
Transmission Lines and E.M. Waves 
Prof R.K. Shevgaonkar 

Department of Electrical Engineering 
Indian Institute of Technology Bombay 

 
Lecture-54 

 

Welcome, we are discussing a very important topic in antennas called antenna arrays, 

first we saw some broad characteristics of the two element array and later we started 

investigating a uniform linear array. 
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So we saw in the last lecture that we have a uniform array which are excited with equal 

amplitudes the spacing between adjacent elements is also same and then we have 

essentially three parameters for this array the total number of elements in the array the 

inter element spacing we denote by d and a progressive phase shift that is the phase shift 

between the two adjacent elements that is delta. 
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And then we started investigating the characteristics of this array and the effect of these 

three parameters on the radiation pattern of the array. We defined this quantity the total 

phase ψ which is β d into cosø where ø is the angle measured from the axis of the array 

so axis is the line joining the antenna elements and the angle ø is measured from this axis  

so the angle ψ is defined as β d cosø which is the space phase and the electrical phase 

which is in the excitation of the currents of different elements so that is the progressive 

phase shift delta. Then by simply applying the superposition we get the radiation pattern 

of the linear array of elements and in normalized radiation pattern essentially it is given 

by this expression and then we investigated the properties of this radiation pattern that is 

the direction in which the radiation is maximum and we saw that when ψ = 0 that time or 

radiation terms add and we get a maximum radiation so ψ = 0 corresponds to maximum 

radiation and then we also investigated the directions of the nulls that is when the 

numerator goes to zero that means Nψ/2 is equal to zero that time or a zero or multiples 

of π that time we get the nulls in the radiation pattern. 

 

Following further now you would like to know that what the directions of the side lobes 

are, what is the level of the side lobe and also we will try to investigate what is the 



directivity of this array and we will also try to see how the directivity changes as the 

direction of the maximum radiation changes.  
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So if I look at this function here the numerator function if I plot as the function of ψ if N 

is large then this function is a rapidly varying function this function is relatively slowly 

varying function so if I plot these two functions on the same scale as a function of ψ the 

functions numerator and denominator would look like that. So here we are plotting the 

numerator modulus of that and here we are plotting the denominator and we vary the ψ 

from zero to 2π. So this function is rapidly varying function if N is large and when ever 

this function goes maximum that time we have a local maxima when this function goes to 

zero we have null. So essentially these directions where this function is maximum 

correspond to the directions of the side lobes. 
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So going back to the expression then one can say when ever this quantity Nψ/2 is 

maximum and that will be this quantity is one because maximum value of sine is one so 

when ever this quantity is odd multiples of π/2 that time you will have a maximum for 

this function and then you will have a side lobe at that location.  

 

So today we see the directions of the side lobes and this side lobe essentially comes in the 

direction N when Nψ/2 is odd multiples of π/2 this is ± (m +½) π. Now substituting for ø 

which is βd{cosø - cosømax} we essentially now get the directions for the side lobe so 

from here this gives essentially the ψ which is equal to β d into cosø and let us call this 

directions as SL representing the side lobes and -cosømax that is equal to ±(m + ½) π, like 

I bring this two up there so this is 2/N.  
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Now the direction of the side lobe by inverting this thing β d on this side essentially we 

can write down the directions of the side lobes, if I take n equal to one that is the first side 

lobe then that will be giving me the first level of the side lobe after the main beam then I 

increase the value of m essentially I get the amplitudes of the various side lobes. So from 

here I can invert this the relation so from here we get cosøSL that is equal to cosømax ± (m 

+ ½) π imto 2/N divided by β d and β d is 2π/λ. So 2π will gets cancel and we get from 

here cosømax ± (m +½) λ/dN   
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Now again since this is representing cosøSL we have to choose those values of m for 

which this quantity magnitude of this quantity will be less than one and that essentially 

will represent the direction of the side lobes. One can also argue from the simple thing as 

we discussed earlier that is finding out the local maximum requires differentiation of the 

expression, whereas if you follow a simple logic that there is a maximum between the 

two zero’s of the function we can very easily calculate the directions of the nulls by 

equating the function to zero. So first we find out the direction of the nulls and then we 

say somewhere half way between the two nulls there must be maximum for the function 

so approximately we can calculate the direction half way between the two nulls. So if you 

are interested in finding out approximate directions for the side lobes then essentially we 

find out the direction of the nulls and we say the side lobe between any two adjacent nulls 

and half way is the maximum for the local function. So basically you have a side lobe 

which is half way between the two nulls. 

 

So by using any of the arguments essentially we can find out approximately the directions 

of the side lobes. What is important however for the side lobe is not the direction but 

what is the amplitude of the side lobe because that tells you how much energy is leaked 



in the direction in which we never intended to send the energy, the array is used to send 

the energy in the direction of maximum radiation that is what is called the main beam of 

the antenna, however, because of side lobes the power leaks and that essentially is the 

wastage of power. 

  

So more important parameter for the side lobe is what is the amplitude of the side lobe 

compared to the main lobe so in the normalized radiation pattern as we know the main 

lobe will have a amplitude which is one because when the size equal to zero this quantity 

would be equal to one so we have the maximum amplitude in the radiation pattern which 

is equal to unity then one can ask what is the amplitude of the side lobe or what is the 

amplitude of the highest side lobe. So first let us see if I vary this value of m from one 

two and three and so on how the amplitude of the side lobes will vary? So as we said 

earlier when ever this quantity is pi by two I get the first side lobe when ever this quantity 

is 3π/2 I get second side lobe, 5π/2 third side lobe and so on. 

  

So essentially when we put the quantity here m which goes from 1, 2, 3 and so on so m 

equal to one correspond to the first side lobe remember here the side lobe is going to 

come only after first zero is crossed so m = 0 would not represent the side lobe the m has 

to start from one because the first null will occur corresponding to m = 0 that will 

correspond to this quantity when we put m = 0. So essentially what we find from this 

expression is that if I substitute m equal to one which corresponds to the first side lobe 

then at that location this quantity will be one and sine will be corresponding to Nψ/2 

equal to 3λ/dN. 

  

So we get from here that for the first side lobe we have Nψ/2 that is equal to 3π/2 so you 

can get from here ψ/2 = 3π/2N so the amplitude of the first side lobe will be equal to if I 

substitute the ψ/2 is equal to 3π/2N that will be equal to one upon N mod of one upon 

sine of 3π/2N.   
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Note here the side lobe the numerator is maximum which is equal to one now we have 

substituted the value of ψ corresponding to making this quantity 3π/2N or this quantity is 

equal to one so this is the amplitude of the first side lobe. Now if I consider a array which 

is large that means N is large this thing can be approximated equal to θ so approximately 

I can say this is equal to one upon N into mod of 1/(3π/2N) the N would cancel and this is 

approximately 2/3π so the amplitude of the first side lobe is 2/3π.  
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if I go to the second side lobe that would correspond to this angle which is sine 5π/2 so 

Nψ/2 if I take 5π/2 that will give me the second side lobe, if I take that equal to 7π/2 that 

will give third side lobe and so on.  

 

So here I have the second side lobe amplitude which is approximately 2/5π, the third side 

lobe amplitude will be approximately 2/7π and so on so as I go away from the main beam 

the m increases and the amplitude of the side lobe decreases so the highest side lobe 

essentially is the one which is the first side lobe which is next to the main beam. So if I 

look at the radiation pattern if I plot this radiation pattern now the radiation pattern will 

essentially look like that in the Cartesian coordinate let us say this is the plot of this 

expression the radiation pattern which we have got which is sine Nψ/2 upon sine ψ/2 as a 

function of ψ if I put the function of ψ this is the one which corresponds to ψ = 0 which 

we call as the main beam and these are the locations of the nulls where the function goes 

to zero these are nulls and these are the locations of the side lobes so we have this is side 

lobe one this is also side lobe one this is side lobe two and so on.  
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So as we saw this amplitude here is 2/3π this amplitude will be 2/5π so the amplitude of 

this side lobe is reducing as we go away from the main beam so the highest side lobe is 

this one which is having an amplitude which is 2/3π which is approximately 21% so this 

quantity first side lobe which we get is approximately 21% of the main beam amplitude 

so if I say this is normalized this is one  this will be -0.21, this amplitude which 

corresponds to second side lobe which is 2/5π will be thirteen percent of the maximum so 

this value will be 0.13 and so on the same pattern if I put in the polar plot then it will be a 

maximum beam which corresponds to the main beam then we have a side lobe which is 

21% of this which is like that, this will be second side lobe and so on and this is the 

direction which corresponds to main beam which is ψ = 0 so if i see on a polar plot this 

gives you the unity this will correspond to 21% of the level which is first side lobe. 
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So the interesting thing which we note from this is the level of side lobe is not dependent 

of any of the array parameters, for example, we had three array parameters which were 

identified that is the number of elements in the array the progressive phase shift of the 

array and the inter element spacing of the array where the progressive phase shift decide 

the direction of the maximum radiation, the number of elements are not coming in the 

direction of the maximum radiation and the nulls are of course decided by the number of 

elements in the array and larger the value of N more will be the nulls so the number of 

side lobes which we will see in the radiation pattern will increase then the number of 

elements increase in the array but the amplitude of the side lobe is independent of number 

of elements. 

 

As long as N is large the first side lobe which will be about 21% and by no means you 

can really control this parameter that means for a uniform array you will always have the 

directions in which the power will leak and the power will be leaking in the direction 

which will be substantial because this is about 21% this will be 13% if I sum up all 

together you will see that the substantial loss of power in the directions which are the side 

lobe directions compared to the main beam direction. So side lobe as such as is a very 



undesirable characteristic of radiation pattern because that essentially represents the loss 

of power in the radiation pattern. However, we cannot do much for uniform array as long 

as the current distribution is uniform that means if the currents are equally excited and if 

there is only progressive phase shift we will always get the side lobe level which is 21%.  

 

The next thing that one would like to find out is what the effective angular sector in 

which the radiation is going for this array is and that thing we measure by parameter by 

the half power beam width of the array. So once the radiation pattern is given to you the 

next interest would be what the half power width of this radiation pattern is. So as we 

defined earlier we have the radiation pattern that we draw the radiation pattern little 

expanded so this is what the radiation pattern as the function of ψ this is the direction of 

the maximum radiation and if I take the 3dB points of this radiation pattern that is when 

the electric field goes to one over root two of its maximum if I take these two points 

where this is one upon root two we can find these two directions and this angular width 

would give me the half power beam width. So I can get first the half power beam width 

inside and from there I can convert the half power beam width into the physical angle 

which is ø. 
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However, in this case again we have to take the radiation pattern equate the radiation 

pattern to one over root two, solve the expression and then find out the directions from 

there we can calculate the half power beam width. So essentially what we are saying is if 

I take this expression for electric field E which is sin(Nψ/2) divided by N sin(ψ/2) and 

equate that to one over root two, solve numerically this because you cannot solve 

analytically so solve this numerically find out these two directions where the amplitude 

will reduce to one over root two of its maximum value and then find out the half power 

beam width.  

 

However, this process is very tedious because this problem you have to solve numerically 

so what people normally do is they say if the array is large and the number of elements is 

large this function is almost like linearly varying from one to zero up to the first nulls so 

if you make an approximation this function is more or less linearly varying from here to 

here essentially this width the width between the first nulls around the maximum 

radiation will be approximately double of the half power beam width if this function is 

approximated by a linear function and finding this direction of null is much easier than 

finding this direction where the function reduces to one over root two of its maximum 

value.  
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So for a approximate calculation of the half power beam width what we can do is we can 

find out the directions of the nulls from there we can find out the beam width between the 

first nulls and then we say the half power beam width is approximately half of the beam 

width between the first nulls. So we essentially say that approximately the half power 

beam width is equal to the beam width between first nulls divided by two. 

  

Now if I have a radiation pattern I my job is essentially to find out the directions of the 

nulls from there I can calculate the beam width between the first nulls and the half of that 

would be approximately the half power beam width. However it should be kept in mind 

that depending upon the direction of the maximum radiation the two nulls may not be 

always visible, what do I mean by that is let us consider a radiation pattern let us say this 

is the axis of the array and the direction of maximum radiation is somewhere here this is 

my ø max, now the radiation pattern might look like that other possibility if the direction 

of maximum radiation is somewhere there let us say this is the direction of maximum 

radiation I may have a radiation pattern which will look like that.  
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Since the radiation pattern is a figure of revolution around the axis of the array essentially 

we will get this will be if I draw that it will look like that the same will happen here like 



this. So since the range of phi is from zero to pi the nulls for this radiation pattern which 

corresponds to this is visible but the null corresponding to the other side of the main 

beam is not visible in this case. 
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So now if I look at the expression for the side lobe which we have got here we get this 

quantity plus or minus so if I take the value plus here it represents essentially the nulls 

which are on this side of the main beam whereas if I take the negative sign and that 

would correspond to the null which are on this side of the main beam. So in this case you 

will have a null corresponding to m = +1 and so on, where as in this case the null 

corresponding to m = +1 is not visible but the null corresponding to m = -1 is this the 

minus sign. The same is true in this case in this case the negative sign null corresponding 

to negative sign is not visible but the null corresponding to the positive sign is visible. 

  

So in this situation one can make further approximation and can say that assume that the 

nulls are symmetrically placed in ø domain, also they are symmetrically placed in ψ and 

as we mentioned earlier there is a non linear relation between ø and ψ so the nulls need 

not be equi spaced in ø, however, if you make an approximation that nulls are equi 

spaced in ø then we can easily find out the direction of the maximum radiation and the 



null which is half of the beam width between the first nulls which is approximately equal 

to the half power beam width of the array. So for approximate calculation of half power 

beam width of the array we can now do this kind of simplification so essentially what we 

do is we find out a direction of the maximum radiation find the direction of any of the 

nulls which is visible, find the difference between these two directions that is 

approximately equal to the half power beam width of the array.  

 

So ideally speaking if these two angles are let us say this is ø2 and this is ø1 and let us say 

this one corresponds to the null for which the angle is given as øn1 to the power plus 

where this plus corresponds to the positive sign and this angle corresponds to angle øn1 to 

the power negative sign. So the half power beam width øHPBW is equal to ø2 – ø1 that is 

the half power beam width that is approximately as we said is øn1 to the power plus minus 

øn1 to the power minus divided by two and that we said if the direction of the maximum 

radiation is ømax that we said is approximately equal to øn1 to the power plus minus ømax 

and that is approximately also equal to ømax minus øn1 to the power minus. 
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So if I consider any nulls in this case this would correspond to øn1 to the power minus this 

would correspond to øn1to the power plus so this angle is approximately equal to the half 

power beam width the same is true here this angle corresponds to the half power beam 

width. 

  

So if I have a situation like this I will say half power beam width is øn1 to the power plus 

minus ømax, if I have a situation like this and I can say this is ømax minus øn1 to the power 

minus. If the both nulls are visible then I can calculate these two directions and is øn1 to 

the power plus minus øn1 to the power minus divided by two will give me approximately 

the half power beam width. 
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Let us take one of the cases let us consider that I use this expression I have a situation 

something like this and that gives me approximate direction of the half power beam 

width. So let us say I use this expression which says the half power beam width is 

approximately equal to øn1 to the power plus minus ømax. Now øn1 to the power plus 

would correspond to when this m is if you take this plus sign and this is m = 1 so by 

doing this we get cosine of øn1 to the power plus would be equal to cosømax minus λ/dN 



so you can get from here cosine of øn1 to the power plus minus cos ømax is equal to λ/dN 

we can take the sign as positive we can expand this the cosine using the identity so we 

can get this as two times sine of øn1 to the power plus minus ømax divided by two into sine 

of øn1 to the power plus minus ømax divided by two that is equal to λ/dN. 
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Now this quantity as we said is nothing but half power beam width so I can substitute 

now for øn1 to the power plus as the half power beam width plus ømax so this one can be 

written as two times sin(øHPBW/2) into if I substitute for this which is ømax plus phi half 

power beam width it will be sin[(2 ømax + øHPBW)/2] that is equal to λ/dN. 



(Refer Slide Time: 35:30 min) 

 

 
I can expand this thing to get two times sin (øHPBW/2) times the expansion of this which is 

sin(ømax) cos (øHPBW/2) plus cos(ømax) into sin (øHPBW/2) that is equal to λ/dN. 
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Now if N is very large the half power beam width is much much smaller than one 

because the beam width between the first nulls is going to be very small. So if I say that if 



n is much much greater than one for a large array that would mean that ø half power 

beam width is much much less than one in radians. 
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So I can make the approximation that if this condition is satisfied so you know that if x is 

much much less than one then sin x can be approximated by x and cos x could be 

approximately one so I can substitute now into this so this quantity here which is very 

small so I can make this quantity almost equal to one and this quantity is half power 

beam width divided by two so we can write down this expression approximately it is two 

times sine of we are approximating this also by x so two times half power beam width 

upon two sine of ø max this quantity is one  plus cos ø max and this is equal to øø half 

power beam width divided by two so this is phi half power beam width by two that is 

equal to λ/dN.   
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I can simplify this it to further to get the expression which is øHPBW square into cos ømax + 

two times sin ømax into øHPBW that is equal to 2λ/dN. Note here the expression which we 

have got is from here so this quantity is ø of half power beam width multiplied with this 

that will give me the ø square half power beam width multiplied by cosine of øx, second 

term will be two times sine of phi maximum multiplied by ø of half power beam width 

that is equal to 2λ/dN. 

  

Now we can take two extreme cases that are when the beam is in the broad side direction 

and the beam in the N ø direction that means when the ømax is zero that is the end fire 

direction or when the ømax is π/2 is the broad side direction. First thing we would note that 

if I solve this equation for the phi half power beam width the phi half power beam width 

essentially increases as we go from broad side direction to the end fire direction.  

 

So if I numerically solve this for different values of phi max essentially we will see that 

as the beam direction changes from the broad side to the end fire the half power beam 

width of this array increases monotonically. So if I take these two extreme cases that 

when ømax is π/2 that is broad side direction and if I take the case end fire ømax is zero 



which is the Nø direction, essentially I will get this two extreme cases and one can say 

that systematically the beam width will be increasing from the broad side direction to the 

n phi direction. 

 

So for broad side array the ømax is π/2 so I can substitute here ømax equal to π/2. So this 

will go to zero this will be equal to one so I get from here the half power beam width for 

the broad side array which is approximately equal to λ/dN, for the end fire array the ømax 

= 0 and then this quantity is zero this will be equal to one so we will get øHPBW which will 

be approximately equal to square root of two λ/dN. 
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Now for a N element array since the inter element spacing is d the length of the array is d 

into (N – 1), if N is very large the d into (N – 1) can be approximated like d into N so this 

quantity d N essentially gives me the length of the array. So then approximately I can say 

that this is λ divided by the length of that, the same thing I can do here so this is square 

root of 2λ divided by length of the array. 
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So when the beam is in the broad side direction the half power beam width is inversely 

proportional to the length of the array or for given inter element spacing it is inversely 

proportional to the number of elements. So number of elements essentially plays a role in 

deciding the angular zone in which effectively the energy goes, as the number of 

elements increase in the array for a given inter element spacing the half power beam 

width will become smaller and consequently now the radiation will go into a narrower 

angular zone or in other words, the antenna array now has more focus radiation the 

radiation does not go in larger sector it goes into a very narrow cone so we get more 

focusing of the radiation in given direction or in other words it increases directivity of the 

antenna when the number of elements in the antenna increase for a given inter element 

spacing. Or if I go in general if I combine d and N into together I can say that as the 

length of the array increases which could be a combination of the inter element spacing 

and the number of elements, in general the directivity of the antenna would increase 

because the half power beam width of the antenna would decrease. 

  

So around the broad side direction since there is inverse relationship between the half 

power beam width and the length of the array the antenna beams broadens almost linearly 



as a function of length, however, as I go towards the N ø direction then the dependence is 

weaker because you are having a square root of the length of the array. So essentially as 

we go for a given array two things we have to observe now one is if I scan the beam for 

the phase array let us say this is the array I will get the narrowest beam in this direction 

and I will get the broadest beam in this direction. So the beam width essentially it 

increases as we change the direction of the beam from the broad side to the end file. This 

is very important because when ever we use the antenna array in a environment where we 

want to scan the beam by changing electronically the phases what is called the phased 

array antennas the beam width does not remain constant while scanning the antenna. 

  

So purpose of the phase array antenna is that without moving physically the antenna if 

you can control electronically the phases or if I change progressive phase shift of the 

antenna array then the direction of the maximum array would change and the beam would 

scan something like that from horizon to horizon depending upon how much phase 

gradient you are going to put on the array. While doing this however we do not want the 

beam shape to be changed significantly but we see here that it will not happen when we 

see when we have a beam in this direction you will get the beam width which is the 

narrowest when the beam comes here it will be broader compared to this and the beam 

comes to the horizon the beam will be the broadest beam. 
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Visualize this radiation pattern as the beam is scanning in the three dimensions and in 

fact they have totally different appearances it looks like if I consider the planar radiation 

pattern it will look the beam width will be narrow here something like that when it comes 

here it will be it will be broader so it will be looking something like this similarly when it 

comes from the other side it will look broader like that so it looks as if the beam simply is 

broadening otherwise the pattern practically remains the same that is the appearance you 

get from the planar radiation pattern. 

  

However as we mentioned earlier we should always look at the radiation pattern which is 

in three dimension so if I do that then it is radiation pattern is figure of revolution around 

the axis of the array so for a broad side the array would essentially look like that which is 

more like a disc something like this, where as when I go to the end fire array the end fire 

array will be figure of revolution around the axis it will be like that.  
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So in one case though the beam in the planar looks only change in shape for change in the 

half power beam width if I visualize the radiation pattern in three dimension the radiation 

patterns are quite different in two situations the end fire will look more like a balloon like 

that where the broad side would look more like a flat disc which is figure of revolution in 

this direction. 

 

Having understood this then one can go to the calculation of the directivity of these 

antennas in the two extreme cases which is the broad side and the end fire direction and 

there is something surprising because looking at this it appears when the beam is 

scanning from here to here since the beam is broadening the directivity of the antenna is 

decreasing because the half power beam width increases. However this conclusion may 

be erroneous if we make only on the basis of planar radiation pattern. So further we will 

investigate the directivity of uniform array and that understand would develop essentially 

by getting the three dimensional radiation pattern of this array. 

 

Thank you.    


