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Welcome, in the last lecture we derived the voltage and current expressions then we 

defined the origin on the Transmission Line we defined the origin at the load end and 

then we defined all the distances on Transmission Line measured from the load point 

towards the generator which we denoted by variable l.  

 

So now we have this voltages and currents which are given in terms of the length which 

are towards the generator from the load end.  

 

(Refer Slide Time: 01:09 min) 

 

 
 

Then satisfying the boundary condition at the load end we got the relationship between 

the impedance at the load end which is related to the parameter which again was a ratio 

of 
-

+

V
V
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This quantity 
-

+

V
V

 is related to the energy reflected from the load end and we define this 

parameter called the voltage reflection coefficient which was the ratio of the reflected 

voltage to the incident voltage.  
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Both these quantities are complex in nature and that is the reason the reflection 

coefficient at any point on the Transmission Line is complex. Then at l = 0 which means 

at load end the reflection coefficient which is Γ(0) = 
-

+

V
V

 so the ratio of the reflected and 

the incident voltage at the load end is denoted by this quantity Γ(0)  at l = 0. By 

substituting this we got the relationship between the load impedance and the reflection 

coefficient at the load end.  

 

If we now invert this relation we will get the value of the reflection coefficient at the load 

end and let us call the reflection coefficient at the load end as ΓL which is nothing but the 

Γ measured at l = 0 which is again equal to L 0

L 0 

Z – Z
Z + Z

. 

 

(Refer Slide Time: 03:12 min) 

 

 
 

so what we find here is the reflection coefficient at the load end which is the measure of 

how much energy is reflected from the load end related to the terminating impedance of 

the line which is ZL, also it depends upon the characteristic impedance of the line.    



What we see from here is that since this quantity is equal to 
-

+

V
V

, one thing can 

immediately strike to us is when ZL = Z0 means if the terminating impedance on the line 

is equal to the characteristic impedance the 
-

+

V
V

 goes identically to zero. In other words 

the reflection coefficient ΓL = 0 when ZL = Z0. So we get ΓL = 
-

+

V
V

 = 0 when the load 

impedance is equal to the characteristic impedance.  
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Now this is a very interesting condition, what we see now is if the load impedance is 

equal to the characteristic impedance since this quantity is zero and V+ will not be zero 

because we have put some incident wave that means the V- would be zero or in other 

words when the load impedance becomes equal to the characteristic impedance there is 

no reflection on the line and that is the condition we were looking for because when we 

initially talked about the purpose of the Transmission Line the objective was to transfer 

the power from the generator to the load.  

 



However, when we analyzed the Transmission Line we found that there are some 

reflections on Transmission Line and the entire energy is not transferred to the load.  

 

Now we get a condition under which the entire energy will be transferred to the load 

because there will not be any reflection on the line if the load impedance is equal to the 

characteristic impedance. So the characteristic impedance is a very important parameter 

of the Transmission Line. One may wonder where this characteristic impedance located 

on Transmission Line, it is not located anywhere. It is a characteristic parameter which 

cannot be located on a Transmission Line but it governs the power flow on Transmission 

Line and this condition ZL = Z0 is called the match condition that means the impedance is 

matched to the Transmission Line characteristic impedance. The power transfer is 

hundred percent and there is no reflected energy on the Transmission Line.  

 

This condition is similar to the maximum power transfer condition on the circuits where 

if the load impedance is equal to the complex conjugate of the generator impedance then 

there is a maximum power transfer from generator to the load. Now exactly same 

condition is here for Transmission Line that when the load impedance is equal to the 

characteristic impedance of the line the whole power get transferred to the load and there 

is no reflected power on the Transmission Line. So we call this condition as the matched 

load condition. One may not physically understand what is happening and why there is a 

reflection on the Transmission Line. The Z0 represent some kind of a medium which is 

very smooth on which the power is flowing along the Transmission Line. Suddenly it 

sees a disturbance on the Transmission Line in terms of impedance because when it 

reaches to the other end of the Transmission Line the impedance is no more seen equal to 

the same smooth flowing impedance which is Z0.  

 

So it is some kind of a step change which the energy flow encounters and because of that 

part of energy tends to get deflected on the Transmission Line. So for maximum power 

transfer the energy flow should always see an impedance which is equal to characteristic 

impedance.  If any other impedance is kept other than characteristic impedance there will 



always be reflection on Transmission Line and the power flow will not be maximum with 

the load.  

 

Now having understood this one can generalize this and then one can say that the way we 

have defined the reflection coefficient at any point on Transmission Line once I get the 

value of 
-

+

V
V

 I can find out the complex value of the reflection coefficient at any point on 

the Transmission Line. And once I define this parameter which is the reflection 

coefficient then I can substitute this quantity +

V
V

l

l

e
e

γ

γ

− −

 in our voltage and current relation 

and we can define the voltage and current at any point on Transmission Line in terms of 

the reflection coefficient.  

 

so now we get the relation of the voltage and current which is V is a function of length as 

we have defined earlier this quantity the V was equal to V+ eγl + V- e-γl  
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I can take V+ eγl common so this quantity will become +

V
V

l

l

e
e

γ

γ

− −

 that is nothing but 

reflection coefficient at distance l. So I get V(l) = V+ eγl {1 + Γ(l)} and the current at that 

location will be 0

0

V
Z

 eγl {1 - Γ(l)}.   

 

Once you get the voltage and current at any location we can now find out what is the 

impedance at that location. So we can divide this equation by this so we will get the 

impedance measured at a location l on the line which is V at that location divide by 

current at that location. V+ eγl will cancel so you will get Z0 
( )
( )

1 l
1- l

 + Γ 
 Γ  

.   

 

So the impedance at any location on the Transmission Line is related to the reflection 

coefficient at that location in the Transmission Line. Inverting the relation we can get 

reflection coefficient at any point on the line that is equal to  ( )
( )

0 

0 

Z l – Z
Z l +Z

.   
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So in fact the impedance at any point on Transmission Line and the reflection coefficient 

at that location have one to one relationship. So if I know the reflection coefficient at that 

location I can find out what is the impedance at that point and if I know what is the 

impedance at that point I can calculate what is the reflection coefficient at that point.  

 

Once I get this I can substitute for reflection coefficient Γ(l) and noting  that the quantity 
-

+

V
V

 is the reflection coefficient at the load end here I can write down the impedance in 

general form as follows.  

 

If I can get the impedance Z at any location l is equal to Z(0) where Γ(l) is 
-

+

V
V

e-2γl 

So this is nothing but 
2 l

L 
2 l

L 

1 e
1- e

γ

γ

−

−

 + Γ
 Γ 

.  
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and ΓL is nothing but the reflection coefficient at the load end so ΓL as we have already 

derived is nothing but ( )
( )

0 

0 

Z l – Z
Z l +Z

where ZL is the load impedance. 
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I can substitute for ΓL into this equation and I can get the impedance at any point on the 

line in relation to the load impedance so I get a relation Z(l) called the impedance 

transformation relation which is equal to 

2 lL 0

L 0
0

2 lL 0

L 0

Z Z1+ e
Z +ZZ Z Z1- e
Z +Z

γ

γ

−

−

− 
  
 − 
  

. 
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Rearranging this terms and collecting the terms of ZL and Z0 separating them out and 

noting that we are now having the terms which will be eγl I can rearrange and rewrite this 

expression in terms of the hyperbolic cos and sin functions.  

 

So this expression after reconstitution becomes ( ) L 0
0

0 L

Z cosh l Z sinh l Z l =Z
Z cosh l Z sinh l 

γ γ
γ γ

 +
 + 

where 

we have used a relation cosh γl = 
l - le e

2

γ γ+  and sinh γl = 
l - le -e
2

γ γ

. 
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So now this is telling me that the impedance at location l is related to the load impedance 

through this relation what as we will call as the impedance transformation relation so this 

relation we call as the impedance transformation relation. 
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And this relation is a very important relation in Transmission Line calculation because 

what it tells you is that if a line is terminated in impedance which is equal to ZL the 

impedance which you will measure at the input end of the line will not be ZL it will be 

different in ZL and not only it will be different in ZL it will also depend upon the length of 

the line. So for the same load which you have connected to the line if the length of the 

line keeps varying the impedance which you measure at the input of the line will keep 

varying or in other words if I design a circuit at high frequencies and connect that circuit 

to a load depending upon what piece of wire or cable I am connecting between the load 

and the circuit the impedance seen by the circuit will be different.  

 

So for the behavior of a circuit the impedance seen by the circuit is more important. If 

that quantity keeps varying depending upon the length through which the actual 

impedance is connected to the circuit the whole circuit behavior keep on varying as the 

function of length of a connecting wire.  

 

so when we go to high frequencies even length of a connecting cable is important 

because the impedance transformation which the cable does might change the 

impedances  which are seen by the actual circuits which are connected to the end of the 

connecting cable. So the important thing to note here is that whenever we are having 

distributed element then the impedance seen at input end of the Transmission Line deal in 

general with different than the impedance connected to the load end of the Transmission 

Line and the impedance transformation will essentially be done by that. 

 

One can also note a important thing here that I can take this Z0 down here I can take Z0 

common from denominator and numerator then every quantity which I have here is now 

normalized with respect to Z0 this quantity is ( )
0

Z l
Z , this is ( )

0

Z l
Z and this is  ( )

0

Z l
Z . 

  

So the expression which I have for impedance transformation essentially can be written 

in terms of normalized impedances so the same expression I can write down in terms of 

the normalized impedance and let me define the normalized impedance by bar so any 



impedance which is normalized denoted by bar is equal to the actual impedance Z divide 

by the characteristic impedance Z0. This is what is called the normalized impedance. 
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Then my LZ  bar is equal to L

0

Z
Z ,  normalized impedance at any location l is equal to 

( )
0

Z l
Z and so on.  

 

Substituting this in the impedance transformation relation I get the normalized 

impedances ( ) L

L

Z cosh l sinh l Z l =
cosh l Z sinh l 

γ γ
γ γ

 +
 + 

. 
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So the important thing is on Transmission Line calculation the absolute impedances do 

not mean anything the impedances which are normalized with respect to the characteristic 

impedance has some meaning. what that means is if I have a Transmission Line whose 

characteristic impedance is fifty ohms a hundred ohm impedance is going to create the 

same reflection as if the Transmission Line was of characteristic impedance three 

hundred ohms and the load impedance is of six hundred ohms. So the absolute impedance 

which you are connecting to the line has no meaning and that is the reason before we start 

any Transmission Line calculation first you ask what is the characteristic impedance of 

the line once you know the characteristic impedance then every impedance which you 

have you normalize those impedances with a characteristic impedance.  

 

So every calculation which you do in Transmission Line is always in terms of the 

normalized impedances and when require you always un do the normalization and you 

find out the absolute impedances. But as far the Transmission Line calculations are 

concerned the impedance has to be always in terms of the normalized terms and this 

normalization is with respect to the characteristic impedance.  
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So what we see is that the characteristic impedance which is not really located anywhere 

is not seen anywhere, always at the background but is the governing parameter of the 

energy flow on Transmission Line because every calculation every voltage current 

whatever relationship we are talking about all are governed by this hidden parameter 

which is called the characteristic impedance.  

 

So characteristic impedance is a extremely important parameter when we do the 

transmission line calculation. Now we also notice from here that if the ZL = Z0 or the 

normalized Z(l) = 1 then this quantity is 1 this quantity is 1 so this whole term will 

become equal to 1 so normalize Z(l) will be equal to 1 or the absolute value of Z(l) will 

be equal to Z0. 

 

If LZ = 1 that is ZL = Z0 which we call as the matched condition then ( )Z l at any location 

on the line is equal to one that is the impedance measure at any point on the line will 

always be equal to the characteristic impedance. This is extremely important condition.  
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Now what we are saying is that if the load impedance is not equal to the characteristic 

impedance then the impedance measured at any point on the line will be the function of 

the length of the line or the input impedance of the line is the function of the length and 

the impedance which is connected to the other end of the line.  

 

However if I take a special case that is called the match condition then load impedance is 

equal to Z0 and the impedance measured at every point on the line is equal to the 

characteristic impedance. Now I do not have to worry about the length of the line the 

input impedance will always be equal to the characteristic impedance no matter what is 

the length of the line. So if the line is terminated in the characteristic impedance then 

without worrying about the length of the line I can carry out my measurements because 

the impedance seen at the other end of line will always be equal to the characteristic 

impedance. So the matched condition is an extremely important condition because it 

takes away all the worries which one would have because of the length of the line 

connecting between the load and the measurement point or the generator point.  

 

Now this also gives you some means of providing the definition to the Z0. What we have 

done earlier is we have defined this characteristic parameter Z0 which had dimension of 

impedance so we started calling it characteristic impedance because this impedance was 

related to the primary parameters of Transmission Line and the frequency. However we 

did not have any physical way of defining this quantity now may with this property of the 

matched condition we may give some physical meaning to the characteristic impedance 

so I can define the characteristic impedance is that impedance with which if the line is 

terminated. Then the impedance measured at any point on the line is equal to the 

terminating impedance then we call that impedance as the characteristic impedance. 

 

Sometimes we give another definition to the characteristic impedance and that again 

comes from this condition that when we have matched conditions there is no reflected 

wave and if there is no reflected wave there is only incident wave going on Transmission 

Line and we would have to seen earlier the incident wave always sees an impedance 



which is equal to characteristic impedance. If I take a hypothetical situation that the line 

is of infinite length even if there was reflection on other end of the line it will take infinite 

time to reach to us that means at any finite time you will always see a wave which will 

only be a forward traveling wave or the incident wave there will not be any reflected 

wave.  

 

So the impedance measured on an line which is only now due to forward wave will be 

equal to the characteristic impedance. So at times we also give a definition of 

characteristic impedance as it is the input impedance of a line of infinite length. But for 

that line the reflected wave would not have reached to you so the line sees always a 

forward traveling wave and forward traveling wave always sees the impedance which is 

equal to characteristic impedance.                    

 

So the impedance measured at the input end of the line will be equal to the characteristic 

impedance. So there are two ways to define the characteristic impedance. One is for 

infinite line and other is if the line is terminated in the characteristic impedance then there 

is no reflection on the Transmission Line.  

 

With this now we can generalize the impedance transformation relationship. Till now 

what we have done is we have transformed the impedance relation or the impedance 

which is at the load end at some distance l from the load end. Then one would note here 

that there is nothing special about load end the load end was coming because we define 

the origin at load end, if we had defined the origin at somewhere else we could have 

started measuring the distances from that point and then would get an impedance 

transformation relationship with respect to that point which we call as the reference point 

so in fact this relation is between any two points on Transmission Line for impedance 

transformation. 

 

So if I know the impedance at any point on the Transmission Line I can find the 

impedance at any other point on the Transmission Line using this transformation 

relationship.  



Now what we are saying is in general if I have a Transmission Line which might be 

connected into some load and if measure at some location an impedance Z1 where I am 

showing the arrow just to indicate that the generator is on the left side so energy flow is 

in this direction.  
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If I go to any other location on the Transmission Line if I measure the impedance is equal 

to Z2 then I can use the impedance transformation relationship with this distance l 

replacing load impedance ZL by Z1 and this ZL will indicate the impedance at this 

location so from the same impedance transformation relationship here I can write down 

1 0
2 0

0 1

Z cosh l Z sinh l Z =Z
Z cosh l Z sinh l 

γ γ
γ γ

 +
 + 

.   
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If I invert this relationship means if I find out the value of Z0 in terms of Z2 I will get 

2 0
1 0

0 2

Z cosh l - Z sinh l Z =Z
Z cosh l - Z sinh l 

γ γ
γ γ

 
 
 

. 
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What has changed is if I invert this relationship I will get a negative sign here, I will get a 

negative sign here this negative sign can be absorbed into the sinhγl.  

 

So this is equivalent to Z0 into sinhγ(-l), similarly this quantity will become sinhγ(-l). So I 

have a Z1 related to Z2 with effectively l becoming negative because coshγ(-l) is equal to 

cosh γ(+l) so this sign does not change. So what we are now saying is if I know the 

impedance at this location I can use the impedance transformation relationship which is 

this to get a impedance at a distance l from this point towards the generator generated 

from this side. However the same relation can be used from transforming this impedance 

to this one with l replaced by -l because the distances which you have taken are taken 

positive towards the generator so if I transform the impedance from this point to this 

point then I get the distance traveled towards the generator which by definition is 

positive.  

 

However if I transform the impedance from this location to this location then I am 

moving away from the generator and the distance measured by definition is negative. So 

the impedance transformation relation is the same relation which is this so this relation 

was same as this. So in this case if I replace ZL by in general impedance at any location 

and measure the distances from that location that l if l is moved towards the generator I 

take the distance l positive if the l is moved towards the load or away from the generator 

then I take this distance negative.  

 

So I have to remember only one impedance transformation relation which is this then I 

can transform the impedances from any point on the line to any other point on the line. 

And once I know the impedance I can find out the reflection coefficient on that point of 

the line where like we saw earlier there is a unique relationship between the reflection 

coefficient and the impedance at any point on the Transmission Line. With this 

understanding of the impedance transformation and the definition of the characteristic 

impedance now we can go to a little simplified version of this and that is we discuss a 

special case of the general Transmission Line called a lowloss or a Loss-less 

Transmission Line.  



If you recall the whole purpose of the Transmission Line was to transfer the power from 

the generator to the load effectively with as little power loss in between that means 

ideally the structure called the Transmission Line should be as low loss as possible. 

Therefore in practice every effort is made to reduce the losses on the Transmission Line. 

So if you take a good Transmission Line this loss should be negligibly small at that 

operating frequency. Once I have that condition in practice then one can make some 

simplifications in the analysis and come up with an idea called a low loss transmission 

line and if the losses are ideally zero on a Transmission Line then we call that 

Transmission Line as a lossless Transmission Line.  

 

Now if you recall that the Transmission Line has four primary parameters it was the 

resistance per unit length, the conductance per unit length, the capacitance per unit length 

and the inductance per unit length. The ohmic elements in these four parameters are only 

the resistance and the conductance that means the resistance of the two conductors of the 

line they get heated because of ohmic losses so they consume power the dielectric which 

is separating the two conductors of the Transmission Line they have the leakage current 

and again they have the ohmic losses so they consume power. So the power loosing 

element in the Transmission Line is because of the resistance and the conductance, the 

inductance and capacitance store energy but there is no loss in the inductance and 

capacitance. 

 

So ideally a line will be lossless if the resistance and the conductance are identically zero 

so let us first write down the parameters for an ideal Loss-less Transmission Line then we 

will go to a more practical line a good line which is called a low loss transmission line for 

which the losses are much smaller and there is a efficient power transfer from the 

generator to the load. 

 

So taking the first case called the lossless transmission line by definition a line is called 

loss less if R = 0, G = 0. By substituting R = 0, G = 0 in the secondary constants of 

Transmission Line that is the propagation constant γ and the characteristic impedance we 

get γ = j L . j Cω ω  where R = 0 so this will be equal to j LCω . 



Now by definition γ = α + jβ we just saw the attenuation constant we saw the phase 

constant so this means for this lossless case α = 0 and β = LCω . As correctly we can 

see here there are no losses there is no reason for wave amplitude to reduce on the 

Transmission Line. And as we note it know that α is the attenuation constant which gives 

you the reduction in the traveling wave amplitude as you travel from the Transmission 

Line. So when α goes to zero the wave amplitude does not reduce and there is a sustained 

propagation of a traveling wave on the Transmission Line from here ω which is equal to 

2π into frequency and β as we have seen by definition is 2π/λ we can substitute see you 

get 2π/λ that is equal to 2π into frequency into LC . From here 2π will cancel so I get λf 

which is equal to 1
LC

.  
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And from our basic physics we know frequency times the wavelength that is nothing but 

the velocity of the wave the voltage wave on Transmission Line. So the velocity of the 

wave is related to the inductance and capacitance per unit length on the Transmission 

Line so once the inductances and capacitances are given the velocity of the wave on the 

Transmission Line is reached. 



Then one may wonder I can arbitrarily choose the inductances and capacitances and can 

arbitrarily vary the velocity of the traveling wave on Transmission Line in fact the 

problem is not that the situation is exactly opposite. The velocity is the parameter which 

is decided by the field distributions and the boundary conditions as we will see little later 

in this course that means the inductances and capacitances of a Transmission Line are not 

independent because this quantity v is decided by some other boundary conditions on the 

Transmission Lines so once the velocity of the traveling wave is fixed by some other 

conditions this quantity is constant or product of L and C is constant. And this one can 

say physically if I consider the two conductors of Transmission Line if I vary the 

separation between these two conductors the mutual inductance is going to vary so the 

net inductance of the line is going to vary. But the same time since the separation 

between the conductor is varying the capacitance is also going to vary so when I am 

trying to vary the inductance the capacitance varies and vice versa. Precisely that is what 

we are talking about the inductance and capacitances per unit length on a Transmission 

Line are independent products. The product of that is constant because that is related to 

the velocity of the propagation of wave on the Transmission Line.  

 

So for a lossless line the velocity is given by 1
LC

, α is identically zero so the wave has 

the phase constant β but its amplitude remains constant as it travels on the Transmission 

Line. Then we can calculate the another parameter which is the characteristic impedance 

Z0 for the lossless line and again substituting R = 0, G = 0 this will be equal to 

j L L
j C C
ω
ω

= . 
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So the characteristic impedance of the lossless line is square root of the ratio of the 

inductance and the capacitance per unit length. But now the important thing to note is that 

for a lossless line this quantity is a real quantity Z0 is real and that is very interesting.  

 

Now I do not have any resistance or conductance on the line that means I do not have any 

ohmic parameter on the line R = 0, G = 0 but we still do not know where the 

characteristic impedance is it is some where on the Transmission Line it governs the 

propagation of energy on the Transmission Line and that quantity is the real quantity. So 

I do not have any resistive element on the line but the characteristic impedance is the real 

quantity that means the wave which travels whether it is forward or backward this always 

sees the characteristic impedance that means it sees an impedance which is equal to the 

real impedance which is a resistive impedance. So forward traveling wave when it travels 

on a Loss-less Transmission Line sees an impedance which is a real impedance like a 

resistance and make sense physically because once you are having a line which is only 

forward wave this wave is going to go and going to go forever no energy is going to get 

reflected that means this power somewhere is going to get dumped and that is what this 

impedance Z0 is.          



So if you are having a real quantity for the Z0 that means now the power is completely 

transferred to the line. When you are saying power transferred to the line does not mean 

that the power is lost in the line, it is simply the power has been carried by the line to the 

other end and no reflection has come back so for a lossless line the characteristic 

impedance is the real quantity that means if I measure the input impedance of the line 

which is terminated into Z0 I will see an impedance which will be like a resistance and 

this line can expect power from the generator as if the power is drawn into a resistance. 

 

Once we get the feeling for the lossless case then one can now go to the more realistic 

lines where the losses are small and then ask how much these parameters deviate the β or 

the propagation constant γ and the Z0 how much deviation is there between in these 

parameters when their losses are relaxed they are not ideally zero but they are small. 

 

So what one can do is one can now define more practical line and we call that line as the 

Low Loss Transmission Line and we define a Low-Loss Line as when R is much smaller 

compared to ωL which means when the reactances are much larger compared to the 

resistances then we call that line as the Low-Loss Transmission Line. So the condition 

that R is much smaller compared to ωL and G much smaller compared to ωC. If these 

conditions are satisfied then we say this line is a Low-Loss Transmission Line. Let us see 

what are the implications of this thing on the propagation parameters and the 

characteristic impedance.  

 

As we saw this γ is ( )( )R j L G j Cω ω+ +  I can take j Lω and j Cω common from here 

so that is equal to 
1

2Rj L 1 j j C 1 j
L C

Gω ω
ω ω

    − −    
    

. 
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Noting that R is much smaller compared to ωL and G is much smaller compared to ωC 

and if I retain only the first order terms the product of these will be second order term. So 

if I retain only the first order term this I can write as 
1

2Rj L.j C 1 j j
L C

Gω ω
ω ω

  − −  
  

 

 

I can take out this quantity so that is equal to 
1

2Rj LC 1 j j
L C

Gω
ω ω

  − −  
  
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Again expanding this binomial series and retaining only the first order term this can be 

approximated as the gamma is equal to γ = Rj LC 1 j j
2 L 2 C

Gω
ω ω

  − −  
  
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Taking this inside this can be written as j LCω  plus I am taking inside this so ω will 

cancel with this square root L will cancel with this so this will be equal to 

1 CR
2 L

+ L
2 C
G . 
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So this quantity here which is the imaginary part of the propagation constant that 

represents β and this quantity here represents the attenuation constant α. 

 

Look at what we had got for the Loss-Less Transmission Line. When we had a Loss-Less 

Transmission Line when R = 0, G = 0 we had α = 0 and we had β which was LCω .  

 

In this case also when we are having low loss the β is still LCω   which means the 

phase constant to the first order does not change when we introduce a small loss in the 

Transmission Line that again means if I am interested only the phase calculations on the 

Transmission Line then that line can be transmitted like a losses line because beta value 

does not change and I can carry out the analysis of Transmission Line for a low loss 



Transmission Line same as if there was no loss on the Transmission Line and the line is a 

ideal line with R = 0, G = 0. 

 

However in case of a real line even with a small loss you have this value α which is 

related to R and G so where the wave travels the amplitude reduces slowly as it travels on 

this Transmission Line but the amplitude does not change very rapidly there is small 

decrease in the amplitude so over a short distance if I do the calculations the line can still 

be treated like the lossless line with the phase constant which is equal to LCω . 

 

If I look at this quantity here which is C
L

or L
C

 is nothing but the characteristic 

impedance of the line which was lossless. So if I say that my losses are very small I can 

substitute for L
C

 = Z0 so this quantity can also be written as LCω  + 1
2

 

0
0

11
2

R GZ
Z

 
− + 

 
. 

 

(Refer Slide Time: 49:03 min) 

 

 
 



So for the quick calculation if I know the resistance per unit length if I know the 

conductance per unit length and if I know the characteristic impedance of the line  then I 

can calculate what the phase constant is which is same as the Loss-Less Line and I can 

calculate the small or whatever the value of the attenuation constant is from this 

expression. So for a real line one can calculate the value of α and β and then one can 

proceed for the calculation of the impedance another thing from the Transmission Line.  

 

As we have done the calculation for γ now we can write the characteristic impedance for 

the Low-Loss Line Z0 = 

L R1 - j
2 L 2 C

j C 1 - j
2 C

G
C

G
ω ω

ω
ω

 + 
 

 
 
 

.   

 

Again doing the same thing taking the j Lω and j Cω  common from these parameters this 

you can write as 

Rj L 1 - j
L

j C 1 - j
C

G

ω
ω

ω
ω

 
 
 
 
 
 

. 
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This quantity is L
C

 that will be nothing but the characteristic impedance of the ideal 

Transmission Line I can expand this parameters again and this we can write as L
C

 this 

square root again since R
Lω

 is very small this can be approximated by R1 - j
2 Lω

 this will 

be 1 - j
2 C

G
ω

. 

 

I can bring this to the denominator and then approximate it to write as 

L R1 - j
2 L 2 C

G
C ω ω
 + 
 

. 
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So the characteristic impedance this quantity is real by L
C

which is nothing but the 

characteristic impedance of the Loss-Less Transmission Line. But now for a real low loss 

line the characteristic impedance is no more real it has a component which is imaginary 

coming from this quantity there is some j here. So now we conclude two important things 



that for a Loss-Less Transmission Line the propagation constant γ has two parts it has 

imaginary part and the real part.  

 

The imaginary part which is nothing but the phase constant is same as the phase constant 

of a Loss-Less Transmission Line. 

 

However the attenuation constant has a small value the characteristic impedance of a low 

loss transmission line is no more real it is complex its real value is almost same as the 

characteristic impedance of the Loss-Less Transmission Line. 

 

But now you are having a small imaginary part which represents the losses in the 

Transmission Line with this understanding of the propagation constant and the 

characteristic impedance of the low loss transmission line.  

 

Now here onwards until and unless specifically we are told to include the losses in the 

Transmission Line we assume the line to be lossless and carry out the analysis of the 

impedances voltages and currents and all other things under the assumption that there are 

no losses on the Transmission Line.  

 

So in the next lecture and on wards we will in detail discuss the behavior and the analysis 

of the lossless Transmission Lines.                 

 


