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Lecture – 38 

 

In the last lecture, we developed a general approach for analyzing wave propagation inside a 

waveguide. In this lecture, we take specifically a waveguide whose cross section is 

rectangular and that wave guide is called a rectangular wave guide. 
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So, we have a wave guiding structure for which we have a hollow pipe whose cross section is 

rectangular and the energy is going to flow along the length of this metal pipe. We are again 

considering that this pipe is made of ideal conductor terminal conductivity of this pipe is 

infinite and the medium which is filling this wave guide is ideal dielectric. That means the 

conductivity of the medium which is filling this pipe is 0.  

 

So, we are having a very ideal structure that is the pipe is ideal conductor and the medium 

filling this wave guide is ideal dielectric and we want to now investigate how the 

electromagnetic energy is going to propagate inside this pipe without losing generality. Let us 
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orient our coordinate system so that the z axis is along the length of the pipe that mean that is 

the direction in which the energy is going to propagate.  

 

So, let us say this direction is the z direction and then horizontal axis let us say x axis, so this 

axis is x and this vertical axis is y the origin is located at one of the corners of this cross 

section. Now, considering in general this cross section of this wave guide is rectangular. Let 

us say the width of this wave guide is denoted by a and the height of this wave guide is 

denoted by b and that definition a is greater than or equal to b and why we are taking it 

convection will become clear when we define the particular type of mode. So, here we are 

assuming that by definition a should be greater than or equal to b and x axis is oriented along 

this broader dimension that means along a that is the convention essentially we are taking. 

  

Now firstly, if you try to see whether TM mode exist inside this, the answer is; no, the TM 

mode cannot exist inside this structure and the reason for this, we will see later after we have 

understood the TM and TE propagation. So, first we will take the simpler case which is the 

transverse magnetic propagation that means for this the Ez is not equal to 0 and Hz is equal to 

0. 

 

We saw in the last lecture that if the transverse field has to exist, then either Ez or Hz has to be 

non-zero. So, in this case if I consider Hz is 0 that means the magnetic field now is in the 

oriented in the transverse plain and longitudinal component z component is only Ez. So, this 

mode we can call as the transverse magnetic mode or as we called earlier, in short, this is 

called the TM mode.  

 

So, let us investigate now the problem for the transverse magnetic mode for which the 

longitudinal component is only Ez and Hz is equal to 0. Of course, Ez and Hz both are all field 

component for their matter have to satisfy the wave equation inside this structure. So, the 

approach now is as follows; first we solved the equation for this longitudinal component Ez, 

then we go to the expression which we have derived last time for the transverse components, 

substitute here for Ez and Hz equal to 0 and we will get the transverse fields for the transverse 

magnetic mode. 
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So, problem essentially has to be solved in 2 steps; one is, first finding the solution for this 

longitudinal component Ez, then finding out transverse components and then applying 

boundary condition finding proper solution to this structure which is rectangular wave guide. 
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So, if I take the wave equation in Cartesian coordinate system, this Ez is a scalar quantity. So, 

we can write down the wave equation which is del square Ez plus omega square mu epsilon 

Ez that is equal to 0. This is the wave equation. 
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So, this equation is a scalar equation essentially and omega is the frequency, mu is the 

permeability of the medium and epsilon is the permittivity of the medium which is filling this 

wave guide. We can expand this del square in the Cartesian coordinate system, so we can get 

d2 Ez by dx square plus d2 Ez by dy square plus d2 Ez by dz square plus omega square mu 

epsilon Ez that is equal to 0. Now, we solve these problem essentially just on mathematical 

considerations.  

 

However, since you have developed the understanding for the wave propagation inside the 

parallel plain wave guide, we make frequent visits to that understanding. So, whenever we 

choose some constant or something while writing the solution to the equation, we make sure 

that whatever solution you get that solution should be consistent with what understanding we 

have developed from the parallel plain wave guide. 

 

Now, this equation can be solved by separation of variables. So, we can define this quantity 

Ez which is product of the three functions, each one is a variable of either x, y or z and of 

course, there is implicit assumption that all these fields are varying as a function of time 
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which is e to the power g omega t. So, we can say that we can apply separation of variable to 

get a solution which is a function of x, y, z that is some function of x, some function of y, 

some function of z.  
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Now, if you recall, the wave is propagating in the z direction that means we are looking for a 

solution of travelling wave type in the z direction and since we are considering a medium 

which is completely lossless because the dielectric is ideal dielectric, the conducting 

boundary of this wave guide is again ideal; so there is no loss anywhere. So, we have a 

sustain propagation of wave inside this structure. So, we have z variation for a travelling 

wave in the z direction which will be e to the power minus j beta z. That information we will 

use when we try to solve this problem that we are looking for a travelling wave solution in 

this direction.  

 

Also, we a have information from parallel plain wave guide and that is let us say suppose, I 

make one of the dimensions of the wave guide and push it up, let us say I make b equal to 

infinity, then essentially I got a structure which is parallel plain wave guide and I have seen 

for parallel plain wave guide that this can be visualized as the propagation of uniform plain 

wave inside this parallel plains by multiple reflection on this two plains. So, it creates 

standing wave kind of atoms in this direction which is perpendicular to the plains and 

travelling wave propagation along the plains.  
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So, that means whatever solution we are going to get for this problem must have a standing 

wave kind of solution in the x direction because if I take a limit when b tends to infinity, the 

solution must represent the solution for parallel plain wave guide. Same is true for this also 

that if I take these two plains, then if I take a tending to infinity; again I will get a parallel 

plain wave guide which is horizontal now and then I must get a standing wave kind of 

solution which are in y direction.  

 

So, the physical understanding tells me that a solution which we are getting along x direction 

must be of standing wave type, the solution which we should get along the y direction also 

must be of standing wave type and the solution which we should get along the z direction 

must be of travelling wave type because in that direction, the wave is going to, net wave 

propagation is going to take place. With this understanding, now we are going to solve the 

problem.  
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So, first let us just take this and blindly substitute into this equation. So, if I substitute into 

this, I get YZ d2 X by dx square plus XZ d2 Y by d y square plus XY d2 Z by dz square plus 

omega square mu epsilon XYZ that is equal to 0. Note here, now, the partial derivatives have 

been converted to the full derivatives and the reason is X is now a function of x only, Y is a 

function of y and Z is a function of z. By dividing by xyz, all these terms, essentially we get 1 

upon X d2X upon dx square plus 1 upon Y d2 Y upon dy square plus 1 upon Z d2 Z upon dz 
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square plus omega square mu epsilon, it should be equal to 0. Now, this quantity is only a 

function of X, this quantity is only a function of Y and this quantity is only a function of Z 

and this is constant.  

 

Now, this equation whatever you have written, it should be valid at every point in space. So, 

this equation must be satisfied by every point XYZ in the three dimensional space and that 

can only happen provided each of this term is a constant quantity. So, this should be a 

constant, this should be a constant, this should be a constant; then and then only this equation 

can be satisfied by every value of XYZ.  

 

So, what we do is; we just take each of this term and equate them to some constant and the 

equation essentially reduces to three equations and that is 1 upon X d2 X upon dx square is 

equal to some constant and let me just put a constant as minus A square, second term which 

is 1 upon Y d2 Y upon dy square, let us put that thing as minus B square and third quantity 

which is 1 upon Z d2 Z upon d z square that is equal to minus beta square where beta is the 

phase constant of the mode of propagation. 
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We have chosen here this negative sign appropriately so that the solution which you get for 

this equation that will be a standing wave kind of solution in x direction, a standing wave 
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kind of solution in y direction and a travelling wave kind of solution, we will see, will be 

given by this phase constant beta.  

 

So, while writing the expression for X, Y and Z, essentially we make sure that we write a 

solution which will look like standing wave kind of solution and travelling wave kind of 

solution as a function of X, Y and Z. So, this equation to solve is very straight forward, so 

this is I can multiply X on this side and take the term which will be d2 X upon dx square plus 

A square X equal to 0, this is second order homogenous equation for which the solution can 

be written in a straight forward manner.  

 

(Refer Slide Time: 14:52) 

 

 
 

So, we get the solutions for the capital X as a function of x will be some arbitrary constant C1 

cos of Ax plus some other constant C2 sin of Ax; Y is a function of y will be some constant 

C3 cos of By plus C4 sin of By and Z is a function of z will be C5 e to the power minus j beta 

z plus C6 e to the power plus j beta z. 

 

So, note while writing these solutions; these functions which are cos and sin functions, they 

show amplitude variation which is the standing wave kind of behavior. Whereas, if I look at 

this quantity - e to the power minus j beta z, that represents a travelling wave in positive Z 

direction; if I consider e to the power j beta z quantity, that represents a travelling wave 

which it is in negative z direction.  
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So, while writing this solutions, first we use our understanding which you have developed 

with the parallel plain wave guide that is in the transverse direction between the two 

conducting boundaries we must have a solution which were like a standing wave kind of 

solution and along the length of the pipe in which the energy is going to propagate, we have a 

travelling wave kind of solution. 

 

Now, in general when we have this wave equation solution, of course there are two waves 

which are travelling on this structure; one in positive z direction and one in negative z 

direction. However, if I assume that this wave guide is of infinite extent in z direction, then 

there is no reflected wave on this because we have seen from transmission line that if I take 

an infinitely long transmission line, there is no reflected wave on this.  

 

So, we can just for simplicity of the analysis, we can assume that there is no wave which is 

travelling in the negative z direction and we have only one wave which is the forward wave 

which is on this wave guide. So, this wave as shown is a forward wave travelling in positive 

Z direction. 

 

(Refer Slide Time: 17:27) 

 

 
 

So, let us assume that only one wave which is travelling in positive Z direction exists and 

there is no wave which is travelling backwards on this structure. So, we can assume that for 

no backward wave, we can take the C6 as identically 0. So, the Z solution is only C5 e to the 
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power minus j beta z and with that understanding, then I can write down the complete 

solution for the Ez which is the product of this, this and this quantity.  

 

So from here, then I can get Ez which is a function of x, y, z will be equal to C1 cos Ax plus 

C2 sin Ax C3 cos By plus C4 sin By e to the power minus j beta z and we put a constant here 

which is C5. So, this is now the solution, general solution for the wave equation for this 

component Ez. Now, we can apply boundary conditions to get these arbitrary constants and in 

this case, we are having this Ez which is like that in the wave guide, so this component Ez is 

tangential this wall, it is tangential to this wall, it is tangential to this wall and it is tangential 

to the lower wall. 
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So this component, easier component is a tangential component to all the 4 walls of this and 

that is why we have 4 boundary conditions; one on this wall which is x equal to 0, one on this 

wall which is x equal to a, one on this wall which is y equal to 0 and one on this wall which is 

y equal to b.  

 

So, we have got four boundary conditions that all these four walls where x equal to 0, x equal 

to a, y equal to 0, y equal to b, this component which is tangential should be 0.  
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So, we have a boundary conditions now to apply on Ez and that is Ez is equal to 0 at x equal 

to 0, x equal to a and y equal to 0, y equal to b. So, I just use one by one boundary condition. 

If I put x equal to 0 in this, this quantity will be 0, sin of Ax this will be 0. Now, Ez is 0 that 

can happen provided this C1 quantity that should be equal to 0. So, I get from here, from the 

first condition that for x equal to 0, this condition we get this arbitrary constant C1 should be 

identically equal to 0.  
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So, this gives me C1 should be identically equal to 0. Same thing we can do from here that 

since for y equal to 0, again Ez is 0. So, if I put y equal to 0, this quantity will be 0 and then if 

Ez has to be 0, this arbitrary constant c3 should be 0.  

 

(Refer Slide Time: 21:18) 

 

 
 

So, we get for y to be equal to be 0, you get the arbitrary constant C3 should be identically 

equal to 0. 
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Once you get that, then the solution essentially now has become C2, C4, C5 sin of Ax, sin of 

By e to the power minus j beta z. So, the general solution which can satisfy this boundary 

condition x equal to 0, y equal to 0, now will be Ez C5 C2 C4 sin of Ax sin of By e to the 

power minus j beta z. 
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Now, these are the arbitrary constants, so we just combine this into one, so this is just telling 

me the amplitude. So, I can say this combine, all this thing combine together, let me call this 

quantity as some C into sin of Ax sin of By e to the power minus j beta z.  

 

Now, apply second boundary condition that when x is equal to a, again this quantity Ez is 0 

and that can happen when provided this A times small a, that quantity is multiples of pi. 

Similarly, from this boundary condition that Ez should be 0 for y equal to b, if this By is 

multiples of pi, then again this quantity will be 0. So, from these two boundary conditions; x 

equal to a and y equal to b, we get that A times a that should be equal to some multiples of pi. 

That means this constant A which we still have to determine that is equal to m pi by a. 
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Similarly, B times small b that should be equal to some another integer of pi and that gives B 

is equal to n pi by b. We can now substitute, once you get these constants a and b which are 

related to these dimensions, the broader dimension of the wave guide and the smaller 

dimension of the wave guide and m and n are integers, this longitudinal component field Ez is 

constant C sin of m pi x by a sin of n pi y by b e to the power minus j beta z.  

 

This is now the complete solution of the wave equation for this longitudinal component Ez. 

We applied all the boundary conditions, this arbitrary constant C will remain undefined 

because this essentially represents the amplitude of the electric field and that has nothing to 

do with the boundary conditions because boundary conditions are satisfied irrespective of 

power level or the amplitude of the field. So, this parameter this constant, arbitrary constant C 

will remain as it is at this stage; when we really talk about the power inside a mode, then and 

only this quantity C will be evaluated.  
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So now, we have got a complete solution and these two quantities now m and n which are 

integers, they now represent essentially the order of the mode by the same token as we have 

done for the parallel plain wave guide that there we had a transverse magnetic mode and we 

had put an index, now we can put the indices which are these two indices for m and n. So, a 

transverse magnetic mode now can be designated by TM with these two indices m and n.  

 

Now here, the convention essentially comes from handy, why you have taken a convention; 

the first index which we have here is the index around the broader dimension a. So, that is the 

reason we taken the convention that broader dimension is called a and that is the direction in 

which the x is oriented. So, the first index essentially tells me the field variation along the 

broader dimension of the wave guide which is x direction.  

 

Similarly, this index n tells me the field variation along the shorter dimension of the wave 

guide which is the y direction. So, when we write a mode TM mn; the first index tells me the 

field variation along the broader dimension, the second index tells me the field variation 

along the shorter dimension. Also, we will note here that if m equal to 1, then when x varies 

from 0 to a, here; you have essentially one half cycle variation.  
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If I take m equal to 2, I have one full cycle variation and then so on and same thing is going 

to happen in y direction. 
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So, this behavior is exactly identical to what we have seen for the parallel plain wave guide 

that the order or the index which we have for the mode, it represents number of half cycles in 

the transverse direction and in this case, there are two transverse direction; one is x and one is 
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y. So, along each of these transverse direction x and y, these indices tells me the number of 

half cycle variations for the magnitude of the field. So, if I take m equal to 1, then I get one 

half cycle variation; if I take m equal to 2, I will get two half cycle variations and so on.  

 

So, once you have understood the field behavior for the parallel plain wave guide, visualizing 

these now for rectangular wave guide is very straight forward because we have already 

developed a physical understanding of how the field variation is going to be and as we can 

see in the limit when a or b  tends to infinity, this essentially, wave guide will become a 

parallel plain wave guide and then the expression which we had for Ez or for that matter, we 

will see later for Hz that is identical to what is the expression for electric field in the parallel 

plain wave guide. 

 

So, this field expression which we have got now can be reduced to the parallel plain wave 

guide by properly substituting either a equal to infinity or b equal to infinity. Now, once you 

have got these constants now - m and n, there are few things which can be noted from here. 

Firstly, m equal to 0, n equal to 0; if I substitute into these equations, the Ez will be identically 

0. What that means is that TM00 mode cannot get excited inside a rectangular wave guide.  

 

We have seen for a parallel plain wave guide that the TM0 mode which was same as the 

transverse electromagnetic mode was possible in a parallel plain wave guide and that was the 

mode which was the lowest order mode. However for this mode, we note that when both the 

indices are 0, the field goes to 0. So, TM00 does not exist.  

 

Also we will note, when any of the indices go to 0, then also again this field goes to 0; Hz is 

already 0 for transverse magnetic. If Ez also goes to 0, then all the fields will identically go to 

0 because h is not equal to 0 that is what we have to show.  

 

So first, let us show that for this mode, h is not equal to 0 if I go back to the wave equation 

and substitute now this quantity from this equation. This quantity as we have defined as 

minus A square, this quantity we defined as minus B square.  
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Here, this quantity is minus A square, this quantity is minus B square and this quantity is 

minus beta square and we have found out now this value of A which is m pi by a, this 

quantity is n pi by b. 
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So, you can go back and substitute into this to get a relation which is minus m pi by a whole 

square minus n pi by b whole square minus beta square plus omega square mu epsilon is 

equal to 0. 
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I can take this beta on one side, so the phase constant for this mode will be equal to square 

root of omega square mu epsilon minus m pi by a whole square minus n pi by b whole 

square.  

 

Now, this relation is familiar, the similar relation we had seen for the parallel plain wave 

guide with only one term which are omega square mu epsilon minus m pi by d where d was 

the height of the wave guide and this expression essentially tells how the velocity or the 

phase constant varies as a function of frequency on this structure.  

 

So, this expression is identical to what we have derived for parallel plain wave guide and that 

is why this is the dispersion relation for the transverse magnetic mode on a rectangular wave 

guide. So, we can call this as the dispersion relation that we saw in the last lecture. So, this is 

the dispersion relation for TM mn mode where m and n are the two indices which are non-

zero.  
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Now, if I take m and n both equal to 0, we saw the fields are not existing. But if I take m and 

n, one of them is 0. 
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Then, this quantity now, this is h; what is h square now? The h square was defined as omega 

square minus beta square in our general analysis. 
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So, we had defined this quantity h square was omega square mu epsilon minus beta square. 

So by that, comparing this with this, we get essentially for this case; h square is your m pi by 

a whole square plus n pi by b whole square. So, when m and n both are not 0, the h square is 

not zero.  

 

So, when the h square is not zero, the field which we have transverse fields which are 

represented in terms of the longitudinal components, we have seen the transverse component 

would exist if both of Ez and Hz are 0, provided H is also equal to 0. 
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However, now we are seeing that h is not equal to 0 when m, either m or n are not equal to 0 

and then if Hz and Ez both go to 0, all transverse field would go to 0 and the mode would not 

exist. So, we see that for the transverse magnetic case, when either m or n are 0 or any of 

these two is 0, then again this field will be 0 and since h is not 0, again the transverse field 

will go to 0 and the modes will not exist.  

 

So now, we have some important conclusion drawn from this analysis for transverse 

magnetic mode. So, we have a mode TM mn mode. 
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So, the first conclusion which we have is TM00 does not exist. So, we also conclude that TM 

m0 and TM 0n also do not exist. So, the lowest mode which can exist, the lowest index that is 

when both these indices are non-zero, that means TM11 is the lowest order of TM mode 

which can exist on the waveguide. 

 

So, by doing this general analysis, we come to the very important conclusions that if the TM 

mode has to be excited on a rectangular waveguide, the fields must vary in both the directions 

x and y on the rectangular waveguide and that we can see physically as follows. Since the 

index m and n is telling the variation, one half cycle variation along the x and y direction 

respectively; when m is 0, there is no variation of the field along x direction and when n is 0, 

there is no variation of the field along y direction. 
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But the field has to be 0 here, this is Ez component; so it has to be 0 here, it has to be 0 here 

and there should not be any variation in the x direction if m is equal to 0. That is only 

possible provided the field is identically 0 everywhere; the same is true for these two 

boundaries that when n is equal to 0, the field should not have any variation in the y direction 

but it should be 0 here, it should be 0 here and that again can happen when the field is 

identically 0 everywhere.  

 

So, physically it makes sense that yes, this field Ez cannot exist inside this without a variation 

in x and y direction, it must vary. Also, we assume from the solution in this Cartesian 

coordinate that the variation is always sinusoidal and it is always number of half cycles; you 

can have one half cycle or two half cycles or three half cycles and so on. 

 

So, essentially we get now the variation in this Ez is always 0 on these two and depending 

upon the value on m and n, you will have the variation in x and y direction which is 

sinusoidal variation. So, the field in the transverse direction always varies sinusoidally in the 

Cartesian coordinate system and they must vary because if they do not vary in any of the   

 

Of course, your conclusion might be different when we go to a transverse electric case but 

these are the conclusion which we can draw now for a transverse magnetic case. Once we get 

now this Ez, then we can substitute for Ez into these components and then we can write down 
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the transverse components for the TM mode. So, you can substitute now the general solution 

which we got and now if I write for Ex, Hz is 0; so this term is 0, this term is 0. 
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So, I get now Ex which is equal to minus j beta upon h square where h square is already have 

been calculated; this is d Ez by dx. So, that will be equal to minus j beta upon h square m pi 

by a into that arbitrary constant C cos m pi x by a sin n pi y by b and multiplied by e to the 

power minus j beta z. Same thing I can do for Ey that is equal to minus j beta upon h square d 

Ez by dy which will be equal to minus j beta upon h square n pi by b C sin of m pi x by a cos 

n pi y by b and put this phase term e to the power minus j beta z.  

 

The magnetic fields on the same lines, we can get as j omega epsilon upon h square d Ez by 

dy that is equal to j omega epsilon upon h square n pi by b C sin of m pi x by a cos of n pi y 

by b e to the power minus j beta z and Hy will be equal to minus j omega epsilon upon h 

square dEz by dx that is minus j omega epsilon upon h square m pi by a C like this cosine of 

m pi x by a sin of n pi y by b e to the power minus j beta z. 

 

So now, we got the complete fields for the transverse magnetic modes with the understanding 

that the lowest order mode which is going to propagate on this structure will be the TM 11 

mode. So, few things can be seen from here and that is the Ez component which is for which 
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we obtained the solution. That essentially is 0 at these 4 walls it is there in the sinusoidal 

variation, so we had a Ez variation which is this.  
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So, the Ez was 0 x direction at x equal to 0, at both the walls, the Ez was 0, Ez in y direction 

also having half cycle variations.  
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If I look at the cross section like that, the wave guide; the Ez is 0 here, 0 here, 0 here. So, it 

had half cycle variation like that or it could have a variation which will be like that, the same 

is true for half cycle variation in this direction or it could be like that. So, the Ez is 0 at this 

point and the maximum here if m is equal to 1, maximum here along this if n is equal to 1 and 

so on.  
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However, if I look at this field now which I have got here, Ex Ey Hx Hy, the Ex is having a 

variation which is cosine variation as a function of x. So, the component Ex which is this, x 

component which is oriented this way, it is having a variation cosine variation along x 

direction. That means it is maximum here, 0 here and another maximum here; again it is half 

cycle but it is not 0 here. In other words, it is shifted like a quarter cycle in space with respect 

to the Ez component. So, the Ex component if I look at; it will be like that. 
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This will be the component which is Ex; so that is maximum here, 0 here, maximum here and 

Hy component if I look at, it will be again a cos variation along y direction. So, it will be in 

this direction; if I look at, the field variation would be like that for the Ey component.  

 

So now, later on we will try to visualize these fields actually inside this pipe but at this point 

it appears that component Ex Ey Hx Hy depending upon the boundary conditions, they will be 

staggered in space in the transverse plain with respect to the longitudinal component which is 

the Ez component.  

 

Once we get this understanding that the electric field which is like that is maximum on this 

boundary and if I look at the magnetic field which is let us say I take x oriented magnetic 

field which is having a variation which is sin variation in the x direction and cos variation in 

y direction; so if I consider now a magnetic field which is x oriented, then it is cos variation 

in y direction that means it is maximum here, 0 here, maximum here because Ex and Hy, they 

have the same behavior and Ey and Hx have the same behavior. By comparing the 

expressions, this is what essentially we see.  

 

So, what we observe from here and off course from rigorous analysis also we can do that; but 

what we observe from here is that Hy component which is this is maximum on this wall and 

on this wall. That means when the magnetic field is tangential to the boundary, that is where 
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it is maximum and off course it is having a variation which is sinusoidal variation with 

number of half cycle depending upon the order of the mode. 

 

Similarly here, when I consider Hx which is going to be maximum here, maximum here; that 

means magnetic field is maximum when it becomes tangential to the conducting boundary 

and an electric field is 0 when it becomes tangential to the conducting boundary. Of course, 

the tangential magnetic field whatever is there on the boundary is balanced by the surface 

current, so it is a boundary condition on the tangential component of magnetic field.  

 

So essentially, by using this observation that the magnetic field is maximum; tangential 

component of magnetic field is maximum on the conducting boundary and having understood 

that the solution gives me a sinusoidal variation in the transverse direction, now we can 

readily write the solution for the transverse electric mode without going to the same analysis. 

Of course in a routine way, we can do the same thing that if you want to analyze a transverse 

electric case, then we take Ez is equal to 0, we take Hz not equal to 0. 

 

(Refer Slide Time: 47:51) 

 

 
 

So, we consider a case which is transverse electric case or a TE wave.  
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So in this case, the longitudinal component which we have is Hz which is like that and what is 

observed from this is that this component which is going to be tangential to this wall, this 

wall, this wall and this wall should be maximum on the walls and it should have a variation 

which is sinusoidal variation in the transverse direction.  

 

So now, having understood all these analysis, we can write the solution without going to the 

same steps same algebraic steps which we have done, we can get the solution for Hz which 

will be some constant cosine of m pi x by a cosine of n pi y by b e to the power minus j beta 

z. 
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So, without repeating the algebra which we have gone through for solving the wave equation; 

of course, I can go exactly same way, I can solve the wave equation now for Hz, then apply 

the boundary conditions but note; directly on Hz, there was no boundary condition.  

 

So, if I have to go from the same routine way, then I have to find out general solution for Hz, 

find out a transverse component then find out the component which are tangential to the 

boundaries and then apply the boundary conditions on those components because tangential 

component of magnetic field, there is no boundary condition. So, in this case, TE case, if I go 

by routine way, there will be two steps involved; first, find out a general solution for Hz, 

substitute into the transverse component expressions, find transverse components and then 

apply the boundary conditions on the transverse components because intrinsically there is no  

boundary condition on Hz. 

 

However, without going to the same routine steps essentially the understanding which we 

developed at the magnetic field when become tangential to the conductor is maximum, I can 

get the expression for Hz and one can go and verify, verify that if I had done the analysis, 

essentially I would get the same expression. 
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Now, this you can verify when x is equal to 0, the field is maximum; when x is equal to a, 

again the field is maximum; y is equal to 0 and again y equal to b, again the fields are 

maximum. 

 

So, these fields are having the variation which essentially we are looking for; the tangential 

component of magnetic field must become maximum. Using this expression for Hz, now we 

will investigate the transverse electric mode and see the characteristics of transverse electric 

mode and then compare the behavior of this mode with the transverse magnetic field. So, we 

will continue the discussion on the transverse electric and transverse magnetic mode inside 

the rectangular wave guide and see more properties for these modes. 
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