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Welcome, in the last lecture we investigated the standing wave patterns on a 

Transmission Line. We saw that the voltage standing wave pattern and the current 

standing wave patterns are staggered with respect to each other that is wherever there is a 

voltage maximum there is current minimum and wherever there is current maximum 

there is voltage minimum. We also introduced a very important parameter which is a 

measure of reflection on Transmission Line and that is the voltage standing wave ratio 

(VSWR) is the ratio of the maximum voltage seen on the Transmission Line to the 

minimum voltage seen on the Transmission Line. Higher the value of VSWR worse is the 

condition on the Transmission Line that is more reflection on Transmission Line.  

 

Also we establish the bound on the VSWR that is the VSWR lies between 1 and ∞ and 

smaller the value of VSWR means better transmission less reflection on Transmission 

Line so more transfer of power to the load. We also establish the bounds on the 

impedance on the Transmission Line that for a given termination load on Transmission 

Line there is a maximum and minimum impedance which one can see and that value is 

characteristic impedance multiplied by the VSWR and the characteristic impedance 

divide by VSWR. 
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When we do the impedance transformation on Transmission Line the impedances are 

bound by these two values the maximum value of impedance and the minimum value of 

impedance.  

 

Today we will study the impedance transformation on a Loss-Less Transmission Line 

and then we will establish a very important characteristic of impedance transformation on 

Loss-Less Transmission Line. And then we will go to the calculation of power transfer to 

the load. 

 

As we have seen for a general Transmission Line taking the ratio of voltage and current 

at any location on Transmission Line we get the impedance at that location. 
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And we have seen the impedance is given by this Z at any location l is equal to the 

characteristic impedance multiplied by this impedance transformation term, where this 

quantity is the hyperbolic cosine and hyperbolic sine which are given in terms of the 

propagation constant γ and the length on the Transmission Line.  

 

Now for a Loss-Less Transmission Line the propagation constant γ is jβ so if I substitute 

γ = jβ in this expression then I get the impedance transformation relationship for a Loss-

Less Transmission Line. Also we have said that the absolute impedances do not have any 

meaning on a Transmission Line the impedances normalized to the characteristic 

impedance are the meaningful quantities so the same expression we have converted into a 

normalized impedances where we define the impedance by bar that is the actual 

impedance divide by the characteristic impedance that is the normalized impedance.  
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So every impedance which we see on Transmission Line the load impedance, the 

impedance at location l all of them are now normalized with respect to the characteristic 

impedance. Then the normalized impedance transformation relationship essentially is 

given by this. And as we have said when normalized value is equal to one that time the 

load impedance is equal to Z0, similarly when the normalized impedance at location l is 

equal to one the value at that location is equal to Z0. So either we can use the normalized 

impedance transformation relationship or we can use the normalized transformation 

relationship.  

 

However, now for a lossless line we substitute for γ = jβ and get the relation for the Loss-

Less Transmission Line. If you substitute γ = jβ for the Loss-Less Transmission Line the 

cosh γl is equal to the cosh βl that is nothing but equal to cos βl. Where as, the sinh γl is 

equal to sinh jβl that is equal to j sin βl.  
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Substituting these for hyperbolic cosine and sine in the general expression which we had 

got last time we get now the impedance transformation relationship for the lossless line 

and that is now the impedance Z at the location l is equal to Z0 the characteristic 

impedance of the line and characteristic impedance let me remind you again is a real 

quantity for a Loss-Less Transmission Line so this quantity is real. So Z(l) 

= L 0
0

0 

Z cos l  j Z sin l
Z cos l  j Z sin lL

Z β β
β β

 +
 + 

.    
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If I take Z0 down here this quantity ( )
0

Z l
Z

 will be normalized impedance, similarly I can 

take Z0 common from the numerator and denominator so the same expression as we had 

obtained earlier in terms of normalized impedance will be equal to 

L 

L 

Z cos l  j sin l
cos l  j Z sin l

β β
β β

 +
 + 

. 
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So either of the impedance transformation relationship can be used when we transform 

the impedance on a Loss-Less Transmission Line from one point to another this is the 

absolute impedance, this is the normalized impedance.             

 

Once we get the impedance transformation relationship then we can establish some very 

important characteristic of impedance transformation on Transmission Line and that is 

we know that when you move on a Transmission Line by a distance of 2
λ  the voltage 

characteristic the standing wave characteristic will repeat. So if you take a ratio of 

voltage and current at a location we expect that these characteristics would repeat at 2
λ . 

 

Similarly the special points are if I move a distance by 2
λ  we will also see there is a 

special distance of 4
λ  there is something very special happens and third characteristic is 

if I terminate the line into the characteristic impedance the impedance will always be 

equal to the characteristic impedance irrespective of the length of the line. 

 



So we have three very important characteristics of the impedance transformation on a 

line. The first one that is the impedance value repeats every 2
λ  distance. 
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Going back to this expression here let us say I have a impedance value of Z(l) at some 

location on the line now if I move by a distance of 2
λ  from here that means if I go to a 

location l + 2
λ  then the impedance at that location would be where l will be replaced by 

l + 2
λ   

 

So, initially let us say at location l, impedance is equal to Z(l), what we want to find out is 

the impedance at Z(l) +  2
λ  so I replace l by l + 2

λ  , if I use the normalized relation 

this will be equal to 
( ) ( )

( ) ( )
 Z(l) cos l+   j sin l+2 2

cos l+   j Z(l)sin l+  2 2

λ λβ β

λ λβ β

 + 
 

+  

. 

 



Now ( )l+ 2
λβ  = ( )2 l+ 2

π λ
λ

  where 2= πβ
λ

 and this again is equal to beta into βl plus 

λ will cancel so I will get only π.  
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So ( )cos l+ 2
λβ  is nothing but ( )cos l+β π , similarly ( )sin l+ 2

λ β  is nothing but 

( )sin l+β π . 

 

Now ( )cos +θ π  = -cos θ and ( )sin +θ π  = -sin θ. So this quantity ( )cos l+ 2
λβ  is 

nothing but –cos βl.  

 

So if I substitute into this I get, ( )cos l+ 2
λβ  =  ( )cos l+β π  = –cos βl  

 

Similarly ( )sin l+ 2
λ β  =  ( )sin l+β π  = –sin βl.   



(Refer Slide Time: 12:05 min) 

 
 

Substituting now this ( )cos l+ 2
λβ  and ( )sin l+ 2

λ β  into the impedance relation here 

we get the impedance at location ( )l+ 2
λ  as ( )  -Z(l) cos l - j sin lZ l+ 2 -cos l  j Z(l)sin l

β βλ
β β

 
=  + 

. 
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I can take minus common from numerator and denominator so all this quantity will be 

plus this is exactly same as the impedance Z(l) at location l on the Transmission Line so 

this is nothing but equal to normalize impedance at location l. That is very important 

characteristic on Transmission Line that is the impedance repeats itself over a distance of 

2
λ  or in other words the impedance transformation there is only memory of 2

λ  

distance on Transmission Line how many cycles of 2
λ  have gone on Transmission line 

we will never be able to find out from the knowledge of the impedance.  

 

So no matter what is the length of the Transmission Line essentially | 2
λ | is the special 

information which is available from the impedance transformation on Transmission Line. 

So this is one of the very important characteristic for a Loss-Less Transmission Line that 

every distance of 2
λ  the impedance characteristic repeats.      

 

The second characteristic is the impedance at a distance of 4
λ  if I move by a distance of 

4
λ . Again if I know the normalized impedance at location l we want to find out what is 

the value of this impedance at l + 4
λ  so the quantity β(l + 4

λ ) will be equal to βl plus 

beta is 2π
λ

 so this is 2π
λ

 into 4
λ  so that is equal to βl + 

2
π . 
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Now substituting this for βl + 4
λ  in the transformation relation I get the normalized 

impedance at l + 4
λ   which will be equal to Z(l) ( )cos l+ 4

λβ  which is nothing but 

( )cos l+ 2
πβ which again will be -sin βl so this will be -sine βl + j ( )sin l+ 4

λβ  so that is 

( )sin l+ 2
πβ  so that will be equal to cos βl divided by -sine βl plus j Z(l)  cos βl. 
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If I take the j common from here this will become Z(l)  cos βl + j times sin βl, this will 

become cos βl + j Z(l) sin βl so that quantity is nothing but 1
Z(l)

 of that.    

 

So this is a very important characteristic of Transmission Line that every distance of 4
λ   

the normalized impedance inverts itself note the word normalize it is not the absolute 

impedance because absolute impedance if it inverts then dimensionally it will become 

admittance the normalized impedance does not have any unit it does not have any 

dimensions it is a dimensionless quantity. So for a distance of 4
λ the normalized 

impedance will invert itself so if I have a value of impedance at some location on 

Transmission Line if it is greater than Z0 after a distance of 4
λ  it will definitely going to 

be less than Z0 because the normalized impedance will be the inverted value of the 

impedance at the previous location so by this a distance of 4
λ  the normalized impedance 

will invert. Again the impedance will invert after 4
λ  so impedance will become same 



that is what essentially the previous property that every distance of 2
λ  the impedance is 

same. 

 

So when we talk about the periodicity of the impedance on Transmission Line every 2
λ  

the absolute or normalized impedance repeats itself where as every distance of 4
λ  the 

normalized impedance inverts itself and you will see later on when we talk about the 

impedance matching characteristics this property is used extensively for finding out the 

impedance transformation which can match impedances on the Transmission Line.  

 

The third characteristic is the matched condition characteristic which you already 

discussed briefly that we talked in general Transmission Line so third characteristic is the 

matching condition on the Transmission Line and that is if the line is terminated in the 

characteristic impedance then the impedance seen at every point on Transmission Line is 

equal to the characteristic impedance.  

 

So if I take ZL = Z0 that is LZ =  L

0

Z
Z

 =1, the impedance Z(l)  at any location on 

Transmission Line will be equal to Z(l)  which is 1 so cos l  j sin l
cos sin l  j sin l 

β β
β β

 +
 + 

 which is 

again equal to 1 so this is sinβl which is equal to 1. 
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So irrespective of the length of the Transmission Line if the line is terminated in the 

characteristic impedance then the impedance seen at every point on Transmission Line is 

equal to the characteristic impedance and if you recall we had discussed this condition 

this because this is a very special condition what that means is once the line is terminated 

into the characteristic impedance one does not have to worry about the impedance 

transformation on Transmission Line you can use any piece of Transmission Line and the 

impedance at the input of the Transmission Line will be always same which will be equal 

to the characteristic impedance.  

 

We also see that when the ZL = Z0 that time the reflection coefficient is zero so there is no 

reflected wave on Transmission Line you have only forward traveling wave on 

Transmission Line and as we have argued earlier forward traveling wave always sees an 

impedance which is equal to characteristic impedance so this result is not very new we 

have discussed this earlier when we were talking about the general Transmission Lines 

and that was if the line is terminated in the characteristic impedance then the impedance 

seen at every point on the Transmission Line is equal to the characteristic impedance.      

 



These are three very important characteristics of Loss-Less Transmission Line. let me 

summarize it again, first the impedance transformation repeats of a distance of a 2
λ   all 

impedance values repeat every 2
λ  distance the normalized impedance inverts itself for 

every 4
λ  distance and if the line is terminated in the characteristic impedance then the 

impedance seen at any point on the line is equal to the characteristic impedance.  

 

With this understanding of the impedance transformation now we can go to the power 

transfer calculation on the Transmission Line. Initially when we start the discussion on 

the Transmission Line the purpose was to transfer the power from the generator to the 

load effectively. In the lossless case since there is no lossy element present on the line 

ideally the load should be such that the power taken from the generator is completely 

transferred to the load. 

 

However, as we have seen if the impedance is not equal to the characteristic impedance 

then there will be always reflection on Transmission Line that means whatever energy the 

generators supplied that energy will reach to the load will not find a condition which is 

favorable for the maximum power transfer the part of the energy will get reflected back 

and this energy will come back and essentially will feed the generator back.  

 

Now when we talk about the matching condition or the maximum power transfer 

condition there are two issues here, one is when the power is given by the generator it 

should be maximally transferred to the load it is the efficiency how the power get really 

transferred to the load and second issue is when the reflected power come back and hits 

the generator the generator actually is not capable of absorbing power it is delivering 

power so when this reflected power comes back with different amplitude and phase it 

affects the performance of the generator it changes its phase characteristic amplitude 

characteristic so it is desirable that generator should not see any power coming and 

hitting back so for these two purposes that the power whatever is given by the generator 

should be completely transferred to the load and also no power should come back and hit 

back to the generator we must make sure always that the impedance which the generator 



effectively sees equal to characteristic impedance so there is no reflection which will lead 

to the generator, also at the load end we do something so that the maximum power is 

transferred to the load.  

 

These issues we will discuss little later but let us take a very general case at the moment 

and ask if I have a Transmission Line which is connected to a generator on one end and 

the load at the other end how much power will be delivered to the load. Again going back 

to the original voltage and current equations we can write down the power at the location 

of the load that means at l = 0. So what we discuss now is the power delivered to the 

load. 
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Let us start again with the basic equation. We have voltage equation the voltage at l = 0 is 

the load end that is V(0) = V+ into 1 + ΓL e -2βl but l = 0 at the load end so this quantity 

will be {1 + ΓL} so this is the voltage at the load end this is we are talking about the 

voltage and current at the load end of the line.  

 



Similarly I have current at l = 0 at the load end that is  
0

V
Z

+

{1 + ΓL}. 
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So from the general voltage and current relations on the Loss-Less Transmission Line I 

find out the voltage value at the load end, current value at the load end. So the power will 

be nothing but half real part of VI conjugate so the power delivered to the load p = 

½Re{V(0) I*(0)}.   

 

If I substitute for the V(0) and I(0) in this that will be equal to ½ V+ multiplied by I 

conjugate which is V+ conjugate divide by Z0 conjugate where Z0 is the real quantity so 

this will be equal to 
2

0

V
Z

+

 multiplied by the conjugate of this so this will be equal to if I 

take the real part of this then that will be equal to {1 - |ΓL|2}. So once I know the 

impedance at the load I know the reflection coefficient and let me write there ΓL = 

L 0

L 0

Z – Z
Z + Z  

 is the reflection coefficient so once I know the load impedance I can calculate 

the mod of reflection coefficient.  
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So the power delivered if I knew the value of V+ then I can find out what is the power 

delivered to the load, how do we find out V+  which we will discuss in a minute. 

However at this location if I know the amplitude of the forward traveling wave and if I 

know the load impedance I can calculate the value of the power delivered to the load.  

 

Here we have calculated the power which is from the circuit point of view that if I know 

the voltage and current at a particular location I can apply the relation that the power 

delivered at that location is VI* conjugate the real part of that and from there we get this 

power delivered to the load. We can use a little different argument to come to the same 

answer and that is on the Transmission Line the power was supplied by the generator in 

the form of a traveling wave which was going towards the load and as we already said 

that the traveling wave always sees an impedance which is equal to characteristic 

impedance. So if the traveling wave had an amplitude V+ it is as if this wave is supplying 

a power to Z0 which is the real quantity in a lossless case.  

 

So one can say that we have now a wave which is going in the forward direction which is 

having an amplitude V+ this wave always sees an impedance which is equal to Z0 so the 



power carried by this wave will be half of ½ 
2

0

V
Z

+

. So the power carried by forward 

wave Pfor will be equal to ½ 
2

0

V
Z

+

 because this is the voltage V+ which is traveling on 

this it is seeing an impedance equal to the characteristic impedance Z0 which is the real 

quantity.  

 

(Refer Slide Time: 29:13 min) 

 

 

So the power delivered to the forward wave is ½ 
2

0

V
Z

+

where ½ is the factor for the rms 

value of the power.  

 

Now when this voltage wave reaches to the load part of energy is going to travel back 

and there will be again a traveling wave which is traveling backwards with an amplitude 

of V-. So since this wave also sees the impedance which is equal to the characteristic 

impedance the power carried by this wave will be nothing but 
2

0

V
Z

−

. 

 



So we get the power reflected by the load in the backward wave that is Pref = ½
2

0

V
Z

−

.   
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So Pforward was the power which was carried towards the load, Preflected is the power which 

was taken away from the load so difference of these two powers is the one which is 

delivered to the load. The net power which is delivered to the load is p is Pforward - Preflected  

that is equal to 
2 2

0 0

V V1
2 Z Z

+ −  − 
  

 and V
V

−

+  as we know is the reflection coefficient at the 

load.               

 

So this quantity is nothing but if I take 
2

V+  common this will be 1 – |ΓL|2   
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This relation is exactly same as what we have derived earlier for the power delivery. So 

what we see is when we do the power calculations on the Transmission Line either I can 

go by the circuit concept to find out the voltage and current at that location and then 

simply take the power delivered will be half real part of VI* conjugate or I can talk in 

terms of the traveling waves find out how much power was carried by the wave and how 

much power was taken back in the form of a reflected wave, difference at the two power 

will be the power delivered to the load. So by using either of the concepts one can find 

out what is the power was supplied to the load.   

 

This is the story for the real power that is the power which is actually supplied to the 

load. One can ask in general suppose I want to calculate the complex power at a 

particular location how does that reflect or in general I can ask the question that if I 

calculate the power flow at any particular location on Transmission Line not necessarily 

at the load end what does that indicates. So if I get the voltage and current at any arbitrary 

location on Transmission Line that is V(l) at some location l is V+ ejβl{1 + ΓL e-j2βl}.    

 



You have derived the same relation last time for the Loss-Less Transmission Line the 

current I(l) will be 
0

V
Z

+

 ejβl{1 + ΓL e-j2βl}. 
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Now again as I did in the previous case at the load point I have the voltage and current so 

the total power the complex power P at that location l is equal to ½ (V I*) I can substitute 

from here for (V I*) and I get ½ 
2

0

V
Z

+

 {1 + |ΓL|2 + 2Im (ΓL e-j2βl)}. It is simple algebra 

you substitute the value of V and I in the expression here you get the complex power 

which will be essentially given by this.  

 

Now this quantity is just the imaginary part so the real part of the power which tells you 

the actual power delivered at that location is equal to this, this is the power which is the 

imaginary part of the power what is called the reactive power. So here we have a resistive 

power and here we have a reactive power. 
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So at a general location on Transmission Line the power is complex and of course that 

will be complex at the load end also. But the interesting thing to note here is this resistive 

power at location l is exactly same as the power which we have got at the load end which 

is this power. Since the line is lossless the resistive power at any location in the line is 

same as the resistive power which we will see at the load and that make sense because if 

the line is completely lossless then there is no absorption of power anywhere on the line 

but at the load because the load is the one where you have a resistive component and the 

power can be absorbed at that location.  

 

So wherever we are seeing on the Transmission Line it is telling you a power flow but 

this power flow essentially is the power which is ultimately going to get delivered to the 

load. So the resistive part of the power which is telling you the actual power flow should 

be independent of the location on the line because this is the power which is ultimately 

given to the load connected to the Transmission Line. 

 

If you look at the reactive part of the power however this is the function of l and the 

reactive part power tells you essentially the energy is stored at different locations on 



Transmission Line so now we are having two things when we calculate the power on 

Transmission Line there is a resistive power which tells you the flow of power at any 

particular location on Transmission Line and this flow of power is exactly same as what 

power would be delivered to the load. However the reactive power tells you the energy 

storage at different locations on line and that depends upon the value of voltage and 

current at that location and since because of standing wave the voltage and current is 

varying along the Transmission Line the energy storage is different at different location 

on Transmission Line.  

 

So what we see in general is the reactive power will vary along the length of the line 

however the resistive power which is the power delivered to the load will be independent 

of the location of the Transmission Line and that is a very important characteristic. So no 

matter where you calculate the real power at the load end or generator end or in the 

middle of the Transmission Line for a Loss-Less Transmission Line this power will be 

exactly same as what is ultimately delivered to the load. Having done this now one can 

come to the final question of the analysis of the transmission line that everything we have 

done now the impedance transformation relationship we developed we also analyzed the 

power flow on the Transmission Line but we have not evaluated final arbitrary constant 

of the voltage or current expression and that is V+ and that we did not do so far that is 

because we were always taking the relationship which were for the impedances and for 

that we had a ratio of voltage and current and the absolute value of V+ did not play any 

role.  

 

However as we see now when we do the power flow calculation on Transmission Line 

we require the knowledge of V+ because now we cannot talk about the relative quantities 

we have to absolutely find out the voltages and currents at the load end or at any other 

location on the line and therefore we now have to absolutely evaluate the quantity V+ 

because without knowledge of V+ we will not be able to tell the absolute power delivered 

to the load for a given generator and the load conditions.  

 



So now from the boundary condition by connecting the generator and the load impedance 

we  calculate the final arbitrary constant of the voltage expression that is V+ and then 

completes the analysis of the voltage or current on Transmission Line. So now what we 

discuss is we discuss evaluation of the arbitrary constant V+. 

 

Let us take the general case I have a generator here which is having a voltage Vs then I 

have a Transmission Line which is of length l and then I connect a load impedance to this 

Transmission Line which is equal to ZL.  
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The characteristic impedance of this line is Z0 which is given a priori, some voltage wave 

is going to travel on this Transmission Line which will get reflected from here it will 

come back so on the Transmission Line we will have the standing waves so there will be 

impedance transformation from ZL to some value when see from the generator. And now 

by using that impedance transformation relationship and matching the boundary 

condition at the input we want to find out what is this quantity V+ for the given circuit.  

 



So first thing what we can do is we can transform this impedance at this location and then 

treat this circuit as the lump circuit. Let us also make it little general let us say this 

voltage source is having a internal impedance which is equal to Zs so let us say I connect 

an internal impedance here of the voltage source which is given as Zs. Let us say I have 

the input terminal which is given by some A, A' and these are the locations which are 

denoted by B, B'.  

 

Once I know this ZL and I know this length then I can find out what is the transform 

impedance at this location A, A'. Let us say this impedance if I see from here that is given 

as Z'L so Z'L is the transformed impedance seen at the generator end for the length of this 

line l as the terminating load ZL.  
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Once I transform the impedance then the whole circuit is the lumped circuit at this 

location I do not have to worry about the distributed elements. so now this circuit is 

equivalent to having a voltage source which is VS, the internal impedance for the voltage 

source that is ZS and connected to a effective impedance which is Z'L, once I get that then 

I can find out what is the voltage this is the location now A, A' so by using the lumped 



circuit analysis I can find out the voltage at this location and also I can find out the 

current at this location so the voltage here we call as VA and we call this current as IA in 

this location. 
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I can put the lumped circuit analysis and find out what is VA. So, VA will be L
S

L S

Z ' V
Z' Z

⋅
+

 

and IA will be A

L

V
Z'

. 
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So from the lump circuit analysis at the generator end I know the voltage and current at 

the input end of the Transmission Line. I can write down the voltage and current at the 

input end of the Transmission Line using the Transmission Line equations. So, now 

knowing the load end impedance termination ZL and a distance l from that essentially I 

have to get the voltage and current at a distance l from the load end. Now I  know from 

the distributed elements then that the V at input end of the line VA is nothing but V at a 

distance l from the load which is equal to  V+ ejβl{1 + ΓL e-j2βl} and the current IA which is 

nothing but I at the location l from the load that is 
0

V
Z

+

 ejβl {1 + ΓL e-j2βl}.    
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So now I know the value of VA from two sides, one is from the lumped element side the 

VA is given by this from the distributed elements on transmission line the VA is given by 

this. I can equate these two values of VA and IA and from here I can solve for the 

unknown quantity which is V+ where every other quantity is known here. the propagation 

constant β is known, the length of the line is known, the Γ which is related to the load 

impedance that reflection coefficient is known, the characteristic impedance is known so 

substituting the VA and IA in this two equations I can finally solve for the quantity which 

is the V+ quantity so I get the final expression for the V+ and that is V+ = 

( )( )
-j l

L S
j2 l

S L L

Z ' V e
Z +Z' 1 e

β

β−+ Γ
.    
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Once I know the value of V+ then my problem is completely solved I can substitute that 

in to the power calculation and I can find out what is the power delivered to the load or 

what is the power at any particular location on the line.  

 

Now this is a complete solution to the voltage and current on the Transmission Line so let 

me summarize what we have done so far in the Transmission Line.  

 

To start with we made a case that when we increase the frequency the concept of lump 

element is not adequate because the space has to be brought into picture and then we 

introduce the concept of the distributed elements, then in the framework of distributed 

elements we wrote down the voltage and current relations taking the limit the either sides 

of the circuits tends to zero so that the model is valid at any arbitrary high frequency. We 

got the differential equation for voltage and current we solved the voltage and current 

equations and then we got a general solution for voltage and current on Transmission 

Line. Then we impose the boundary conditions that were the impedance boundary 

conditions on Transmission Line and then from there we evaluated certain arbitrary 

constants on Transmission Line.  



We define very important parameters on Transmission Line what are called the reflection 

coefficients and the voltage standing wave ratios. Then we studied the impedance 

transformation relationship on a Transmission Line we took a special case that was a 

Low-Loss or a Loss-Less Transmission Line and then we found some important 

characteristics of the Loss-Less Transmission Line, further we investigated the power 

flow on Transmission Line and calculated how much power will be delivered to the load 

and ultimately we found out the final unknown arbitrary constants which was V+ on 

Transmission Line so that we can now calculate the absolute power delivery to the load 

for given conditions.  

 

So this now essentially completes the first part of analysis of Transmission Line. Here on 

wards we will go to more applications of Transmission Line, we will go and discuss a 

graphical representation of Transmission Line or graphical tool for analyzing the 

problems on Transmission Line and later on we will go to applications of Transmission 

Line at high frequencies.             

 


