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Welcome, in the earlier lectures we have seen that the time varying electric and magnetic 

field constitute a wave phenomena. Obviously then this wave requires some power or 

energy to flow with it. In this lecture essentially we investigate the power flow associated 

with an electromagnetic wave. We will do some derivation starting from the basic 

Maxwell’s equation and then ultimately point out how much will be the power flow 

associated with electric and magnetic fields. 

 

Till now we have investigated a uniform plane wave which is a wave propagation in a 

unbound medium. However, when we are developing this power flow calculations 

associated with electromagnetic waves we will do the general analysis and not restricted 

to the uniform plane waves. Of course at the end of the discussion we will find out how 

much is the power flow associated with the uniform plane waves which we have 

discussed in the last two lectures. 

 

So when ever we have beginning of analysis in electromagnetic essentially we go back to 

the Maxwell’s equations and find the answers which is consistent with the Maxwell’s 

equations. The same thing we do here again where we ask the question if you go back to 

the Maxwell’s equations what answer I get for the power flow associated with 

electromagnetic fields. So in this lecture we are going to do the power flow associated 

with an electromagnetic wave. 
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Now going to the Maxwell’s equations and essentially the curl equations we have in 

general the 
t

∂Β
∇×Ε = −

∂
 that is if I assume the permeability of the medium is not a 

function of time I can take μ out and this can be written as -μ H
t

∂
∂

 and the second 

equation which will be DJ +
t

∂
∇×Η =

∂
 where they are writing D in terms of the electric 

field and again assuming that the permeability of the medium is not a function of time so  

this can be written as J +
t

ε ∂Ε
∂

. 

 

So again we start with these two basic equations and then try to investigate the power 

flow associated with electric and magnetic fields.  



(Refer Slide Time: 04:20 min)  

 

 
 

Here essentially we make use of the vector identities and then try to find out meaning to 

some of the terms which I am going to get in the expansion of the vector identity. So let 

me just take the vector identity which is ( )C∇⋅ Α×  = ( ) ( )C C⋅ ∇×Α −Α⋅ ∇×  where A 

and C are some two arbitrary vectors. So if I have any two arbitrary vectors A and C we 

have this vector identity for these two vectors. Now what we can do is let us say this 

vector Α  is the electric field and this vector C  is the magnetic field so substituting for A 

as E and C as H essentially the vector identity for these two vectors the electric and the 

magnetic field can be written as ( ) ( ) ( )E H  = E E H∇⋅ × Η ⋅ ∇× − ⋅ ∇×  and we can 

substitute for E∇×  from this equation and for H∇×  from this equation.  

  

So from here I can get this quantity as H E J +
t t

µ ε
 ∂  ∂Ε 

Η ⋅ − − ⋅   ∂ ∂  
. 
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I can rewrite for the two arbitrary vectors A and C, again if I take a time derivative of  

( )A C
t
∂

⋅
∂

 where A  and C  are some two vectors. This is nothing but C AA  + C
t t

∂ ∂
∂ ∂

 so 

this is true for any two arbitrary vectors A and C. 

  

If I take both the vectors A vectors then I can get ( )A A
t
∂

⋅
∂

 = A AA  + A
t t

∂ ∂
∂ ∂

 so that 

quantity is nothing but 2 AA
t

∂
∂

.  

 

So from here essentially we get AA
t

∂
∂

 = 1
2 ( )A A

t
∂

⋅
∂

 which is nothing but mod of A2 so 

this is 
21 | A|

2 t
∂
∂

.  
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So we can make use of this relation for simplifying this. Essentially if I take this μ out 

this is H
t

 ∂
Η ⋅ ∂ 

 just a quantity which is similar to this, similarly if I take this then this 

will be E
t

 ∂Ε 
⋅ ∂ 

 so I can substitute from this into this equation and I get the equation as 

( )E H∇⋅ ×  that is equal to from here I am substituting AA
t

∂
∂

 which is 
21 | A|

2 t
∂
∂

 so this 

will become 
21 | |

2 t
∂ Η
∂

 so this will become 
2| |

2 t
µ ∂ Η

−
∂

 and we can have the second term 

as this which is − E
t

 ∂Ε 
⋅ ∂ 

 so that will become 
2| |

2 t
ε ∂ Ε

−
∂

  and then finally we can have 

this term E J− ⋅ .  
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Up till now we started with Maxwell’s equations which we have point relations that 

means these equations are valid at every point in space. This relationship which we have 

got here is essentially a point relationship so any point in the space essentially this 

condition is satisfied. In general, if I am having a medium which is having a finite 

conductivity that gives the conduction current density J and if I am having medium which 

is not varying at a function of time then in general the electric and magnetic fields 

satisfies these equations. 

 

Now what we can do is we can integrate this quantity over a closed surface or a volume 

and then we will have some meaning associated with these quantities. So let us say if I 

integrate this over a volume I can get this because this is a triple integral integrated over a 

volume ( )
v

E H  dv∇⋅ ×∫ = 
2 2

v v

| | | |dv dv E J
2 2t t
µ ε∂ Η ∂ Ε

− − − − ⋅
∂ ∂∫ ∫ ∫ .  

 

Again assuming that this volume is not varying as a function of time that means the fields 

are only time varying but the space is not varying as a function of time we can 



interchange this 
t
∂
∂

with the integration so we can take this 
t
∂
∂

 out of the integration sign 

and the same thing I can do here also. And I can apply divergence theorem on this left 

side to change the volume integral to the surface integral. 
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So this gives the left side then becomes the surface integral over a closed surface that will 

be ( )E H da× ⋅∫  that is the application of divergence theorem so this thing now the 

volume integral is converted to the surface integral by using divergence theorem and 

interchanging the sign for the time derivative and the integral sign we get - 2

v

| | dv
2t
µ∂

Η
∂ ∫  

this is on closed surface again 2

v v

| | dv E Jdv
2t
ε∂

− Ε − − ⋅
∂ ∫ ∫ . 
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I can substitute for J = σ E  so this term here if I look at and if I substitute for J = σ then 

this term will become σ |E|2. 

 

Now if I look at this quantity and here this quantity essentially gives me the density of the 

magnetic energy stored in this volume, this quantity tells me the electric energy stored in 

the volume. So this is basically the electric energy density, this is the magnetic energy 

density integrated over the volume gives me the total energy stored in this volume v due 

to magnetic field, this is the total energy stored in this volume due to electric field so 
t
∂
∂

 

of this quantity essentially gives me the rate of change of the magnetic energy stored in 

that volume, similarly this term gives me the rate of change of the electric energy stored 

in that volume. Also the negative sign shows that the rate of change is negative that 

means there is a decrease in the energy as a function of time. So this quantity essentially 

tells me the rate of decrease of the magnetic energy stored in that volume v, this quantity 

tells me the rate of decrease of electric energy stored in that volume v. 

 



By substituting J = σ E  this quantity essentially tells you the Ohmic laws into the 

medium. So what we find is here the first term tells me the rate of decrease of magnetic 

energy in that volume, this quantity tells me the power loss taking place in that volume 

because of the finite conductivity of the medium. 

  

So if you have a total energy includes in a surface this power loss total must be equal to 

the energy which is equal to essentially leaving in that box. So if I take this volume v 

which is having a corresponding surface area s since there is no other mechanism of 

consuming energy from the conservation of energy essentially we get that this quantity 

must represent the flow of energy coming from the surface or rate of flow of energy 

coming from the surface.  

 

So from here what essentially we see is this quantity the surface integral for E×Η tells 

you the net power flow from a closed surface. Then from here this quantity has represents 

( )E  da
s

×Η ⋅∫  is net power flow from a closed surface.  
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So essentially we find a very important thing that by doing simple vector manipulations 

as we have done started with vector identity substituted the Maxwell’s equations in the 

vector identity and from there we find something interesting that this surface integral of 

E×Η  over a closed surface gives me the net power flow associated with this electric and 

magnetic field. This statement is called the Poynting Theorem.  
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So the Poynting theorem says that for the electric and magnetic fields if I take the cross 

product of that and integrate over a closed surface that gives me the total power flow 

from that closed surface. 

  

Now if this is the quantity which is representing the total power flow then we can say this 

quantity E×Η is essentially the power density or power flow density on the surface of 

this closed surface. So when we integrate this power density over the surface area then 

that gives me the total power flow from the surface. However we should keep in mind 

just saying that this whole integral is giving me net power flow that is why this quantity 

should gives me the power density at every point on the surface of the sphere is a 

arbitrary definition. 



 The Poynting Theorem does not say that this quantity is representing the power density 

or the power flow per unit area at every point on the surface of this volume. what I am 

telling you is that the total power coming out of this is equal to this quantity. So this 

quantity E×Η  is a power density and that is true at every point on the surface of the 

sphere is a arbitrary definition of the power density which we take from here. It so 

happens in most of the practical situations this arbitrary definition gives you the power 

density correctly. However if you ask rigorously whether knowing this quantity should be 

said as this is representing power density at every point on the surface of this volume, this 

statement is not correct. 

  

In fact there may be special methodological phases where this argument will fail that if 

you have E×Η  at some particular point it may give you a power flow where there is 

actually no power flow. So while using this quantity as the power density one has to be 

little careful. However, in most of the practical situations as I mentioned this arbitrary 

definition that E×Η  gives me the power flow density at particular location that normally 

is valid.  

Now essentially what the important thing that we get is a Power Flow Density and let me 

call that quantity as some p  which is a vector and that is equal to E×Η . Then we call 

this quantity p  as the Poynting vector for these fields or for this so this quantity is called 

the Poynting vector.  

 

So Poynting vector is a very important concept in the electromagnetic waves because it 

tells you what the density of the power flow at a particular point in the space is and also it 

tells you in which direction the power is flowing. We know this quantity is a vector 

quantity so first thing we note here is if you have electric and magnetic fields then the 

Poynting vector is in a direction perpendicular to both of electric and magnetic fields 

because we have this cross product that means this vector p  is perpendicular to both of 

these vectors. 

  



So firstly if this quantity has to be non zero if there is a power flow. Now first thing we 

note here is that E×Η  should not be parallel to each other. If you have E×Η  electric 

and magnetic fields parallel to each other then the cross product will be identically zero 

and there will not be any power flow associated with this. So only the component of 

electric and magnetic field which are perpendicular to each other they contribute to the 

power flow and the direction of power flow is perpendicular to both the electric and 

magnetic fields or in other words that will have a power flow in the due to the fields the E 

and H must cross each other. When ever there is a crossing of E and H there is a 

possibility of power flow and this is the word possibility here because this quantity 

essentially is telling you the so called the instantaneous power if I know the value of E 

and H at some instant of time at some point in space I can always find this cross product 

at that instant of time and I will get a number this quantity p  which will give me the 

Poynting vector at that instant of time. This is possible that even if there is a p  which is 

finite at some instant of time there may not be any net power flow over long time periods 

that means if I say in time average sense there may not be any power flow associated 

with the system. 
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So Poynting vector which we define as E×Η  serve the purpose of defining the power 

flow but if I seen a practical system probably more useful quantity will be time average 

value of this Poynting vector because if I take some instant of time first of all this 

quantity one by one negative so if I say this is telling you power it may even give me the 

power which is negative. Of course when we are dealing with the space we can say 

negative power means the direction of the power flow which is changed but all those 

complications will come if I use simply the E×Η  and get the value of p  because p  can 

go positive negative also depending upon the time phases between E and H even this 

quantity can go as the complex point. 

  

So what we do is we essentially try to get the time average value of the Poynting vector 

and that is what more meaningful quantity for finding out whether there is a net flow of 

power associated with the electric and magnetic fields. As we have seen earlier in our 

analysis essentially we are interested only in time harmonic fields. So we will do the 

analysis for time harmonic fields here. So again we assume that the electric and magnetic 

fields are varying sinusoidally as a function of time, only thing they can have is phase 

difference between them the temporal phase difference. And then we can ask the general 

question what would be the average power flow or the Poynting Vector associated with 

those electric and magnetic fields. 

  

Now let us define the general time varying fields for electric and magnetic fields which 

could be varying as a function of space and time. Let us say at some point in space I have 

the electric field Ε  which is having some magnitude 0E  and is having a variation ejωt and 

let us say it has some phase which is given as e so this quantity is having some phase j 

times eφ .  

  

Similarly I can have a magnetic field H  which is oriented in some direction so it having 

a magnitude H  in some arbitrary direction but it is having the same frequency so it is ejωt 

but it may have a time phase which could be different so this is hφ .  

 



What we can do is we can just take out this vector associated with this as a unit vector 

and just write down this quantity only as the magnitude of the electric field, the 

magnitude of the magnetic field. If I take the instantaneous values of the electric and the 

magnetic field then I can get the instantaneous values of the fields as E at some instant of 

time which will be the real part of this quantity and as I have mentioned I can take the 

unit vector out of this I can keep only the magnitude so this will be the magnitude which 

is 0Ε  ejωt je eφ  multiplied by the unit vector which is ê  where ê  gives me the unit vector 

in the direction of this electric field.  
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Similarly I can get the instantaneous value of the magnetic field at some time t which will 

be the real part of again I will do the same thing I will take the magnitude of this 

magnetic field H0 ejωt je hφ phase of the magnetic field multiplied by the unit vector which 

is the ̂  direction.  

 

So ê  and ̂  essentially gives me the vectors in the direction of electric and magnetic 

fields and eφ  and hφ  will give the phase of electric and the magnetic fields respectively. 



And 0Ε  and H0 are the amplitudes of the electric field at peak amplitudes associated with 

this. So if I take real part of this quantity that gives me the instantaneous value of the 

electric field and the instantaneous value of the magnetic field.  
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Once I know this quantity then I can find out at that instant of time the Poynting vector 

which essentially is taking E×Η . So before that if I just separate out the real part of this 

from here we get the instantaneous value ( )E t  which will be real part of this quantity so 

that is equal to E0 cos(ωt + eφ ) multiplied by the unit vector ê . And ( )H t  will be H0 

cos(ωt + hφ )  multiplied by the unit vector ̂ . 
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Once we know these vector quantities at that instant time of t then we can calculate now 

the Poynting vector and that gives me the Power Flow Density at that instant of time t. So 

from here we can get the Poynting vector p  which is E×Η , I just take product of these 

so that is equal to E0 H0 cos(ωt + eφ ) cos(ωt + hφ ){ }ˆê× . 
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So this quantity is the scalar quantity and you have the cross product which essentially is 

the cross product of the unit vectors, I can simplify this so this gives me essentially 

{ }( )0 0E H ˆˆcos( ) + cos(2 t )
2 e h e h eφ φ ω φ φ− + + × . 
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 Now this is the instantaneous value of the Poynting vector and as we mentioned we are 

now interested in finding out what is the average value of the density or what is the 

average value of this Poynting vector. So we can take a time average of this over a period 

of this signal, if I integrate this power density over one period or one cycle so essentially 

we get the average power density associated with this but this quantity will go to zero 

over that one period.  

 

So, essentially this is corresponding to a waveform which is having a frequency of 2f or 

angular frequency 2ω. So over a period corresponding to ω this quantity will identically 

go to zero so if I take the time average of this quantity which is 
T

average
0

1P P
T

dt= ∫  where T 

is the time period associated with this angular frequency ω so T = 2π
ω

 then I get the 



average Poynting vector and in that this quantity will essentially goes to zero. So I get the 

average value of the Poynting Vector ( )
T

0 0
average

0

E H1 ˆˆP cos( ) dt 
T 2 e h eφ φ= − ×∫  .  

 

So now the average Poynting vector is the average value of this quantity and you have a 

cross product of the unit vectors of the electric and the magnetic fields. Now this quantity 

is not a function of time this is constant so this can be taken out. So the integral will be 

1
T

 integral zero to T dt which is nothing but equal to one.  

 

So now we have averageP  = 0 0E H cos( )
2 e hφ φ−  and this cross product of unit vectors ê  and 

̂ . we can do little more algebraic manipulation to write again back the electric and the 

magnetic fields in the vector form. So what we can do is this quantity now can be written 

as 1
2

 Re{[E0 j t j ˆe e eω φ+ ][H0 -j t-j ˆe hω φ  ]}. 

 

So what we have done is we have added this quantity ejωt and e-jωt in the expression if you 

see here this will be E0 H0 these are scalar quantities, we will have cross product of E and 

H which is this and if I take the real part of this quantity je eφ  multiplied by -je hφ  will give 

me the cos( )e hφ φ− . 
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Now if I take this negative sign here this quantity is the scalar quantity so you can write 

this also like the real part of this quantity which is [E0
j t j ˆe e eω φ+ ]× [H0 j t j ˆe hω φ+  ]. So the 

conjugate of this quantity will be a scalar quantity real quantity so complex quantity is 

only this j t je hω φ+  so if I take the conjugate of this essentially this represents this quantity. 

But this quantity is the original magnetic field which we have defined in the vector form, 

similarly this is the quantity is the original electric field which we define in the vector 

form. So essentially we have this quantity here the electric field is zero j t je eω φ+  multiplied 

by unit vector, same is true for magnetic field here.  
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So this quantity is nothing but electric field and this is the magnetic field so this is half 

real part of E H∗×  which is the average Poynting vector. So if I know the electric and 

magnetic fields in the complex form that means the electric and the magnetic field may 

not be in time phase all the time then in general we can just calculate this cross product of 

E H∗×  and real part of that the half vector is essentially because of the rms value we get 

in the signals since the signals are time varying sinusoidally essentially this is the rms 

factor so now this gives me the average power flow which will be associated with that 

electromagnetic wave. 
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Now this quantity is the real quantity as we are taking a real function of this so all those 

problems which we had with the instantaneous power flow could either become complex 

depending upon the phase difference between them and all those have been taken care of 

and also it tells me the overall power flow which is associated with this fields at a 

particular location. So it is possible at a particular location the instantaneous Poynting 

vector might be negative or positive but when you calculate the average Poynting vector 

then that will be always positive and that will give me the net power flow which will be 

associated with those electric and magnetic fields. So this is the concept which is very 

regularly used in finding out the average power flow associated with an electromagnetic 

wave. 

  

Again now there are two things are essential to have the average power flow, one is the 

electric and the magnetic fields must have a component perpendicular to each other then 

only you will have a cross product which is non zero and at the same time the electric and 

magnetic fields should not be in time quadrature that means the phase difference between 

the electric field and magnetic fields should not be 90˚ because if it is 90˚ then the real 



part of this quantity will be zero and then you will not have any real power flow 

associated with that one. 

  

So in general it is possible if you take the electric and magnetic fields you will have the 

complex power the real part of that quantity gives me the net power flow at that location 

but the imaginary part of that quantity E H∗×  gives me the power which is oscillating 

around that point so some instant of time the power might be going in certain direction if 

you see after some time the power will be essentially coming back in the same direction. 

So the imaginary part of E H∗×  gives me some kind of a oscillating power which you 

call as a reactive power whereas the real part of E H∗×  gives me the net power flow or 

the resistive power flow at a particular location.  

This concept of Poynting vector and the average Poynting Vector is the very important 

concept because by using this concept we can calculate the net power flow at a particular 

location. One can then apply this concept to the case of the uniform plane wave. So we 

can ask if you are having a uniform plane wave then how much power density the 

uniform plane wave carries when it travels in the medium. We have seen for uniform 

plane waves first of all the electric and magnetic fields are perpendicular to each other so 

if I take a uniform plane wave then the electric field the magnetic fields are perpendicular 

to each other and then let us say this is electric field E , this is the magnetic field which is 

H  and the power will be flowing in this direction which is the cross product of these two. 

So this is the direction of the Poynting Vector avP .  
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Again we can apply the right hand rule to find out whether the power will be flowing in 

this direction or will be flowing in this direction. Since we are taking the cross product of 

E and H again we point the fingers in the direction of E to H and the thumb should be in 

the direction of the cross product which is the direction of this. This direction is same as 

the direction of the wave propagation also because we have talked about uniform plane 

wave E and H and the direction of the wave propagation essentially form the three 

coordinate axis in the same sequence that means if I go from E to H my fingers point 

from E to H the thumb should go to the direction of the wave propagation. So we 

correctly get the direction of the average Poynting vector which is the same as the wave 

propagation.  

 

Secondly, now if I say the electric field is some magnitude E0 and is having a phase 

variation which is e–jβ let us say the wave is traveling in z direction so this is the z 

direction e–jβz and E can be oriented let us say x direction then H will be oriented in y 

direction so I can say this is oriented in x. Then the magnetic field H will be oriented in y 

direction since it has a magnitude H0 e-jβz orientation is the y direction. 
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So the average Poynting vector associated with this avP  is equal to the half real part of 

E H∗× , now the cross product of x and y will give my direction z so this average 

Poynting vector is in z direction so this is half of real part of this conjugate so essentially 

that will become E0H0 so this will give me E0 H0 in the direction ẑ . 

 

In general if I assume this quantity could be complex quantity I can put still even the 

conjugate sign at this. So for a uniform plane wave the average Poynting vector will be 

half of *
0 0E H×  and the direction of this will be z, if you say the electric field was 

oriented in the x direction and the magnetic field was oriented in y direction. 

  

Now we can take specific cases for the unbound medium as the uniform plane wave is 

propagating we can take first the medium which is dielectric medium. Now for a 

dielectric medium or in general if I take a unbound medium first of all we know there is a 

relationship between these two quantities E and H that is the magnitude of the electric 

and magnetic fields are related to what is called the intrinsic impedance of the medium. 

So I also have a relation for a uniform plane wave having electric and magnetic field and 

that is equal to η which is Intrinsic Impedance. 
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So I can substitute for the magnetic field from here that will be E upon η or I can 

substitute for electric field which is H times η. So I get the average Poynting vector avP  = 

0
0

E1 ˆE
2

z
η

∗
 
 
 

 or if I write in terms of the magnetic field this will also be 1
2

*
0 0 ˆH H z . 

 

Now E0 *
0E  is mod 2

0E  so this is equal to 
2

0E1 ˆ
2

z
η∗  or of course if I am putting the 

conjugate here I must put the real part of that so this is real part of this quantity, the same 

thing you have to put here this is the real part so this is again { }2
0

1 ˆRe H
2

zη . 

 

So from here essentially we can find out what is the average power flow associated with 

the uniform electromagnetic wave in an unbound medium.  



(Refer Slide Time: 49:38 min)  

 

 
 

Now if I take a dielectric medium an ideal dielectric medium that means there is no 

conductivity in this medium for which we know that µη
ε

= .  

 

So this quantity is a real quantity for an ideal dielectric medium so this quantity 

essentially the η* since this is a real quantity the same is η so in this case the average 

power density avP  will be equal to 
2

0|E |1
2 η

 and that will also be equal to 2
0

1 |H |
2
η . 



(Refer Slide Time: 50:38 min) 

 

 
 

So in a dielectric medium if I know the magnitude of the electric field or this is the peak 

amplitude of the electric field and I know the permittivity and the permeability of the 

medium then I can find out the Intrinsic Impedance of the medium, this quantity is real. 

So just by knowing the amplitude of the electric field I can get the power flow density 

associated with this uniform plane wave. 

  

In general if this medium is having a conductivity which is neither zero nor very large 

which is like a conductor then we have to really go through this expression to find out 

what is the net power flow associated with it. However we can take an extreme case that 

is if you have a good conductor then we know that the Intrinsic Impedance of this 

medium is approximately equal to 2j
2 2
ωµ ωµ
σ σ

+   which we have already seen.  

 

So if I take this Intrinsic Impedance and substitute in this expression here then I can get 

the average power flow density avP  will be equal to 2
0

1 |E |
2 2

ση
ωµ

. 
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So essentially by using the concept of average Poynting Vector we can find out the power 

flow in any medium and at any particular location in space. In case of the dielectric the 

calculation is very straight forward because the intrinsic impedance of the medium is real 

whereas when we go to the medium which is like a good conductor or in general medium 

where conductivity is finite then one has to go to the more general expression of finding 

out the average power flow associated with electric and the magnetic fields. 

 

Thank you.   

 


