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Welcome, in the last lecture we introduce the concept of Loss-Less Transmission Line, 

we say if the resistance and the conductance per unit length of the Transmission Line is 

zero then there are only reactive elements in the Transmission Line so there is no loss of 

power because there is no ohmic element in the Transmission Line. So in an ideal 

situation the line is lossless if R = 0, G = 0 
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Then we introduce the concept of the Low-Loss Transmission Line which is more 

practical line where the resistive component R is much more less than ωL and G is much 

more less than ωC. 
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If this condition is satisfied then we said that we can create the lines still lossless. 

However since the loss is very small as and when we require the calculation of losses 

along Transmission Line we can use the value of the attenuation constant α, substituting 

this condition that R is much more less than ωL and G is much more less than ωC we 

calculated the propagation constant which can be separated into real and imaginary part 

and then we got the value of α and β in the approximate form. 
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So, here this quantity was equal to β and this quantity was represented as α. However one 

would notice that the condition which you have defined for the low loss is now in terms 

of the primary constants of the line. However in the data sheet for a Transmission Line 

the primary constants are rarely mentioned, the parameter which I have mentioned for the 

Transmission Line are the effective phase constant on the line or the velocity on the cable 

and the attenuation constant of the line either in terms of dBs or in terms of Nepers.  

 

Then one would like to convert this condition R < ωL and G < ωC in terms of this 

secondary parameters or in terms of the relationship between β and α. Since these 

parameters are available readily in the data sheet if I can establish a condition between 

these parameters for low loss nature of the line then I can find out whether a particular 

line is low loss at a particular frequency.  

 

So now what we do is starting from this relationship between β and α then we can find 

out under what condition we can treat the line as a Low-Loss Transmission Line. Taking 

this value of α I can multiply this quantity here by a square of L in the numerator and 



square root of L in the denominator similarly I can multiply this quantity by square root 

of C in the numerator and square root of C in the denominator.  
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So now the α can be written in terms of this substitution so I get this value of α which is 

equal to 1 R LC
2 L

. Similarly multiplying by C  in the numerator and the denominator 

in the second term we get 1 G LC
2 C

. Multiplying numerator and denominator by ω this 

can be written as 1 R 1 GLC LC
2 L 2 C

ω ω
ω ω

+ . 
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And as we have seen earlier this quantity LCω  is nothing but β so this I can write as β 

in to 1 R 1 G
2 L 2 C

β
ω ω

 + 
 

. 

 

Now from the definition of the low loss R
Lω

is much more smaller than 1, G
Cω

 is much 

more smaller than 1 so this whole quantity is much more smaller than 1 so essentially 

what we are saying is now α is equal to β multiplied very small quantity or in other words 

for low loss the condition now is that α is much more less than β. 

 

Since we know β in terms of wavelengths which is nothing but two 2π
λ

. Once we know 

the wavelength on the Transmission Line I can find out what is the value of β from the 

data sheet I can find out what the attenuation constant α is. If it is given in terms of dBs I 

will convert that in the Nepers per meter and if this condition is satisfied that the β is 

much larger compared to α then the line can be treated as the Low-Loss Transmission 

Line.  
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What does this physically mean we know if you travel at a distance of λ on Transmission 

Line the phase change is equal to 2π.  

 

Let us say if I travel the distance for a lossy Transmission Line then the amplitude of the 

wave will reduce by e–α into the distance traveled which is one wavelength. So if I 

consider a wave which travels a distance of one wavelength on Transmission Line then 

its amplitude will vary e–αx that is equal to e–αλ. 

 

If I travel a distance of one wavelength on Transmission Line substituting for λ which is 

2
β
π

 from the previous equation so λ is 2π
β

 I get here this is equal to 
.2

e
α π
β

−

 . 
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Since for low loss condition α is much smaller than β this quantity .2α π
β

is much less 

than 1 that means the amplitude of the wave now reduces to 
.2

e
α π
β

−

 and since this quantity 

is very small essentially the amplitude reduction in the wave is negligibly small. So in 

other words what we are saying is a line can be treated a low loss transmission line 

provided the change in the amplitude of a traveling wave is negligibly small over one 

wavelength distance. Of course negligibly small is a very subjective number you can 

consider one percent as negligible or 0.1 percent as negligible.  

 

Let us say as a reference value we consider one percent is a negligible quantity so when 

the amplitude reduces to one percent of its original value then we say that the line can be 

treated as a Transmission Line. Since this quantity is very small essentially when this 

number becomes approximately one percent that is where the amplitude will reduce by 

one percent so if .2α π
β

  is approximately 1
100

 the wave amplitude will reduce by one 

percent over a distance of one wavelength from here then I can find out  what is the 

acceptable value of α compared to β.  
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So in practice for a given line there is nothing absolute whether the line is lossy line or a 

low loss line for a given frequency it may be possible that α may be much smaller than β 

but when the frequency changes the condition may not be satisfied and the line cannot be 

treated as a Low Loss Transmission Line. So for a given loss on Transmission Line 

depending upon the frequency the line may be treated like a low loss transmission line or 

it may not be treated like a Low Loss Transmission Line.  

 

Let us take a simple example to find out what are the physical parameters which we will 

have on Transmission Line if we just take some typical line parameters. So let us say I 

have a Transmission Line whose primary constants are given as L = 0.25μH/m, let us say 

the capacitance per unit length is 100 pico Farad per meter, let us say the conductance per 

unit length is zero for this Transmission Line. So G = 0 and we want to know what 

should be the resistance per unit length of the Transmission Line so that the line can be 

treated like a low loss transmission line.  

 

Let us say the frequency of operation is equal to 100 mega hertz. From here since I know 

the value of L and C and the frequency I can find out what is the value of β. So β is equal 



to 2π into frequency which is hundred mega hertz which again is 108 hertz into L  

which is 0.25 x 10-6 or micro henry multiplied by hundred into 10-12 or the pico Farad. 

This will be equal to π radians per meter. 
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Just to take a number if I say α is less than one percent of value of β then I can treat the 

line as the low loss transmission line. The α should be approximately 
100
π .  Now I can go 

back and substitute this value of α in the expression for α that is α = 1 CR
2 L
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and if I substitute the value of C
L

 and the value of α which is 
100
π  as you have taken 

one percent of the value of β then I get the value of R which is less than R = π 

approximately 3.14 ohms per meter.  

 

So if I accept alpha value to be one percent or less of the propagation constant β or the 

phase constant β then the resistance per unit length of the Transmission Line should be 

3.14 ohms per meter at the frequency of hundred mega hertz. Of course as I said the 

frequency changes then the acceptable value of resistance will change because the line 

may not satisfy this condition at that frequency.  

 

now having understood this as we mentioned earlier until and unless somebody 

specifically tells you that the line is a lossy line we take a liberty to create the line as a 

loss less line because as first order as we have seen that the phase constant for a low loss 

line and a lossy line is same, also the characteristic impedance of a low loss line is almost 

real and that is same as the characteristic impedance of loss less line.  

 



So here onwards until and unless somebody specifically say include the losses in the 

calculation of Transmission Line we will treat the line to be lossless and carry out all our 

analysis for a Loss-Less Transmission Line. So essentially we will assume that 

characteristic impedance of Transmission Line is given by this so Z0 = C
L

. This 

quantity is a real number and also the propagation constant is equal to the phase constant.  
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So we have γ = jβ that is again equal to jω C
L

. Now with these parameters we will again 

revisit the voltage and current expressions on Transmission Line and then we carry out 

the analysis of the standing waves on the Transmission Lines.  

 

Going back to the original equation of voltage and current as we have seen for a 

Transmission Line whose origin has been defined at the load point as L = 0 
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the voltage and current equation can be given by this. This represent the forward 

traveling wave, this represent the backward traveling wave and now we will replace this 

quantity γ by jβ where x will be replaced by -1.  

 

So now we have the voltage and current as a function of distance on the Transmission 

Line and γ will be replaced by jβ and Z0 is a real quantity. So we can write explicitly the 

voltage and current on a Loss-Less Transmission Line. So the voltage is v as a function 

of l that is equal to V+ ejβl + V- e-jβl, by taking V+ ejβl common the same thing can be 

written as V+ ejβl {1 + 
-V

V+  e-j2βl}.  

 

And this quantity as we already know is nothing but the reflection coefficient at the load 

end so this quantity we denote by the reflection coefficient at the load end ΓL so 
-V

V+  as 

we have seen earlier is nothing but equal to ΓL which is equal to L 0

L 0

Z Z  
Z +Z  

− . 



So now the voltage at any location on the Transmission Line can be given as V+ ejβl {1 + 

ΓL e-j2βl}. 
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Similarly I can take the current equation I can substitute γ = jβl in the current equation I 

can get the current that any location on the line I(l) = j l -j l

0 0

V Ve e
Z Z

β β
+ −

−   

 

Again taking j l

0

V e
Z

β
+

common we can write down here this is j l

0

V e
Z

β
+

{1 - ΓL e-j2βl} where 

-V
V+ will be equal to ΓL.     
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These two terms as we know essentially represent the forward and backward traveling 

wave so the whole expression here essentially represent super position of the forward and 

the backward traveling wave which is nothing but a standing wave on a Transmission 

Line.  

 

So here the expression for voltage and current represent the standing voltage and standing 

current wave on the Transmission Line.  

 

Now we can investigate certain features for the Transmission Line from here and first 

thing what we will note is that there are two terms either in voltage or current so you are 

having this term which is having amplitude one and then you arriving at second term 

whose amplitude is modulus of this quantity ΓL plus a phase which is the phase of ΓL plus 

this quantity phase which is minus j2βl. Writing very explicitly the complex reflection 

coefficient in terms of its magnitude and phase let us say I define ΓL = |ΓL| je Lφ  where Lφ  

is the phase of the reflection coefficient at the load end. 
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Then I can write down the current and voltage explicitly in terms of this magnitude of 

reflection coefficient and the phase. So finally I have two expressions here one for 

voltage V(l) = V+ ejβl {1 + ΓL ( )j -2 le φ β } and the current I(l) will be j l

0

V e
Z

β
+

{1 - ΓL ( )j -2 le φ β }. 
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Now let us see how the voltage and current varies if I measure the magnitude of the 

voltage and current along the Transmission Line, what is the variation of the voltage and 

current along the Transmission Line.  

 

So first thing what we will notice is as you move along the Transmission Line this 

quantity L is positive because we are moving towards the generator so as I move towards 

the generator the phase becomes more and more negative so this quantity ( Lφ  - 2βl)  

phase becomes more and more negative or in terms of a complex plane when the phase 

become more negative essentially we will move on the clockwise direction. So by 

moving towards the generator the phase becomes more and more negative the amplitude 

of this thing remains constant this term and the total voltage will be the vector sum of this 

term and this term is the real term, this term is the complex term whose phase is given by 

that and whose magnitude is given by |ΓL|. 

 

So essentially this is saying that this is the vector of unity one which represent the first 

term then I have another vector whose magnitude is |ΓL| and the phase of this is ( Lφ - 2βl) 

and as I move towards the generator the phase becomes more negative but the magnitude 

of this remains constant. That means this whole quantity represent the circle where the 

point moves on this circle as the L changes. So this motion around this is towards 

generator and the magnitude of this term in the curly brackets is given by the vector 

which is the joining of these two points so this is nothing but |{1 + ΓL ( )j -2 le φ β }| 

magnitude of this quantity.  
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The first term is this vector which is unity the second term is this vector which is rotating 

as we move towards the generator on the Transmission Line and the magnitude of the 

total quantity here essentially varies as we move on the Transmission Line. Now the 

thing to note is when it moves on a circle at some phase when this quantity is zero or 2π 

or 4π ej0 or ej2π or ej4π that is equal to +1.  

 

So I get a magnitude which is maximum which is represented by this point that is nothing 

but 1 + |ΓL|. Similarly if this quantity ( Lφ - 2βl) is odd multiples of φ  ej odd multiples of π 

will be equal to -1 so I will get one minus mod |ΓL| that is the minimum value which I 

will see for this term here which is represented by this point where the two terms cancel 

each other.  

 

I see that the variation of voltage and current is bound by two limits when the two terms 

directly add each other that time I will see the maximum voltage. If they cancel each 

other i will see the minimum of voltage similarly when these two terms add each other I 

will get the maximum current and when these two terms cancel each other I will get 

minimum of the current.  



So the condition is when this quantity is +1 the voltage will become maximum but when 

this quantity is +1 and this quantity is  +1 there is a minus sign here so when this quantity 

goes maximum at the same location l this quantity will go minimum that’s a very 

interesting thing now. Earlier when we talked about lumped circuit wherever we have 

voltage higher we also have the current higher. Now what we are seeing here is that when 

the voltage is maximum the current is minimum and vice versa when this quantity 

become -1 that time the voltage will be minimum but this quantity will become plus so I 

will get the current maximum. Or in other words if I measure the magnitude of the 

current and voltages on the Transmission Line the maximum current and maximum 

voltages do not occur at the same location rather they are staggered in space. Wherever 

there is maximum voltage there is minimum current and vice versa. So the standing wave 

of the voltage and current are shifted with respect to each other in space on the 

Transmission Line.  

 

So if I plot the magnitude with the voltage on the Transmission Line so let us say this is 

my Transmission Line which is terminated in some load here this is ZL and now I plot the 

voltage and current on the Transmission Line let us say I plot |V| the |V| will have a 

variation which will go something like that this is the location where magnitude of 

voltage is minimum, this is the location where the magnitude of the voltage is maximum 

and as we saw just now that wherever the voltage is maximum the current will be 

minimum and vice versa so the current will go something like that so this is the plot for 

voltage |V| and this is plot for modulus of current. So this is this plot we are having |V| or 

|I| as a function of distance l = 0 and distance is measured towards the generator.  
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So in this location I get voltage maximum and current minimum, when I go here I get 

current maximum and voltage minimum. The important thing is when the standing waves 

are present on the Transmission Line then the voltage and current waveforms are shifted 

with respect to each other and maximum of voltage aligns with minimum of current and 

vice versa.  

 

Now having understood this I can again go back and look at this expression of the voltage 

and current. If I go to the location where the voltage is maximum that means this quantity 

is +1 the voltage will be |V+| multiplied by 1 + ΓL because this quantity is +1 at the same 

location I will have the current which will be minimum as we saw so this will be I(l) =  

0

V
Z

+

 (1 - ΓL) where Z0 is real since the line is loss less. 

 

So once I know the voltage and current I can find out the impedance at this location 

where the voltage is maximum or the voltage is minimum or when the current is 

minimum or the current is maximum. The interesting thing to note here is irrespective of 

phase of V+ when the voltage is maximum or minimum the ratio of V and I is a real 



quantity. If I take a ratio of these two ( )
( )

V l
I l

 that is equal to Z0

j( 2 )
L

j( 2 )
L

1  e
1-  e

L

L

l

l

φ β

φ β

−

−

 + Γ 
 Γ  

 and 

when voltage is maximum or minimum this quantity is +1 or -1 so for maximum voltage 

( Lφ - 2βl) is even multiple of π that is it is 0, 2π, 4π and so on, for minimum voltage ( Lφ - 

2βl) is equal to odd multiple of π that is π, 3π, 5π and so on. 
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So when the voltage is maximum this quantity is +1 so Z0 is real, now this quantity is one 

|1 + ΓL| denominator this quantity is again +1 so this quantity is |1 - ΓL| so the ratio of this 

quantity is the real quantity. When the voltage is maximum the impedance seen on the 

Transmission Line is real irrespective of what the line is terminated in.  

 

Even if the line is terminated in complex impedance if I move on the Transmission Line 

and go to the location where the voltage magnitude is maximum, at that location the 

impedance measured will be always real. Similarly when I go to a location where the 

voltage is minimum this quantity will be equal to -1so I will get |1 - ΓL| you have |1 + ΓL| 

now.  And again this quantity will be real so now we make a very important conclusion 

and that is on a Transmission Line wherever there is a voltage maximum the impedance 



measured is real, wherever there is a voltage minimum the impedance measured is real. 

So irrespective of what the impedance with which the line is terminated you will always 

find these points on the line where the voltage is maximum or minimum and that location 

the impedance measured will be purely a real quantity.  

 

What will the value of these maximum or minimum impedances? We can substitute this 

so at a location where the voltage is maximum and the current is minimum that is the 

highest impedance you are going to measure on the Transmission Line. So this quantity 

when the voltage is maximum at that location we get the maximum possible impedance 

which we can measure on the Transmission Line. So we can get the maximum impedance 

which one can see on the Transmission Line and let us call that as Zmax is nothing but 

max

min

|V |
|I |

.  
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And since we have seen that this quantity when you are having the voltage maximum and 

current minimum that time the phase difference between them is zero so this quantity is 



real quantity so Zmax is nothing but Rmax as resistive impedance, from here if I substitute 

this equal to plus one I will get Rmax =  Z0 L

L

1
1-

 + Γ 
 Γ  

.   

 

Similarly if I go to a location where the voltage is minimum so this value will be |1 - ΓL| 

but at the same time the current will be maximum so that is the lowest value of 

impedance you can see on the transmission line. So you get the minimum impedance on 

the line which is Zmin which will be min

max

|V |
|I |

 and that will be equal to Z0 L

L

1-
1+
 Γ 
 Γ  

. 
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So once the load impedance on the line is known the reflection coefficient ΓL is known its 

magnitude is known. I know what the maximum and minimum value of impedance is I 

can see on the Transmission Line. So as we move on the Transmission Line the 

impedance is going to vary as we saw because of impedance transformation but there is a 

bound on this impedance variation the lowest value of impedance which one can see on 

Transmission Line is Zmin or Rmin is resistive and the maximum value which one can see 

on the Transmission Line is Rmax which is given by that.  



Now once we are having the voltage standing wave on Transmission Line at high 

frequencies the measurement of phase is rather complicated. You can measure the 

amplitude of the signal rather reliably but the measurement of phase is little uncertain. So 

at high frequency normally we have an effort to estimate the phase not in the direct 

manner but in indirect manner. By carrying out the measurements of only magnitude kind 

of quantities we would like to estimate the phase of the signal and as we have seen that 

the phase of the signal in time get translated into the phase space because the total phase 

which we seen on a wave is a combination of space and time or in other words the phase 

relationship between the two waves the forward and the backward traveling wave that is 

related to the time phase as well as the space phase.  

 

And since this total phase governs the location of maxima and minima of the standing 

wave noting the location of maximum and minimum on Transmission Line one can 

estimate the phase which is there with the signal. So what we do now is we define a 

parameter for the standing wave which is a parameter of only amplitude variation on the 

Transmission Line and that quantity is called the voltage standing wave ratio. It is 

essentially a measure of what is the relative contribution of the reflected wave to the 

incident wave if the reflected wave is zero then there is no standing wave you will have 

only traveling wave if the reflected wave is full then you will have completely developed 

standing wave.  

 

So the interference of the two waves the forward and the backward waves are going to 

give me this variation of the maximum to minimum. So we define this quantity the value 

which you get for the maximum magnitude on the standing wave and the minimum 

amplitude on the standing wave if I call the maximum value as Vmax and the minimum 

value as Vmin then the ratio of Vmax to Vmin magnitude is the voltage standing wave ratio. 

And this quantity is a very important quantity because without carrying out any phase 

measurement we can measure this quantity on the Transmission Line. Recall reflection 

coefficient is a complex quantity so if you want to have the complete knowledge of the 

reflection coefficient then we have to get its amplitude and phase. However the quantity 



which you are defining now is called the voltage standing wave ratio which is measured 

by only amplitude measurement.  

 

So by measuring the maximum and minimum magnitude of the standing wave we get this 

quantity called the voltage standing wave ratio, normally it is denoted by ρ = max

min

V
V

. 
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And what is the maximum value of voltage which I can see on the line is { }L|V | 1++ Γ  

and the minimum value which I can see on the Transmission Line is { }L|V | 1-+ Γ .  

 

The |V+| cancels so the voltage standing wave ratio is L

L

1+
1-

 Γ 
 Γ  

, in short the voltage 

standing wave ratio is called as VSWR. So the VSWR for a load whose reflection 

coefficient magnitude is LΓ  is given by this.  
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Since the line is lossless the reflection coefficient at the load is L 0

L 0

Z
Z

Z
Z

−
+

 and Z0 is the real 

quantity for a Loss-Less Transmission Line so ZL can have any complex impedance 

terminated on the line but Z0 is real without much effort one can see that the magnitude 

of this quantity is all ways less than one. So the mod of LΓ  is always less than or equal 

to 1 and that is makes a physical sense because what the LΓ  is telling you is the relative 

amplitude of the reflected wave compared to the incident wave.  
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Since we do not have any energy source on the load point the part of the energy only can 

get reflected so the amplitude of the reflected wave has to be always less than or equal to 

the incident wave. So for any passive loads the LΓ is always less than or equal to 1 so in 

a condition when ZL = 0 or ZL = ∞ I will get the magnitude of LΓ  = 1 otherwise this 

quantity will be always less than or equal to one so if I want to see very specific load 

impedances for which the LΓ condition will be satisfied. I will see there will be three 

cases. Case one will be when ZL = 0 that means the line is short circuited at the load end 

so this is a condition for a short circuited line. I substitute ZL = 0 so I get LΓ  = -1 in this 

case I get LΓ  = -1 or LΓ  = 1.   
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The second case if I take ZL = ∞ that means the line is open circuited then again I can 

substitute ZL = ∞, take ZL first common so it will become 01– Z
∞

 so this will be equal to 

+1. So this will give me LΓ  = +1 giving me again LΓ  = +1.  

 

The third case is that if the line is terminated in an ideal reactance so the third case is if 

ZL = j times x your reactance then again so this is pure reactance then LΓ will be equal to 

0

0

jx Z
jx + Z
− . 

 

This quantity in general will be complex but the LΓ  will be equal to again +1. 
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So we have these three situations when the line is short circuited, when the line is open 

circuited at the load end or when the line is terminated in a pure reactance the mod of 

reflection coefficient is one. What that means is if the line is either short circuited or open 

circuited or terminated in an ideal reactance there will be full reflection from the load end 

and that make sense that since I am having short circuit or open circuit or pure reactance 

there is no energy absorbing element available at the load end of the line neither short 

circuit can absorb power nor open circuit can absorb power nor a ideal reactance can 

absorb power.  

 

So whatever power the traveling wave takes to the load end there is no option but to take 

the entire power back in the reflected waveform. Whatever wave reaches to the load end 

that completely get reflected if any of these three conditions are satisfied and that is what 

essentially is represented by this that the magnitude of reflection coefficient becomes 

equal to one. That means the entire energy with which reaches to the load it gets reflected 

so what we see from here is the reflection coefficient is always less than one it becomes 

equal to one in this special cases that is short circuit, open circuit or ideal reactance other 

wise the magnitude of the reflection coefficient is always less than one.  



Now if I substitute this into the quantity which we have defined voltage standing wave 

ratio now this quantity LΓ  is less than or equal to one. So in the best case when this 

quantity is zero we will get a VSWR equal to one otherwise this quantity will be always 

greater than one. So as we got the upper bound on reflection coefficient LΓ . So we can 

also define the bounds on the voltage standing wave ratio VSWR and that is when LΓ  = 

0 then the VSWR = 1. However when LΓ  goes to 1 that time this quantity is infinity so 

we have VSWR ρ its bounds are one equal to or less than equal to infinity. 
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And which is the better case? The  LΓ  = 0 represents no reflected wave on Transmission 

Line that means we have full power transfer to the load. So LΓ  going to zero is the best 

case as far the reflection is concerned or in other words when VSWR = 1 that is the best 

case for the power transfer on the line. As the VSWR increases it indicates higher and 

higher value of LΓ  that is higher and higher reflection on the Transmission Line or 

lesser and lesser efficiency of power transfer to the load.  

 



So in every circuit design our effort is to make the VSWR as small as possible or as close 

as to 1 as possible. Higher the value of VSWR indicates more mismatch on the 

Transmission Line or higher value of the reflected wave on the Transmission Line.  

 

So this quantity VSWR is one of the very important quantity in the measurement at high 

frequencies. Whenever we design a circuit we essentially try to measure the VSWR on 

the Transmission Line and we try to make the VSWR as close to one as possible, making 

sure that the circuit is efficiently transferring power to the load end of the line.  

 

Now once you have defined this parameter ρ then one can relate this ρ to the maximum 

and minimum impedance which one can see on Transmission Line. We have already seen 

that the maximum value of the impedance which we can see on the line is Rmax = Z0 

L

L

1+
1-

 Γ 
 Γ  

 but now you know this quantity is a measurable quantity and that is nothing 

but the voltage standing wave ratio ρ. 

So the maximum value of the resistance or the impedance which we can again see on the 

line is nothing but Z0 into wave standing wave ratio ρ. 
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Similarly the minimum resistance which I will see on the line is this is 1
ρ

 so this is equal 

to 0Z
ρ

. 

 

So I get from here Rmax = Z0 ρand Rmin on the line is equal to 0Z
ρ

. So for any line which 

is terminated in arbitrary impedance if I move to a location where the voltage is 

maximum then I know the value of the impedance at that location because measuring the 

voltage maxima and minima I can find out the value of this voltage standing wave ratio ρ, 

I know the characteristic impedance align apriori so I know the maximum value of the 

impedance which line will show.  
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Similarly at the location where the voltage is minimum the impedance measured will be 

Rmin and that will be the characteristic impedance divide by the voltage standing wave 

ratio. Now if you recall we had mentioned that if the impedance is known on any point on 

Transmission Line then you can always transform that impedance to any other location 

on the Transmission Line. Then immediately it strikes to us that knowing the location at 



the voltage maximum or minimum the impedance value is known there. so now I can 

transform either side of Transmission Line towards the load so that I can get the load 

impedance.  

 

Now this essentially opens a measurement technique for the unknown impedance at high 

frequency if you are having a complex impedance its measurement is quite tedious 

because we cannot re-measure the phase very accurately. But I have a mechanism of 

measuring the phase indirectly as we already mention the phase get reflected into the 

standing wave pattern or the location of the voltage maxima and minima. So if I measure 

the voltage standing wave ratio and the location of the voltage maxima and minima I can 

always transform this impedance Rmax or Rmin to the location of the load which is nothing 

but the load impedance.  

 

So if I transform from the load impedance to voltage maxima I will get this impedances 

but I can work backwards and say if I know the location of the voltage maximum from 

the load, I know the value of impedance at that location, I know the distance of load from 

that point so transformation of this impedance to the load end should give me the load 

impedance. When we go to the application of Transmission Lines we will see that this 

technique is used for measuring the complex impedances and at that time we will 

explicitly derive the expression for the unknown impedance which is terminated to a 

Transmission Line. 

 

Thank you.     

 


