circle they have the same resistance value. Similarly when I go to this circle it is the 

locus of the points of different resistance and all of them have the same reactance value. 

So these circles are called the constant reactance circles.  



Once we realize that then one would like to see graphically how this circle would look 

like on the complex gamma plane. So to draw the circles we can get the center and the 

radius of the circles so for a constant resistance circle the center is r divided by ( r
r 1+

,0) 

that means the center of all these constant resistant circles lie on the real gamma axis lie 

on the u axis and the radius of this circle is equal to 1
r 1+

 where r will vary from zero to 

infinity.  

 

Similarly when I go to the constant reactance circle I have a center which lies at (1, 1
x

) 

that means this center lies on a vertical line passing through u = 1 and its radius are at 

these circles will be given by 1
x

. 

 

So first we graphically draw these two sets of circles and see how they look like. So let us 

first take the constant resistance circle so this is our complex gamma plane u and jv and I 

am drawing the complex gamma plane and what we are drawing is the constant r circle or 

constant resistance circles. 
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So as we saw the center for this circle is r
r 1+

 so the center is ( r
r 1+

, 0) and the radius for 

this circle is equal to 1
r 1+

. 

 

The constant resistance circles have a center which is ( r
r 1+

, 0) and its radius is 1
r 1+

. 

 

Now let us try to plot this circle for different values of r. Let us vary the value of r from 

zero to infinity and then see how these circles will get plotted on this complex gamma 

plane. If I take r = 0 the center this quantity becomes zero so I get a center which is (0, 0) 

which is the origin of complex gamma plane and the radius of the circle is equal to one 

for r = 0. The unity circle in the complex gamma plane itself represents a constant 

resistance circle corresponding to r = 0 so this circle corresponds to r = 0. 
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Let us take another value of r and the special value of r will be r = 1 which will 

correspond to Z = Z0 so if I put r = 1 in this then this is 1 and r plus one will be equal to 2 

so this will be (½, 0). so the center of this circle will lie halfway between these two points 

because this is zero origin and this is unity circle and is equal to one. The center for r = 1 



circle lies halfway here and the radius is equal to half so this circle is having a radius 

equal to this and the center here so this circle passes through origin and will look like 

that.  

 

If I further increase the value of r one thing we will note is the center shifts towards the 

right and the radius of the circle becomes smaller and smaller. If I take the extreme value 

that is r = ∞ then this center will become one so this will be (1, 0) and the radius will 

become equal to zero.  

 

So for r = ∞ the circle will degenerate into a point at this location so if I take different 

values of r this circle essentially lie one within another like with increasing value of r and 

at this location represents that r =∞. In fact one can see from this equation for the 

constant resistance circle that all this curves here are pass through the point u = 1, v = 0 

so all this circle which we have drawn here are pass through this point u = 1, v = 0, 

similarly even these constant reactance circles also pass through the same point u = 1, v= 

0. So this point is rather a special point because both the set of curves whether you take a 

constant resistance circle or constant reactance circle they pass through this special points 

so u = 1, v = 0 is the location from which the circles essentially are going to pass.  
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So if I show you these circle which are constant resistance circles these circle essentially 

look like that.  
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So just to give you few numbers here this circle which is the outermost circle that 

corresponds to r = 0, this circle which passes through the origin that is r = 1. Then as you 

go for higher and higher value of r this is r equal to two circle five circles ten circles and 

the final that is point here is equal to one, equal to zero point that correspondents to r 

equal to infinity. The constant resistance circles are one within another and they the r = 0 

gives you the largest circle and the circle becomes smaller and smaller as r increases and 

the final part r = ∞ the circle becomes 0.5,  

 

So this is the one set of curves which will correspond to the constant resistance of the 

impedance, the another set of circles which are the constant reactance circles.  

 

Here let us draw the constant reactance circle this is u, this is jv and again this is complex 

Γ-plane and these are the constant x-circles or constant reactance circles. As we saw the 

center for this circles is (1, 1
x

) and radius of this circle is equal to 1
x

. Again let us 



substitute different values of x and plot this circle on the complex Γ-plane. This is origin 

this is v = 0 if I put x = 0 then the center of this circle is (1, ∞) and the radius of this circle 

is also ∞. 

 

Now the radius of this circle is equal to infinity means this circle has become a straight 

line but I mentioned earlier we know this circle pass through this point u = 1, v = 0 that 

means now I have a circle which passes through u = 1, v = 0 point and it is a straight line 

so the real axis of the complex Γ-plane corresponds to x = 0. So all the reactance value 

zero correspond to this line so this line itself corresponds to x = 0.  

 

Now consider the two types of reactances the positive reactance which is inductive or the 

negative reactance which is capacitive. Let us say first I take the inductive reactance that 

means x is positive. So the center lies on (1, 1
x

) that means it always lies on a line which 

is u = 1 as x becomes larger so as I increase the value of x the center which was at 

infinity that now comes down and the radius also becomes smaller and smaller. So 

initially I had a circle which was this straight line now as I increase the value of x I will 

get a circle which will have a smaller radius and so on and so forth.  

 

Taking the extreme value when x = ∞ at this point this quantity will be zero so the center 

will become (1, 0) which is this point and the radius of this circle will be equal to zero. 

So this point again represents x = ∞ so it is interesting that this circle r = ∞ also 

corresponded to this point and this point also represent x = ∞. 
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Now if I plot the various circles now again first thing we should note here that we are 

only interested in reflection coefficients which lie within the unit circle because they only 

correspond to the passive loads. If any portion of this constant reactance circle lie outside 

the unity circle is not of our relevance because that portion of the curve does not 

represent a passive load. Although the constant reactance circle fill the entire space only 

that portion on the constant reactance circle is useful to us which lies within the unity 

circle of the complex Γ-plane.  

 

Now if I draw these circles these circles will essentially look like that they are the 

constant reactance circles they becomes smaller and smaller like this so only this portion 

of this curve is meaningful to us. So all positive value of x at inductive reactances their 

center will always lie on this line but on the upper half on the complex Γ-plane and that is 

the reason this circle will be always lying above the u axis. These curves which are 

within the unity circle represent the reactive parts corresponding to the passive loads.  

 

Similarly I can take negative values of x as I will get mirror image of these circles on the 

lower half. So I will get the set of curves which will look like that and again we take only 



those portions of the curve which lie within the unit circle because they are the one which 

will correspond to the passive loads. 
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If I take different values of x and plot this the curve essentially will look like that, this 

horizontal lines here corresponds to x = 0 except that this extreme point is on the unit 

circle over that point corresponds to x = ∞. 
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These circles are for higher values of x the upper half of this represents the positive value 

of x and the lower half of this represents the negative values of x that means if I am 

talking about reactances then upper half of this circle represents the inductive reactances 

and the lower half represents the capacitive reactances.  

 

Now I have got two sets of circles, the constant resistance circle within the unity circle of 

the complex Γ-plane and I have got the constant reactance circle again plotted within the 

unity circle of the complex Γ-plane. Now if I want to identify the impedance point I can 

superimpose these two set of circles and essentially I have created a coordinate system 

for plotting the impedance point on the Γ-plane that is what essentially we do. We take 

these two sets of circles and superimpose within the unity circle of the complex Γ-plane. 

Just for the clarity we have drawn here only very few circles one is this outermost circle 

is the unity circle, this is the u axis, this is the v axis and then this circle corresponds to r 

= 1, these circles corresponds to x = 1 and the horizontal line here as we saw corresponds 

to x = 0, this point here is x = ∞, this point also represents r = ∞. 
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Now let us see the gauss characteristics of these two sets of circles, firstly all constant 

resistance circles have their centers lying on the positive real axis of the complex Γ-plane 

all the circles pass through the point u = 1, v = 0, as the value of r increases the center 

shifts towards right from the origin to u = 1 and the radius decreases so this point here 

corresponds to r = 0 or this circle corresponds to r = 0 and this point corresponds to r = ∞.  
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Similarly you summarize the characteristics of constant reactance circles. The constant 

reactance circle lie on the vertical line passing through v = 1 and the upper half of this 

circle represents the positive reactances and the lower half represents the negative 

reactances. The center of the circle approaches towards u axis and the radius of the circle 

goes on reducing as the reactance value increases so the size of the circle reduces and 

ultimately when x = ∞ the size of circle becomes equal to zero so this point again 

represent x = ∞. 

 

Now the superposition of these two circles as I mentioned is the coordinate system for 

impedance on the complex Γ-plane that is what called the smith chart and smith chart is a 

very powerful tool for analyzing the Transmission Line problems. Essentially we have 

created a graphical tool where impedances are represented on the complex Γ-plane. And 

now without going back to the impedance plane I can directly mark the impedances on 

the complex Γ-plane or on the smith chart from these two sets of circles. 

 

Normally this smith charts are readily available for calculations so one does not have to 

draw this smith charts. Having understood that the smith chart is the superposition of 

constant resistance and constant reactance circles we get a figure something like this, this 

is called a smith chart.  
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So as we can see here this circle is the unity circle, this is the real axis of the gamma 

which is u axis, the center here is the origin of the complex Γ-plane. These circles which 

are flaring like that, they are the constant reactance circle and this circle which are one 

within another represent the constant resistance. .               

 

Now if I want to plot or mark a point an impedance on the complex Γ-plane this is a 

coordinate system which I am having now and this is orthogonal coordinate system so 

you can take the corresponding value of r and x and find the intersection of these two 

circles corresponding to that constant value r and the constant value x and the intersection 

point will represent an impedance for that value of r and x. so now every time without 

going into the transformation I can read from this itself the value of r and x and directly 

mark a impedance point on the complex Γ-plane. So this is an extremely powerful tool 

called a smith chart and now we will see this smith chart can be used for doing various 

types of Transmission Line calculations.  

However before we go into this analysis of the Transmission Line let us first identify 

some special points on the smith chart. So let me take a simplified version of a smith 

chart only very a few circles just drawn for clarity the smith chart will look something 



like this and let me mark some very specific points as a landmark points on the smith 

chart. Let us say we are considering the impedances which are given by r + jx where r is a 

resistance and x is reactance. This point here is a, as we see any point lying on the 

outermost circle will represent r = 0, any point lying on this horizontal axis represents x = 

0 so the intersection of these the horizontal axis and the unit circle which is the point a 

corresponds to r = 0, x = 0 so here we have r = 0,x = 0 and from impedance point of view 

when r = 0, x = 0 this load is nothing but the short circuit so on the smith chart this point 

a represents a short circuit point.  
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Similarly if I go to the other point here b as we saw the two sets of circle degenerate into 

a point and that is this point so this point corresponds to r = ∞, it also corresponds to x = 

∞ so this point here is r = ∞, it is also x = ∞. That means the impedance is infinity so this 

point is nothing but the open circuit point, you have this circuit which is the open circuit 

point.  

 

So the left most point on the smith chart corresponds to the short circuit load, the right 

most point on the smith chart corresponds to the open circuit load. All the points which 

are lying on the outermost circle represents pure reactances so any point on the outermost 



circle is pure reactance because for these points r = 0. You have points which are lying on 

the outermost circle for the x value changes but r is always equal to zero so they 

essentially represent the pure reactances.  

 

As we saw the upper half of this circle corresponds to the positive value of x and positive 

value of x means inductive reactances. So the unity circle which is in the upper half 

corresponds to the purely inductive reactance or purely inductive loads. Similarly, the 

points which are lying on the lower half of this circle represent purely capacitive loads.  

 

Now if I go inside this circle I have some value of r here but in the upper half of this 

circle the x value will be always positive that means all the points in the upper half of this 

circle represent the inductive loads and the points which are on the lower half of this 

circle represent the capacitive loads. So just looking at the point once the point is marked 

on the smith chart visually I can immediately tell whether the load is capacitive load or 

the load is the inductive load. 

 

Again here we can take a special point this circle passes through the upper most point of 

the smith chart has a value x = 1 so this point here c corresponds to r = 0 because it is 

lying on the outermost circle for which r = 0 and its x value is equal to 1. So this point 

corresponds to r = 0, x = +1 so this point represents a pure reactance whose magnitude is 

equal to the characteristic impedance of the line. 
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Similarly the lowermost point b corresponds to r = 0 and x = -1 so this point represents a 

purely capacitive reactance whose magnitude is equal to the characteristic impedance of 

the line.  

 

There is one more special point and that is the center of the smith chart. The point m 

which is the origin of the smith chart or the origin of the complex Γ-plane is the 

intersection of the r equal to one circle and x equal to zero line. So this point here 

represents r = 1 and x = 0 that means at this location the impedance is equal to the 

characteristic impedance of the line and that point is of greatest interest to us because that 

point represent the matched condition on the Transmission Line.  
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So when the impedance lies on the center of the smith chart which corresponds to the 

magnitude of the reflection coefficient zero then this point represent the matched 

condition on the Transmission Line.  

 

Once you understand the various specific points on the smith chart then we can go back 

and mark the reflection coefficient on this smith chart. So the smith chart now has given 

you the coordinate system which is in terms of r and x which is a very complex 

coordinate system but the complex reflection coefficient axis is not drawn on the smith 

chart it is understood that whenever we are having a smith chart the horizontal line passes 

through the center of smith chart is the real gamma axis where the vertical line is the 

imaginary gamma axis. Also it should be kept in mind that if I look at the smith chart 

properly since this is a complex Γ-plane it should always be held like this the most 

clustered portion of the circle should be on the right hand of the user because the real axis 

of complex Γ-plane is in this direction and the positive imaginary axis of complex Γ-

plane is in vertical direction.  
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So we should not use the smith chart like this or we should not use the smith chart like 

this.  

 

(Refer Slide Time: 44:39 min) 

 

 



(Refer Slide Time: 44:41 min) 

 

 

 
 

We should keep the smith chart like this so that the complex reflection coefficient axis is 

properly defined.  
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So normally on the smith chart the reflection coefficient axis is not drawn but the user 

must remember that the smith chart is nothing but the set of constant resistance and 

constant reactance circle drawn on the complex Γ-plane.  

 

Once I get that then I can do simple calculations of conversion from reflection coefficient 

to the impedances or vice versa in a very simple manner. I can just mark a point or 

impedance on the smith chart and then treat this thing as a complex Γ-plane and find out 

the coordinates of that point in the complex Γ-plane which will give me the complex 

reflection coefficient. So the conversion of impedances to the complex reflection 

coefficient and vice versa has become extremely simple once the smith chart is available 

to the user.  

 

So for analyzing the Transmission Line problem the smith chart is a very handy tool and 

we will see later that many complex impedance transformation problems can be solved 

by using the smith chart.  

 

However, before we get into that let us try to look at not only the impedances but the 

admittances. Till now we have done the analysis assuming that the impedances are 

represented by the only resistance and reactive part. Many times when the Transmission 

Lines or impedances are connected in parallel it turns out to be more handy to do the 

calculation in terms of the admittances rather than in terms of impedances. So it will be 

worthwhile to first see how the smith chart gets modified in terms of admittances and 

then how do we do conversion from the impedances to the admittances and vice versa.  

 

So let us quickly look at that instead of impedances I had admittances for the calculation 

then how the transformation between the reflection coefficient and the admittance will 

would go. Before we get into that however we have to define the characteristics of 

Transmission Line in terms of admittances so to start with you have to define the 

characteristic admittance of a Transmission Line then we have to take any arbitrary 

admittance then define the normalized admittance with respect to the characteristic 



impedance of the Transmission Line and then we can find out the graphical 

representation of the transmission line in terms of the normalized admittances.  

 

So next time when we meet we first take the normalized admittances, find out the 

reflection coefficient in terms of normalized admittances establish relationship between 

the real and imaginary part of admittances and then get the smith chart and try to find out 

the relationship between the admittance smith chart and the impedance smith chart. 

 

Thank you.      

 


