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Welcome, we are discussing an important topic called Array Synthesis. In the last lecture 

we investigated the arrays whose radiation pattern is specified in terms of its nulls. We 

saw that there are applications where we would like to place some nulls in the specific 

directions to avoid the interference coming from those directions if the radiation pattern 

is specified in terms of the nulls of the radiation pattern then we can synthesize an array 

by using the circle diagram that is what we essentially investigated in the last lecture. 
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Today we investigate one more interesting array called the binomial array and later on we 

will go to the general array synthesis. As we have seen when the number of elements in 

an array increase the number of nulls also increase in the radiation pattern that means 

there are directions in which there is no radiation now we increase the size of the array 

because we want to increase the directivity as we have seen as the size of the array 



increases the beam width of the radiation pattern decreases and consequently the 

directivity of the array increases.  

 

So if we consider the uniform array then by increasing the length of the array or by 

increasing number of elements in the array we can increase the directivity but at the same 

time we also get more nulls in the radiation pattern. There maybe some applications 

where these nulls are undesirable we do not want to increase the nulls in the radiation 

pattern but at the same time we want to increase the directivity of the array. Precisely that 

is what is realize by an array what is called the binomial array.  

 

The concept is vary simple, let us consider a two element array to start with and as we 

have seen the radiation pattern for this can be given in terms of the z which we defined as 

a complex parameter last time so this one is having amplitude 1 and this one also has let 

us say amplitude 1 and it has a phase ψ into e to the power j ψ where the ψ is βd cosø so 

the angle ø is measured from the axis of the array so this angle is ø. So the array factor as 

we saw last time is equal to mod of one plus e to the power j ψ which we wrote as 1 + z 

where z is e to the power jψ so we defined this complex parameter z which is equal to e 

to the power j ψ. 
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Now for this array we have a null when z is equal to -1 so when this quantity goes to zero 

we have nulls. So for this array the null correspond to z is equal to -1 that is e to the 

power j ψ is equal to -1. So whenever this condition is satisfied you get the null in the 

radiation pattern.  

 

Now if you want that the directivity of the array should be increased but the nulls should 

not change in the radiation pattern one of the simplest way is that if I consider this as a 

polynomial and if I take N th power of this polynomial then the nulls of the function will 

not be change we will have again the nulls which will correspond to z equal to -1 and by 

expanding this polynomial then we will get N +1 terms which will represent an array. So 

as we have seen in the last lecture a polynomial in z can represent an array and an array 

can be considered as a polynomial. 
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So if I consider an array factor which is one plus z to the power N we get the new array 

factor which is one plus z to the power N so if I expand this now binomially I will get this 

is one plus Nc1 z plus Nc2 z square plus and so on with plus NcN z to the power N. As we 

discussed in the last lecture if I take the coefficients of z they essentially give me the 



current excitation so now this array factor corresponds to an array which have (N + 1) 

elements because there are N + 1 terms in this polynomial and the excitation coefficient 

would correspond to Nc1 Nc2 up to NcN. So if I consider an array of N + 1 elements with 

the coefficient as one, Nc1 which is equal to N, Nc2 which would be N(N – 1) upon 2! 

and so on till I go to the last element which is NcN which is again equal to one.  

 

If I have the current excitation which are given by this then the radiation pattern for this 

array would have the nulls only which are given by z equal to -1 so the nulls will not 

change but the length of the array is increased now there are N + 1 elements in the array 

and if I look at the current distribution it will start from one there will be n and then the 

current will increase up to the center of the array and again it will decrease we have a 

symmetric function for the current so essentially the current distribution if I look at the 

array it will it will look something like that and this will give me the radiation pattern 

which will have the same nulls which would correspond to z equal to -1.  
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We can look at this in a little different way from our basic the analysis of the array. Now 

let us consider a three element array which is having binomial coefficients so let us say 



we have three elements which are having three elements binomial array so this would 

correspond to essentially one plus z square that is what the polynomial would be so the 

coefficient for this would correspond to one two and one these are the binomial 

coefficient for one plus z square.  

 

Now if I consider a radiation pattern which would be given by one plus z square null 

would correspond to z = -1 and expansion of this will give me three terms so you have a 

three element array and the binomial coefficient should be one two and one. Now let us 

say this distance between these elements is d and this is also d. What we can think is this 

array is now equivalent to having array which is current like this and a current like this so 

this element which is having current amplitude two I can say is some of these two 

elements one and another one so this array of three element is can think of as the two 

arrays which is one array and this is another array. 
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Up till now we have consider the radiation pattern of the individual element which is 

isotropic. Before we investigate this array one can ask a question if the array elements 

where not isotropic if they had some intrinsic radiation pattern how would the array 



analysis change. So the question we are asking before we investigate this is if we 

consider an array of elements which are no more isotropic but have a radiation pattern 

which is given by the primary pattern which is given by f(θ. ø) that means if I go to some 

direction theta and phi now the fields will not be uniform be because of the individual 

elements they will be weighted by this function what we call as the primary pattern of the 

antenna element. So we call this function as the primary pattern.  

 

Now if I consider a direction which is ø with respect to the axis of the array as we have 

taken in our analysis let us say this angle is ø the radiation now will not be proportional to 

simply I but will also be proportional to what is this quantity f(θ, ø) which is the primary 

radiation pattern. So in a given direction the radiation is now the superposition of the 

fields because of the individual elements weighted by the primary radiation pattern. So if 

we consider that all the elements are identical so they have their primary radiation 

patterns which are identical all the radiations from different elements will be weighted by 

the same factor in a given direction. So I can write down the radiation pattern for this 

array which will be let us say the currents are given by I1, I2, I3 and so on and if the 

spacing between the elements is d and if the progressive phase shift between the elements 

is delta then we have we defined this quantity ψ which is β d cosø plus delta and the array 

pattern as we discussed is equal to I1 e to the power j0 plus I2 e to the power j ψ plus I3 e 

to the power j 2ψ plus and so on.  

 

Each of this radiation is now weighted by this quantity f(θ, ø) so earlier we had the field 

at a far away point which was proportional to only current and the phase was coming 

because of the propagational delay as well as the propagational phase shift. Now we say 

that the amplitude is going to be weighted by this quantity which is the primary radiation 

pattern. So essentially each of this term is to be multiplied by f(θ, ø) we will be multiply 

this by f(θ, ø) f(θ, ø) and so on which is nothing but saying that we have this pattern f(θ, 

ø) which is multiplying the pattern I1 plus I2 e to the power jψ plus I3 e to the power j 2ψ  

plus and so on.  
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So this quantity represents the radiation pattern which we would get assuming the 

elements to be isotropic. So we simply call this quantity as the array factor and this is the 

primary radiation pattern of your element so the total radiation pattern of an antenna array 

is equal to the primary radiation pattern multiplied by the array factor. So even if you 

have the antenna elements which do not have isotropic radiation pattern but the elements 

are identical that means their primary radiation patterns are same.  

 

We can still treat the array to be isotropic element array and whatever radiation pattern 

we get that that we call as the array factor finally we multiply that array factor by the 

primary radiation pattern of the antenna element. So the array analysis does not change 

whenever we have an array of non isotropic elements first we replace those elements by 

isotropic sources find out the radiation pattern what we call as array factor and then that 

array factor we multiply by the primary radiation pattern of the antenna element and we 

will get the total radiation pattern.  

 

Now this concept which is multiplication of the radiation pattern can be applied in variety 

of situation. It is possible that intrinsically the antenna element does not have a radiation 



pattern it is isotropic but I can combine some of the elements and I can treat the 

combination as a basic element which will then have radiation pattern which I can call as 

the primary radiation pattern and so on. Precisely that is what we will do in the analysis 

of this binomial array.  

 

So here initially we have the elements which are isotropic elements and now we have 

constrain that we have a three element array which has a current distribution one two and 

one and then we say this is equivalent to saying that there are two elements here which 

are having the amplitudes one and one so essentially we are considering now this three 

element array as a combination of two arrays of two elements so if this spacing is d, this 

spacing is d and this spacing is d. So now we are saying that this is equivalent to the two 

arrays or two elements so this two combined together now I can call an another element 

which is effectively located at the center of these two I can call another element which is 

located at the center of these two. But now this element is not isotropic because this 

element is representing combination of these two elements.  

 

So initially these elements are isotropic radiators but if I think of this as a combination of 

two arrays and I say this array is equivalent to this radiating element then now this one is 

having a radiation pattern which is a radiation pattern of these two element array. So 

initially the radiation patterns of they were isotropic that combination of these two are 

now isotropic but when we come here they are no more isotropic they have a radiation 

pattern which will look something like that.  
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So in this case your f(θ, ø) is equal to one because the radiation pattern is a isotropic 

whereas now in this case you have a pattern which is f(ø). So essentially what we can do 

is first you can find out the radiation pattern of these two elements which is f(ø) then we 

find out the radiation pattern of this product of the two will give the radiation pattern 

which is the radiation pattern of this three element array. So for this in the spacing is d we 

can write here the ψ which is β d cosø so for these two elements when we combine we 

have a primary radiation pattern f(ø) which is the array factor for these two elements that 

would be given as f(ø) would be equal to two times cosψ/2.  

 

Now we if we consider the two elements which are again separated by a distance d the 

array factor for these two elements also is given by cosψ/2 because d is same. So the total 

radiation pattern is nothing but product of this with the radiation pattern of these two 

elements which is again cosψ/2.  
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So the total pattern which we get for this binomial array will be equal to f(ø) multiplied 

by the array factor which is equal to two times cosψ/2 multiplied by again the array factor 

which is cosψ/2 so we get a radiation pattern which is two times cosine square of ψ/2.   
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So note here that whatever were the nulls in the radiation pattern the nulls are not altered 

and nulls correspond again to the nulls of the two element array which are given by this 

quantity cosψ/2 going to zero so we got a radiation pattern which is square of this and 

this concept can be extended now to any number of elements. So if we are having a 

binomial array of n element you can think of that as a combination of doublets so we can 

split this into a pairs of two and then we can combine them again together to find that the 

radiation pattern is simply N th power of the radiation pattern of the two element array. 

So this array is an important array because it can increase the directivity of the array 

without increasing the number of nulls in the radiation pattern. 

 

Having understood this, now we can come to the general synthesis of the array that is if 

somebody specifies the radiation pattern then we would like to know what are the 

excitation of the currents to realize that arbitrary radiation pattern. So let us now discuss 

the general array synthesis.  

 

Without losing generality let us say we now have the antenna elements which are 

isotropic and as we have seen even if they are not isotropic we can always multiply 

finally by the primary radiation pattern of the antenna. So as far as the array analysis is 

concerned we can treat the array element to be isotropic and let us say there are 2N + 1 

elements in the array so we have number of elements which are 2N + 1 and let us assume 

that these elements are excited with the currents which are having conjugate symmetry. 

So let us say we have this center element this one for which the current is given by I0 and 

then we have the currents which around this I which is I1 I2 and so on up to IN and on this 

side we have the currents which will be I1 conjugate I2 conjugate and so on up to IN 

conjugate. 
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We are assuming essentially there is an array which is having odd number of elements 

and there is symmetry in the current distribution in the sense that the amplitude of the 

currents is symmetric and the phases of the currents are antisymmetric. So if this phase is 

delta this will be minus delta and so on. Now this quantity is here I so I can write down in 

terms of real and imaginary parts. So explicitly we can say that current of let us say K th 

element is IK is given by aK + jbK.   

 

We can now do the array analysis essentially on these lines similar to what we have done 

earlier we consider a point which is very far away from the array in a direction let us say 

ø. So this is the axis of the array let us say this angle is ø and let us say we measure the 

distances from this reference element which is a center element which is having current I0 

so distance between the elements is d and we can define this quantity now ψ the array 

phase ψ which is equal to βd into cosø, we are not considering here the progressive phase 

shift explicitly because that can be observed into the phase of this current because we are 

considering this current which are complex in nature so whatever progressive phase shift 

we want to put on the array can be observed into this complex currents therefore we can 

define the array phase which is simply βd into cosø. 
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Once we do this then now we can write down the array factor for this by simply summing 

up the field which is induced by the individual antennas so applying simply superposition 

we can write down the array factor the current which is I0 for which we are considering 

as the difference element so the phase for this will be zero then this will be having a 

phase which will correspond to this ψ so I1 e to the power j ψ, I2 e to the power j 2ψ and 

so on and same thing we can do for the things on the other side. So we can write here I0 

plus I1 e to the power j ψ plus I2 e to the power j 2ψ plus up to the N th element on the 

right side which is IN e to the power j Nψ and then I take the element which are on this 

side so this will be I1 conjugate e to the power minus j ψ because this will be now lagging 

with respect to this element by phase ψ so you get here plus I1 conjugate e to the power 

minus j ψ plus I2 conjugate e to the power minus j 2ψ plus so on till in conjugate e to the 

power minus j Nψ. 
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Now we can combine the terms of this and noting that this I1 e to the power j ψ and I1 

conjugate e to the power -j ψ are complex conjugate of each other we can write this array 

factor as I0 plus I1 e to the power j ψ plus I1 e to the power j ψ conjugate this gives me I1 

conjugate e to the power -j ψ plus so on and the last term would correspond to IN e to the 

power j ψ plus IN e to the power j Nψ conjugate.  

(Refer Slide Time: 30:26 min) 

 



Now this thing can be combined together this is the quantity which is I1 e to the power j ψ 

and the conjugate of conjugate of that. So this essentially gives the real part of this 

quantity two times the real part of this so we can write down the array factor as I1 plus 

two times real part of I1 e to the power j ψ plus two times real part of I2 e to the power j ψ 

plus and so on two times real part of IN e to the power j Nψ.  
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Now noting that this current IK we can write in terms of this real and imaginary part as aK 

+ jbK we can substitute into this and that gives the real part of IK e to the power jK ψ that 

is equal to real part of aK + jbK e to the power jKψ. 
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Now if I take this then I can expand as e to the power jKψ is equal to cosine of K ψ plus j 

sine of Kψ so from here we can get this quantity real part of IK e to the power jKψ that is 

equal to real part of aK + jbK into cosKψ plus j sinKψ so that is equal to aK cosKψ - bK 

sinKψ. So now I can substitute in this expression for the array factor so this quantity will 

be two times a1 cosine of ψ minus b1 sine of ψ and so on. So we can write the array factor 

of this that is equal to I0 and from this I0 will be a0 + jb0 and since we are saying there is a 

conjugate symmetry the b0 has to be identically zero so we get from this expression has a0 

+ 2(a1 cos ψ - b1 sinψ) so two times this quantity plus two times a2 cos of 2ψ plus (–b2 

sine of 2ψ plus and so on till you go to the last term this two times aN cosine of Nψ minus 

bN sine of Nψ.  
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We can write down this term on cosine in one summation and sine in another that will 

give me a0 plus two times summation K is equal to one to N aK cosine of Kψ minus two 

times K is equal to one to N bK sine of Kψ. 
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Now this is nothing but the Fourier series of this quantity array factor so essentially the 

coefficient which we have here represents the real and imaginary parts of the current 

excitation they are nothing but the Fourier coefficients of the array factor which is 

nothing but the radiation pattern of the antenna.  

 

Now this relationship we had seen earlier in general relationship which was the Fourier 

transform relationship between the current distribution and the radiation pattern, the same 

thing now however we are seeing now in terms of the discreet current distribution and 

also since we are having a periodicity in ψ as we know that the radiation pattern is 

periodic over ψ we get instead of Fourier transform essentially we get a Fourier series in 

this case so if we know the radiation pattern which is the array factor and if Fourier 

expanded then the coefficient of Fourier expansion essentially represent the complex 

current excitation of the elements.  

 

So as we know that the Fourier coefficients can be obtained essentially multiplying these 

things by cosine of Kψ and integrating over a period essentially we can get these 

quantities aK and bK. So now what we see from here is that the radiation pattern 

essentially is given by the Fourier series expansion of this and larger the number of 

coefficients in this Fourier series better will be the approximation to the array factor in 

fact we can say that if we take the infinite terms in the Fourier series then this array factor 

which is periodic over ψ can be exactly represented. So what that means is that increasing 

the number of elements in the array we can increase the accuracy of the realization of a 

given radiation pattern.  

 

So now while designing the arrays we can have two constraints, either we can design an 

array which says that the desired radiation pattern should be realize within certain error. 

In that case then we will take increase the number of elements in the array so that we get 

the error between the two which is less than the specified error. So in this situation the 

error between the desired radiation pattern and the realized radiation pattern is specified 

and there is no constraint on the number of elements. The other possibility could be that 

depending upon the physical situation somebody may specify the number of elements and 



then say get the best possible radiation pattern from this which is close to the desired 

radiation pattern.  

 

So in that case essentially we find out the radiation pattern which is closest to the desired 

radiation pattern in the least square sense. So, essentially the Fourier expansion when we 

do this it gives the radiation pattern which is best fit to the desired radiation pattern in the 

least square sense. Precisely that is what essentially we do now when we design the 

arrays that first we express the radiation pattern in terms of ψ then we Fourier expand that 

function of ψ which is periodic over 2π and then the coefficient of the Fourier series 

gives you the current distribution or the excitation of the antenna elements.  

 

Let us look at a problem and this will become little clearer. Let us say we want to design 

an array of five elements and the array is broadside in nature and its radiation pattern is a 

sectorial radiation pattern with sixty degree sector angle. So let us consider the problem 

design an array of five elements. Now as we have seen earlier the spacing between the 

antenna elements should be equal to λ/2 if we do not want overlap of the range of ψ, also 

we have seen if the spacing was taken less than λ/2 then the range of psi is less than 2π 

and then the full range of ψ is not covered by the visible range and therefore it is 

optimum to take the spacing between the antenna elements to be λ/2. 

 

So let us say we take in this case also the distance d = λ/2 and let us say now the radiation 

pattern which we want to realize by this is a sectorial radiation pattern in broad side so it 

is having an angle which is sixty degrees this angle is sixty degrees. We are now looking 

for a radiation pattern which is uniform over an sixty degree sector around broad side and 

no radiation beyond the sector. In practice you might find an application where you 

would like to eliminate the certain zone in the radiation region. For example if we have a 

satellite and I want to put an antenna beam over a certain current and we do not want to 

create interference near by regions we would like to create a beam which is uniform over 

a certain sector and it should be zero ideally beyond the range of their sector.  

 



So we have a requirement where now the ø essentially from here to here is zero here ø is 

going from here to here the radiation pattern is zero and it is one over this sector. So 

essentially the specification is that your array factor of the radiation pattern is equal to 

one for ø less than π/3 greater than π/3 less than or equal to 2π/3 and it should be zero 

otherwise.  
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So we want to find out the excitation of the antenna element which would produce this 

radiation pattern. Now as we have seen earlier first we have to find out the radiation 

pattern in the ψ domain so ψ will be β d cosø and since we are taking d as λ/2 this is 2π 

divided by λ into λ/2 cosine of ø which is π cosine of ø. So now the array factor in terms 

of ψ which is f(ø) will be equal to one for this range of ø and if I substitute that in this I 

get the values of ψ in between -π/2 to π/2. 

 

So now essentially we are looking for a function radiation pattern which is a function of 

ψ which is one over range of -π/2 to π/2.and is zero elsewhere. If I plot now the radiation 

pattern in ψ domain this is f(ψ) this is -π/2 this is +π/2 this is zero and this is π this is -π 

so as we mentioned the periodicity is over 2π so the function which we want the Fourier 



expand is functional this value is one and this is zero in this range zero in this range. 

Firstly we will note for this that this function is symmetric as a function ψ so the 

coefficient bK will be identically zero for this expansion and we will get a0 which is one 

over 2π integral -π to π amplitude is unity d ψ that is equal to 1/2 and we can get here this 

quantity aK that is equal to 1/2π.  

 

Now note here this function is one only from -π/2 to +π/2 that is why you get this 

quantity which is 1/2. Similarly this one is from -π but this quantity is only one over -π/2 

to +π/2 so we can as well put the limits as -π/2 to +π/2 cosine of Kψ dψ that will be equal 

to one upon Kπ sine of Kπ/2 and bK’s are identically zero because this function is a 

symmetric function in ψ. 
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So now essentially we get the current coefficients for this which would be a0 which is 1/2 

then we have a one which is if I put K = 1 in this, this will be one upon π so a1 will be 

one upon π, a2will be when I put K = 2 this will become sinπ which is zero so a2 will be 

zero, a3 is equal to -1/3π when I put K = 3 and so on these are the coefficients which we 

essentially get.  



(Refer Slide Time: 48:17 min) 

 

 
 

So now if I look at the current excitation for this array as we have seen these are 

conjugatively symmetrically excited so this quantity is one upon two this excitation, the 

a1 is having excitation of 1/π and since this quantity is coming real in this case this also 

will be 1/π that is the currents, the second quantity which correspond to this element is 

zero and since we are permitted to take five elements we want to design an array which 

has five elements since this current is zero we can take the next current this current is 

zero this element is not there and for which the amplitude would be -1/3π, similarly this 

current will be zero and next current will be -1/3π so the array essentially which we get 

which is five element will be this, this is one element this is another element this is 

another element then this element and this element. So though we started initially with a 

array which is uniform array that spacing between the adjacent element was same which 

was λ/2 in synthesis process we essentially end up into an array which is non uniform 

because this current is now zero so we may say that we have five elements but the 

spacing between the elements is not same this spacing is double of the spacing between 

these two elements. So essentially now if we excite this array with these coefficients then 

we can get a radiation pattern which will be the sectorial radiation pattern of this nature.  
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So essentially the array synthesis problem is rather straight forward problem once the 

array pattern is specified in ψ domain and if we take the inter element spacing to be λ/2 

then the visible range of ψ is equal to 2π which is the periodicity of ψ. So the steps 

involved in the synthesis are as follows, first you take the radiation pattern which is 

specified in the physical angle ø convert this radiation pattern in ø to the radiation pattern 

in ψ which is the array angle ψ so you get now the function which is periodic over ψ 

equal to ±π then you find out the Fourier coefficients for this function and the coefficient 

of the Fourier series essentially will give you the current distribution.  

 

So by doing this and by increasing the number of elements to any arbitrary number 

essentially one can realize the radiation pattern which could be as accurate as possible to 

the desired radiation pattern. So as we mentioned there are two possibilities one is that 

the number of elements are specified then we get a radiation pattern which is the best fit 

to the given radiation pattern, if the number of elements are not specified but the error is 

specified then one can get the number of elements which would give the error between 

the desired and the synthesis radiation pattern less than the specified error.  

 



So this essentially completes the discussion on the array analysis and synthesis that is if 

the antenna array is given to you we can find out the radiation pattern but in practice the 

problem is opposite at somebody specifies the radiation pattern and we have to find the 

current distribution. So array synthesis essentially provides you the formulation which 

can give you the excitation of the currents for a given radiation pattern. 

 

Thank you. 


