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Lecture #31 

Reflection and refraction at media interface 
 

In the last lecture we started investigating the behavior of plane wave at media interface. 

Matching the phase for incident for the other waves which are reflected and transmitted 

wave at the media interface, we got the laws of reflection and laws of refraction. Now 

following that, today we will investigate how much energy is transfer to the second 

medium and how much energy is reflected from a dielectric interface.  
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So today essentially we discuss a problem of reflection and refraction at the dielectric 

interface. As we took in the previous lecture we are still considering the media which are 

lossless media that means the conductivity for both the media is 0. But the 2 media can 

have different permeability and different permittivity. So in the situation we are asking 

the question how much power get transferred from 1 medium to another and how much 

power the reflected from the media interface.  
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As we discussed the problem essentially now is that you have a media interface we are 

having different medium properties on the either side of this interface. And then we are 

interested in now finding out 2 quantities. 1 is what is called the reflection coefficient 

which we defined as the amplitude of the reflected wave to the amplitude of the incident 

wave and the transmission coefficient which is the ratio of the amplitude of the electric 

field or the transmitted wave to the electric field for the incident wave. These quantities 

we have define for the electric field and as we know since the wave natures still remain 

the plane wave nature as when require we can always find out the magnetic fields for all 

the 3 waves. The incident reflected and the transmitted wave. So now the analysis very 

straight forward essentially we write down the electric fields and the magnetic fields in 

the 2 media for the 3 waves and then we apply the boundary conditions at the interface 

for the electric and magnetic fields.  

 

And then by doing some algebra essentially you get this quantity which is Er by Ei which 

is the reflection coefficient and Et by Ei which is the transmission coefficient. However 

as we mentioned earlier, that when we are interested now in these quantities the electric 

field is a vector quantity. So when the wave is incident on the dielectric interface, the 
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electric field vector in general can make an angle arbitrary angle with respect to the plane 

incidents. So if you solve these general problems, that when the wave vector is making 

arbitrary angle with respect to the plane of incidents the problem is rather complicated. 

So what we do generally we split this problem into 2. So essentially we take the 2 

components of the electric field vector. One is perpendicular to the plane of incidents and 

other 1 is in the plane of incidents and then we have 2 cases for which we can find out the 

reflection and transmission coefficients. And if you get these quantities, for these 2 cases 

then we can always combine the 2 to find the any arbitrary direction for the electric field. 

So the problem of reflection and refraction at dielectric interface is decomposes into 2.  
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1 is when the electric field is perpendicular to the plane of incidents and we call that as 

the perpendicular polarization. So essentially what we are doing now is, whatever is the 

polarization of the incident wave, as we have seen this polarization can be decompose 

into 2 or 7 a linear polarizations. So we are decomposing this into 2 linearly polarized 

waves. 1 which is polarize, perpendicular to a plane of incidents other 1 which is polarize 

in the plane of incidence and then you find out the reflection and transmission coefficient 

for these 2 cases. So let us first investigate that the reflection and refraction coefficient 

for a perpendicular polarization.  
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So as we have taken earlier let us say this is the interface and as we took this direction is 

the x direction say this is the origin this is the z direction the y direction is coming out of 

the plane of the paper. So this is y-direction. Will let me remind you we have choosing 

this direction such that the right handed coordinate system that rule is satisfied. Now let 

us say the various incidents on this. So this is direction of the way of vector which is 

making an angle. Let us say theta i with the normal to the dielectric interface. And this 

way of vector is lying in the plane of the paper that means the plane of the paper itself is 

plane of incidents on the polarization for this wave is perpendicular polarization. So 

either the electric field might be coming out of the plane of the paper or it might be going 

inverse from the plane of the paper. So let us say without using generality let us say the 

electric field is coming out of the plane of the paper.  

 

So this is the incident electric field which is now oriented in y direction. Then let us say 

this is the transmitted wave which makes an angle theta t and there is a reflected wave 

which will make an angle same as the incidents angle which is theta i. So this is the 

reflected wave. Now one can argue that since we have to satisfy the boundary conditions 

at the interface and one of the boundary conditions we can satisfy is the tangential 
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component of the electric field should be continuous across the boundary. If this field is y 

oriented then both this fields also must be y oriented. Not necessarily in positive y 

direction it could be positive or negative. But it is oriented in the y direction. The reason 

is very simple that if I have to satisfy the boundary condition, then some of these two 

electric fields which are tangential to the interface this should be equal to the electric 

field which is for the transmitted wave. If I have field for this transmitted or reflected 

wave which is not perpendicularly polarize.  

 

If you lies, if you have some component in the plane of incidence then the 2 component 

which are lying in plane of incidence will satisfy the boundary conditions. But it will not 

have any role to play with the incidence electric field. What that means is that, you might 

imagine its equation there where there 2 electric fields which are for this and this way. 

But these are not because of the field which is incident of  the boundary. So as for as the 

effect of this incidents where this concerned, the electric field must lie perpendicular to 

the plane of incidents so that the boundary condition is satisfied. So then without using 

generality we can assume that all the 3 electric fields are y oriented at may they are 

oriented in positive y direction. If our convention was wrong then we will get negative 

sign for the electric field for transmitted in the circuit wave that means the wave will be 

going inverse in the plane of the paper. So without using generality we can say this also is 

positive y oriented. So this is Et this is also positive y oriented. So let us say this is Er.  

 

So all the 3 electric fields, now coming out of the plane of the paper. Now we have to 

write down the magnetic fields and for writing the magnetic field essentially we use the 

pointing vector argument. And that is we must choose the direction of the magnetic field 

such that the pointing vector must be in the direction of the wave properties that means it 

must be along the wave of vector. So in this case in the electric field is coming outwards 

if my fingers go from electric field to magnetic field thumb must point in the direction of 

the wave propagation and EmH must be perpendicular to each other. So it is very clear 

since E are for all the 3 waves are coming perpendicular to the plane of the paper the 

magnetic field vectors for all the 3 waves must lie in the plane of the paper that is they 

must lie in the plane of incidence. So they are perpendicular, they lie in the plane of 
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incidence whether they would like this way or this way that will be decided by the 

pointing vector. So in this case since the E is coming outwards my fingers should go like 

this, so that thumb uses me the direction of the power. So this must be the direction of the 

magnetic field.  

 

So this is the Hi, so then I get E cross H which will be the direction of the pointing 

vector. Same thing I can do then for here that this also should give me H in such a way 

that pointing vector in this direction. So again we will get this direction which is Ht. In 

this case however, since the wave is now going in this direction and electric field is 

coming outwards. The magnetic field should be in this direction so that E cross H gives 

me the power which is in this direction. So I get for this wave, a magnetic field will be 

oriented in this direction. So what we do? First we assume the direction for the electric 

fields then by using the pointing vector arguments we write down the directions for the 

magnetic fields in the vector form. And also we know since these waves are transfers 

electromagnetic waves the ratio for this is given by the intrinsic impedance of the 

medium.  

 

So as we saw, here we have Ei upon Hi that is equal to eta 1 which is the intrinsic 

impedance of the medium 1. Er upon Hr that is also equal to eta 1 which is intrinsic 

impedance of the medium 1. And here Et upon Ht that is equal to eta 2 which is intrinsic 

impedance of medium 2. So as we have seen if the medium parameters are mew 1 epsilon 

1 for medium 1 and for this side it is mew 2, epsilon 2. Then we have this eta 1 which is 

intrinsic impedance of the medium which is square root of mew 1 upon epsilon 1 and eta 

2 for this medium is equal to square root of mew 2 upon epsilon 2. So once I not the 

medium parameters I can find out the intrinsic impedance. Once I know the intrinsic 

impedance, I know the magnetic fields from this relation. Now essentially we decompose 

the magnetic field into 2 and then we can apply the boundary conditions appropriately 

electric field note inherently parallel to the interface.  

 

That means, it is tangential to the interface that this location. So we can satisfy the 

boundary conditions. So first thing is we write the functional form for this electric and 
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magnetic fields including the phase function, then we apply the boundary condition the 

tangential or normal component of electric and magnetic field should be continuous 

across the boundary. So if this angle is theta i, I can decompose the 2 components 1 is 

this component and this component. And this will be equal to these angle is theta i. So 

this angle also will be theta i, this angle will be theta i, I resolve this in 2 components 

then this angle will be theta t. So this component which is tangential component of a 

magnetic field will be Hr into cos theta i this will be Hr into sin theta n same is true for 

the other 3 waves. 
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Let us now first write explicitly the expression for the electric fields. So if I let us say I 

take the incident wave the electric field Ei is having a some magnitude Ei and it have a 

phase function which is E to the power minus j beta 1 into as we saw last Time: when we 

wrote the phase function this will be equal to x times x times sin of theta i plus z times 

cos of theta i. Now this will be x sin theta i plus z cos theta i for the reflected wave Er 

that is amplitude Er e to the power minus j beta 1 x sin theta i. But now this wave is now 

going in the opposite direction with respect to z. So either I can find out the direction 

cosine which is this angle which is put the z axis for theta i. But for this wave the angle is 

actually pi minus theta i.  
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Say it will be direction cosine of pi minus theta i corresponding to that so that will be 

minus z cos of theta i and then we have a transmitted wave which is Et sub magnitude Et 

e to the power minus j beta 2 x sin theta t plus z cos theta t. Then all this waves are fields 

are y oriented. So I can I can put if you want is unit vector for all this which is y oriented. 

Now if they have to satisfy the boundary condition and since these all 3 fields are 

continuous and tangential to this boundary the Ei plus Er should be equal to Et at the 

dielectric interface which is z equal to 0. So this plane which is the dielectric boundary is 

defined by z equal to 0 because we have to taken the origin at the interface. So at z equal 

to 0 these some of these 2 fields should be equal to the transmitted field. So essentially I 

have from the boundary condition that tangential component of E should be continuous 

we get from here Ei plus Er is equal to Et.  

 

See if I substitute I will get the 3 phase functions this quantity which will be this total 

function plus this quantity plus this at z equal to 0. So I get from here Ei e to the power 

minus j beta 1 x sin theta i plus Er e to the power minus j beta 1 x sin theta i that is equal 

to Et e to the power minus j beta 2 x sin theta t. So this is the boundary condition at z 

equal to 0. Now we already establish the Snail’s law. We say beta 1 sin theta i is equal to 

this quantity same beta 1 sin theta i and that is equal to beta 2 sin theta t. So from the 

Snail’s law we have beta 1 sin theta i is equal to beta 2 sin theta t. That means this phase 

function is same for all the 3 waves okay. So essentially this term is a common term 

because the Snail’s law satisfy that this quantity is equal to this quantity. So what they are 

gives you is that Ei plus Er that is equal to Et, and that you will see this phase matching 

condition essentially true for all the components whether you have normal component or 

a perpendicular component or normal component or tangential component.  

 

This phase term is same so what will happen is that the component which you take for 

electric or magnetic field that will be either its quantity multiplied by cos theta i or sin 

theta i depending upon whether we take tangential component or normal component. But 

the phase function is same for all the component which is which is given by this. So what 

are boundary condition we satisfies, this phase function will always same for the incident 

and the transmitted wave. So what that means then the boundary conditions have to be 
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applied only on the amplitude term which is the amplitude of the incident reflected and 

transmitted wave. So we have 1 relation between these and that is equation 1 which we 

can use later on for the finding out the quantities as we mention the reflection and 

transmission coefficient. 
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The second boundary condition which we get the either by from the continuity of the 

normal component of the magnetic field or in this case since we are talking about 

dielectric media there are no surface currents. So we can always also use the continuity of 

the tangential component of the magnetic field. So as we have seen earlier when we 

talked about boundary conditions the tangential component of magnetic field cannot be 

applied if there is a possibility of surface current. However as we have seen the surface 

currents or for ideal conductors. So if you have a dielectric boundary like this there is no 

surface currents and then even the tangential component of magnetic field can be applied. 

So we have tangential component of magnetic field which is Hi cos theta i. That is the 

tangential component. So this is Hi cos of theta i, this component is Hr cos of theta i and 

this component tangential component this 1 Ht cos of theta t. So we can apply the 

continuity that this minus, this because they are in opposite direction that should be equal 

to the tangential component with Ht cos theta.  
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So we can apply the since there are no surface current current. E 1 tangential component 

of H, is continuous at the boundary. So from here we get Hi cos theta i minus Hr cos 

theta i that is equal to Ht cos theta t. Instead of here this term minus this term that is equal 

to this term. And we now know the relation between E and H. So I can substitute for H 

which is Ei upon eta 1 Hr is Er upon eta 1 and Ht is Et upon eta 2. So this thing I can 

write as Ei upon eta 1 cos theta i minus Er upon eta 1 cos theta I, that is equal to Equal to 

upon eta 2 cos theta t that is your second equation which relates the electric field 

component across the boundary. Now remember we are interested in now finding out 2 

quantities 1 is the reflection coefficient which is Er upon Ei and other 1 is transmission 

coefficient. So using these 2 equations I can now find out these 2 quantities I have 1 

equation which is this, the other equation, which is this the other equation which is this 

and then by just simple algebra manipulation I can find out the reflection and 

transmission coefficient for this wave and that will be.  
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So I get now reflection coefficient and we saw this is denoted by gamma. But now in this 

case we are having the polarization which is perpendicular polarization. So we called this 

is the reflection coefficient gamma perpendicular and that is the will be equal to just if 

you solve this equations we get eta 2 cos theta i minus eta 1 cos theta t divided by eta 2 

cos theta i plus eta 1 cos theta t. And the transmission coefficient tau and again we put 

this suffix perpendicular for perpendicularly polarize wave that is equal to 2 times eta 2 

cos of theta i that divided by eta 2 cos of theta i plus eta 1 cos of theta 2. We can verify 

that from this equation 1 if I divide this equation by Ei I will get 1 plus Er upon Ei equal 

to Et upon Ei. So that will give me 1 plus gamma is equal to tau. So we can verify that it 

will satisfy a condition 1 plus gamma is equal to tau. So this is perpendicular.  

 

Greater So just after the boundary if I find out what are the fields, the electric field then 

the reflection coefficient gives me just beyond the boundary what will be the value of the 

transmitted field. And just this side of the boundary left side of the boundary in medium 1 

what will be the amplitude of the electric field? And once you get these quantities Er and 

Et then of course we have these phase function so we can find out the wave at any 

location any point in space in medium 1 and in medium 2. So in medium 1 essentially we 
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have super position of the wave which is 1 which is incident and the wave which is 

reflected from the boundary. So any at any point in space you have to find super position 

of these 2 whereas if you go to the medium 2 then we have only this way. So we can find 

out the wave at any location in medium 2. Few things can be noted from this expression 

for reflection and transmission coefficient 1 is the reflection coefficient is always less 

than or equal to 1.  

 

So this quantity is mod gamma put it mod of that magnitude of this quantity less than or 

equal to one whereas this quantity which is the transmission coefficient let could be less 

than 1 it could greater than 1. As we recall this quantity here the gamma is the reflection 

coefficient and the pointing vector is proportional to mod E square. So if gamma is less 

than 1 that means the pointing vector magnitude for the reflected wave is always less than 

1; that is very straight forward. So what essentially we are saying is if you are some wave 

which was coming to the media then it had got some power density along with it when 

the wave got reflected the power density in this wave is always going to be smaller 1 

power density coming from this wave. So the reflection coefficient is always less than 1 

is quite obvious.  

 

What is the meaning of then the transmission coefficient is greater than 1 because that 

maybe situation here when this quantity eta 2 cos theta is greater than eta 1 cos theta 2 

that Time: the amplitude of this would be greater than 1. That means the electric field in 

medium 2 could be larger compare to the incident electric field. Thus, that the mean that 

the pointing vector in that for that transmitted wave is greater than pointing vector of this, 

the answer is no why we got although the electric field is larger here. The intrinsic 

impedance which is related to this quantity epsilon 1 and mew 1 the magnetic field will 

be reduce in a proportion. So this pointing vector for this will be always less than the 

pointing vector of this. After all that has to be conservation of the path. So if you got 

certain power density coming from here, the power density which is going for this wave 

and this wave they must be some of these 2 must be equal to the power which was carried 

by the incident wave.  
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So though the electric field could be larger in the second medium the pointing vector for 

both the waves the reflected and transmitted will always be less than the pointing vector 

of the incident wave. When the wave is reflected from the boundary, that Time: there 

may be a phase reversal for the wave or they may not be a phase reversal from the wave. 

This quantity is always positive. So when the wave is incident on the dielectric medium 

the transmitted wave is always in the phase with the incident wave. But the reflected 

wave can be in phase, can be out of phase 180 degree out of phase that means the electric 

field if it is like this for the incident wave.  

 

The electric field for the transmitted wave will be always coming out of the plane this if 

this was coming out of the plane whereas for the reflected wave it might come out of the 

plane or it might go inside the plane. Both possibilities might exist depending upon the 

angle of incidence at the medium parameters. So these are some broad conclusions 1 can 

draw for this wave which is perpendicularly polarization. The next case which is the 

parallel polarization the analysis of this wave is identical to this that means you again 

write down the wave vectors we write down the fields again you write a boundary 

condition and then you get the expressions for the reflection and transmission coefficient.  

 

(Refer Slide Time: 32:42)  

 

 

13 
 



So very quickly we can get what is called the parallel polarization. That means in this 

case now the electric field is lying in the plane of incidence. So this this direction is x this 

is z this is y again the wave is incident at an angle which is theta i it is reflected angle 

theta i, this is theta t and now the electric field is lying in plane of incidence that means it 

is lying in this plane of plane of the paper. So if the electric field is lies in the plane of 

paper the magnetic field must lie perpendicular to the plane of the paper because these 2 

must be perpendicular to each other. So in this case without using generality what we 

assume is that all the magnetic field vectors are y oriented they are coming out of the 

plane of the paper and then appropriately choose the electric fields direction so that you 

get the correct pointing vectors.  

 

So let us say the magnetic field for this was coming out is given by Hi this is Ht and this 

is Hr and I must get the electric field so that the pointing vector in this direction. So since 

H is like this your E must be going this wave, so E cross H gives me the correct pointing 

vector. So I get this is the direction for multiplication Ei this is the direction for Et and for 

this wave which is going in opposite direction again I must get E cross H which is this 

way. So E will be pointing so this is my Ei, again I can take the component of these 

vectors tangential component the magnetic field now is tangential to the interface. So this 

is if this angle is theta i again this is theta i this is theta i this is theta t. So this component 

is Et cos theta t. This is this component is Ei cos theta i and this is this is E Er cos theta 

this component. So again by matching the boundary conditions essentially we can get 

now. So the magnetic field is fully tangential and recalling that the phase function for all 

of them is same as we saw in the previous case.  
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We get now 2 conditions Hi plus Hr is equal to Ht and substituting for Hi and Hr that is 

Ei upon eta 1 plus Er upon eta 2 that is equal to Et upon for this is eta 1 its eta 2. So this 

is your 1 equation and then I have for the electric field which is Ei cos theta i minus Er 

cos theta i that is equal to Et cos theta t. For second equation I have this Ei cos theta i 

minus Er cos theta i that is equal to Et cos theta t that is your second equation. And again 

by solving these 2 equations we can get a ratio of Er by Ei which is the reflection 

coefficient and Et by Ei which is the transmission coefficient.  
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So from here if I do that j get for the parallel polarization the reflection coefficient which 

is gamma. And since we are talking about parallel polarization that is gamma parallel that 

will be equal to eta 1 cos theta i minus eta 2 cos theta t divided by eta 1 cos theta i plus 

eta 2 cos theta t. And the transmission coefficient tau parallel that will be equal to 2 times 

eta 2 cos theta i divided by eta 1 cos theta i plus eta 2 cos theta t. So the expression which 

you get for reflection coefficient is similar in the 2 cases except that this eta 1 and eta 2 

are interchange. So in the perpendicular case we have eta 2 cos theta i and eta 1 cos theta 

t whereas in parallel we have eta 1 cos theta i and eta 2 cos theta t. Also note here that in 

this parallel case 1 plus gamma is not equal to tau because we have from this equation the 

relation will be 1 plus gamma. If you take eta 1 in the other side will be eta 1 upon eta 2 

into tau. So for this case we have 1 plus gamma parallel that will be eta 1 upon eta 2 into 

tau parallel. But otherwise all the discussion on arguments we had for the parallel 

polarization will be identical to the perpendicular case also.  

 

So we have already seen in detail the piece of perpendicular polarization. So all the 

argument that the reflection coefficient magnitude will be always less than 1 whereas 

transmission coefficient could be greater than or less than 1. All the arguments are valid 
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for this polarization also. So once we have now the reflection in transmission coefficient 

for these 2 cases, then now we can combine the reflected and transmitted fields and then 

we got the resultant field for the reflected or transmitted wave for any arbitrary 

polarization. So let me just summarize and what we have done we say if you have any 

arbitrary polarization of the wave as we have seen the arbitrary state of polarization can 

be represented by a combination of orthogonal polarization. And in this case we are 

taking 2 orthogonal polarizations which as linear 1 is perpendicular to plane of incidence 

other 1 is parallel to the plane of incidence.  

 

Solve the problem separately for these 2 states of polarization. That means you find out 

the reflection and transmission coefficients for these 2 cases and we get the quantities 

what is called the gamma perpendicular and tau perpendicular and the gamma parallel 

and tau parallel. And then, you combine the reflected and the transmitted fields for these 

2 polarizations to get the resultant electric field; that means the resultant polarization. So 

this will discuss little later how the polarization might get for change. But by using this 

expression now we can find out how much field is induced in the second medium when 

the uniform plane wave is incident on a dielectric boundary and then from there we can 

also calculate how much power gets transferred to the second medium and how much 

power is reflected from medium. Now one of the special cases of this could be that if I 

take a perpendicular polarization case this case this case.  

 

And if I make this angle 0 we got the special case which will be the normal incidence 

case. So one way is that okay it is not with the normal incidents than the reflected wave 

also will be normal because these 2 angles will be equal and Snell’s law again this wave 

also will be moving along the normal. So essentially we have a case wave moves in this 

direction wave of travels back in this direction which is reflected wave and a transmitted 

wave also moves in this direction satisfy the boundary conditions. And you can get a 

reflection and transmission coefficient for that case, other possibilities since we have 

consider this cases of perpendicular of parallel polarization either of the case if I put theta 

i equal to 0 then I get the case of the normal incidence. So what we can do?   
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The normal incidence case and the polarization which we take whether parallel or 

perpendicular does not matter because when this angle becomes equal to 0 the electric 

field will be either this or lying in the plane of the paper. But they will be a perpendicular 

to this direction. So I can change I can take either perpendicular polarization or parallel 

polarization I must get the same result. So let us say, take the expression which we got 

for the perpendicular polarization and from there if we substitute for theta i equal to 0. 

This we get from this expression if I put theta equal to 0 so theta t also will be 0. So for 

normal incidence we have theta i is equal to theta t is equal to 0 and then the reflection 

coefficient gamma as we see that it should be same whether its parallel perpendicular.  

 

So we just simply say if the reflection coefficient gamma for this that will be equal to 

your eta 2 minus eta 1 divided by eta 2 plus eta 1 and tau will be 2 times eta 2 divided by 

eta 2 plus eta 1. So that will give me eta 2 minus eta 1 divided by eta 2 plus eta 1 and 

transmission coefficient that is tau will be equal to 2 times eta 2 divided by eta 2 plus eta 

1. And the case of normal incidence is this is your dielectric interface this is your 

incidence wave these the reflected wave and this is a transmitted. So this is incident this 

is reflected and this is transmitted. So this case now essentially as become like a 1 

18 
 



dimensional propagation the electric and magnetic fields the waves are like that. So 

amplitude of electric and magnetic fields are not varying in this plane anymore it has only 

variation which is in z direction. So the fields are this could simply correspond to one 

dimensional propagation in z direction.  

 

That means this case is very identical to a transmission line case which was 1 

dimensional case the wave you should travel along the transmission line. And you are not 

worried about what is the variation of the fields’ perpendicular to the transmission line 

precisely same thing we are talking about here that perpendicular to the direction in 

which this wave is traveling there is no field variation and the problem essentially is a 1 

dimensional problem which is identical to the transmission line problem. If I say this 

medium which is semi infinite and which is characterize by an impedance eta 1 this 

medium which is again semi-infinite. See if I see in this direction I will see an impedance 

is characteristic impedance which is beta 2. So if I look rightwards beyond the boundary I 

see an infinite medium ahead and therefore the impedance seen will be equal to the 

intrinsic impedance which is eta 2. If I see in this direction again I see infinite medium I 

see an impedance which is equal to the intrinsic impedance of the medium which is eta 1.  

 

So that means this case is similar to as if I have 2 transmission lines of characteristic 

impedance eta 1 and eta 2. And when the wave incident from here this is equivalent to 

that you have a line which is terminated in an impedance which is eta 2. Because this is 

the infinite medium, so you see the impedance equal to characteristic impedance you get 

the reflection coefficient on this line which is eta 2 minus eta 1 divided by eta 2 plus eta 

1. That is what essentially this quantity. So the normal incidence case which is the special 

case for any oblique incidence in the dielectric interface is a identical case to the 

transmission line. So when we are dealing with the transmission line in fact we were 

handling 1 of the special cases of this reflection and refraction at the interface, also theirs 

in the transmission line was terminated at this point beyond the load the line was not 

existing the power was getting lost into this impedance which are located at this location.  
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But now when we are having a media like this then either we can say that the power this 

is equivalent to having impedance at the interface the power is lost there. But the power 

is actually not lost at that location the power is actually gone into the second medium. So 

equivalently I can say this is like a transmission line but the transmission coefficient in 

this case we save the power which is gone into beyond this point which was beyond the 

load point which was not their on transmission line. But the 2 are equivalent so if I 

calculate what is the power loss at this boundary. This will be exactly same as what I 

would have got a power loss into the impedance which is terminating the transmission 

line. So this case the normal incidence case is the 1 of the special situations of the oblique 

incidence and then 1 can find out the reflection and the transmission coefficient for this. 

A quick look at as I mention if I take 2 polarizations as a parallel or perpendicular I must 

get the same reflection coefficient.  
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But if I go here which is for the parallel polarization and if I substitute theta i equal to 0 

and theta t equal to 0. I get a reflection coefficient gamma parallel which is eta 1 minus 

eta 2 upon eta 1 plus eta 2. One would than wonder if I said by when theta goes to 0 2 

cases should become identical why the reflection coefficients are opposite of each other. 
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Here is eta 2 minus eta 1, this is eta 1 minus eta 2 and the reason for this is the convention 

which you are taken for the electric field when we define the direction for the electric 

field. For perpendicular case these 2 electric field where in the same direction we taken 

plus y oriented. So we had a reflection coefficient which is eta 2 minus eta 1. Whereas if 

you go to parallel polarization the electric fields are in this direction when theta goes to 0 

the Ei and Er they are opposite direction.  

 

So basically the sign the negative sign which appears in the expression for when you use 

for parallel polarization is due to the fact that we have already taken the electric field 

which is oriented in the opposite direction and theta i goes to 0. So the negative sign 

essentially accounts for it. What that means is that when you are having a normal 

incident, the reflection coefficient in general essentially can be written like that with the 

assumption the initial electric field are oriented in the same direction. So if eta 1 is 

greater than eta 2 you will have a phase reversal in the reflected field compare to the 

incident field. And if eta 2 is greater than eta 1 then there will not any phase reversal of 

the reflected wave when the wave is incident on a dielectric boundary. So what we see 

something important here. 

 

 Now that independent of what are the medium parameters and the angle of incidence the 

reflection in transmission coefficient all real quantities. That means there could be a 

direction reversal for the electric and magnetic fields. But there is no arbitrary phase 

change either in a transmitted wave or in the reflected wave. These cases are the simple 

reflection and refraction cases when you meet next Time: you will consider the special 

case where there is a possibility of getting a phase change which is not 0 or pi. And that 

will be 1 of the special cases of these oblique incidences. So will continue with this and 

we will discuss the oblique incidence case in the next lecture where there could be a 

possibility of arbitrary phase change at the reflection at the differences.     
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