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Lecture – 19 

Maxwell’s Equations 
 

In the last lecture we got the mathematical formulation of the physical laws of 

electromagnetics that were the Gauss’ law, Ampere’s circuit law and Faraday’s law of 

electromagnetic induction. The compilation of these physical laws in mathematical form 

is called the Maxwell’s equations. So Maxwell essentially compiled these laws, gave the 

mathematical representation; however, while doing this we found a difficulty. He found 

there was inconsistency in the Ampere’s circuit law. Let us understand what was the 

difficulty which was encountered by Maxwell while compiling these equations.  

 

So let us consider a closed surface of certain volume let us say V and let us say these are 

charge distributed inside this surface then there is a possibility that the charges might 

leave this surface and when the charges will leave there will be a rate of change of charge  

so there will be current flow from this surface. So we will have a current density 

distributed on the surface and whatever charges will be leaving in the form of current that 

should be reflected in the reduction of the net charge inside this surface. 

  

So let us say we have the conduction current density on the surface which is given by J, 

then as we saw from the concept of divergence that if you take this vector field J the 

divergence if J essentially is a net flux coming out of this volume. So if I just take a 

divergence of J that essentially should represent like the outflow of this vector field 

which is the conduction current density. Before getting into that let us say that I have a 

small infinitesimal area on this surface which if given by da. So, if I take the dot product 

of conduction current density and the area that gives me the outward current from this 

infinitesimally small area and if I integrate that over the entire surface I get the net 

outward current from this surface.  



So I have here from this surface the net outward current which is nothing but integrated 

over the closed surface let us say the surface is S, the conduction current density over that 

infinitesimal area. So this integral as we saw earlier also that it represents the total current 

coming out of this surface. As we know the current is nothing but the rate of change of 

charge and since this current is coming outwards from the surface it should be equal to 

the rate of charge from this volume and since the current is coming outwards the net 

charge must be decreasing inside this volume. 

 

(Refer Slide Time 05:03)  

 
 

So if I say that this volume is having a charge density which is given as rho and this is the 

conduction current density then the net decrease or rate of decrease of charge inside this 

volume must be same as the total current which is coming from this surface. So if I have 

the charge density rho then the total charge enclosed by this surface will be the integral of 

rho over the volume. So if I take now then rate of decrease of charge rate of change of 

charge in the volume that quantity will be equal to minus d by dt for rate of change of the 

total charge enclosed in this volume so that is the integral rho into d. 
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What we are now saying these that, simple by definition of the current, that is the current 

leads the rate of change of charge, this net flow of the current from this surface that 

should be equal to the rate of change of charge from this is volume. So essentially from 

this we get that the closed surface integral over S, this is over volume J dot da that is 

equal to minus d by dt of integral over the volume rho into dv. 

 

If I say the volume is not changing with time as we assumed earlier we can change the 

charges are changing as a function of time, the volume is fixed, we can interchange the 

integral dt so that quantity that we can get as minus integral over the volume d rho by dt 

into dv. 

 

Now as we have done earlier we can convert this surface integral (Refer Slide Time: 

7:43) into the volume integral by applying the divergence theorem. So this thing by 

applying divergence theorem we can write as... from the divergence theorem or using 

divergence theorem we can get this integral as the volume integral V del dot J dv that is 

equal to minus the triple integral over the volume d rho by dt over the volume. 
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Now I can bring this term on this side and write the integral as the triple integral over the 

volume del dot J plus d rho by dt over the volume that should be equal to 0. And as we 

did in other equations, since this relation should be true for any arbitrary volume this 

quantity must be identically zero so the integrand must be identically zero so from here 

essentially we get that del dot J that is equal to minus d rho by dt; this equation is called 

the continuity equation. 

  

So if we have the time varying charges then this quantity is the finite quantity and then 

the divergence of the conduction current density is not zero; if we take a static case where 

the charges are not changing then the divergence of the conduction current density is 

identically zero.  
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And that makes physically sense because if you are saying the divergence of J as we saw 

earlier from the concept of divergence the divergence tells you the net quantity coming 

out of this volume and if the net current is coming out of this volume that means there 

must be... the net charges must be leaving this volume so there must be a change in the 

total charge or the charge density inside that volume. If the charges are not changing 

inside the volume then whatever charges are entering in the volume those charges must 

be leaving so the net charge inside the volume remains same and in that case the 

divergence of the conduction current density is equal to zero because there is no net flow 

from this volume for the current. 

  

So whenever we are having in general the time varying quantities the quantitative 

equation must be satisfied by the conduction current density and the charges. Precisely 

this was the equation which led to difficulties for compiling the other equation by 

Maxwell. Let us see what the problem is. 

  

We have seen earlier that from the Ampere circuit law we get an equation which is del 

cross h that is equal to J (Refer Slide Time: 11:16) so the curl of the magnetic field is 

equal to the conduction current density. If I simply apply the vector operation on this 



without getting into physical aspects we can simply say I can take the divergence of this 

equation on both sides so I can say divergence of curl of H is equal to divergence of J. So 

if I just take divergence I will get from this relation del dot del cross H that is equal to 

dell dot J. We know in the vector product we can interchange the sign dot and cross so 

this thing can be also written as: del cross del dot H equal to del dot J. 

 

(Refer Slide Time: 12:15) 

 
 

Now this quantity is identically zero so this quantity is identically zero. What that means 

is from the Ampere circuit law that the divergence of J is identically zero; that is a precise 

problem because it is inconsistent with the continuity equation.  
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The continuity equation says that the divergence of J has to be negative of rate of change 

of the volume charge density whereas the Ampere circuit law says that the divergence of 

J must be identically equal to 0. So basically the Ampere’s circuit law does not satisfy the 

continuity condition; precisely that was the difficulty which was encountered by Maxwell 

and He had difficulty by introducing the concept of what is called the displacement 

current density.  

 

So what He said is if I have this rho... and I go to one of the Maxwell’s equations and if I 

replace this rho from the Gauss’ law which says that the rho is the divergence of the 

displacement vector D so I can write this quantity as del dot D from the Gauss’ law. See 

if I substitute for the charge density rho from the Gauss’ law we have del dot D is equal 

to rho so I can substitute for rho in this equation so I get del dot J is equal to minus d by 

dt of del dot D interchanging the operators space operator and time operator this will be 

minus del of dot of dD by dt.  
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I can bring this thing on the left side and integrate over volume. This is del dot J plus del 

dot dD by dt dv that should be equal to 0. From here again I am using the divergence 

theorem; this thing can be written as over the surface A J plus dD by dt into da that 

should be equal to 0. What we are now saying that is that the current which is coming 

from this surface which we saw the closed surface is not only this current which is the 

conduction current but there is some quantity which is also having dimensions which are 

the current density dimensions. However, this is the rate of change of the electric 

displacement. 

  

So dimensionally if I look at this quantity this quantity is same as the current density. 

However, this quantity does not depend upon the conductivity of the medium. We have 

seen earlier that the conduction current density is related to the conductivity of the 

medium; from the Ohm’s law it is sigma into E; however, even if the conductivity of the 

medium is zero then we have a quantity which is rate of change of the displacement D 

and that quantity is equivalent to some current and since this is related to the 

displacement vector D we call this as the displacement current density. So this quantity 

(Refer Slide Time: 16:38) is the new quantity which was introduced to satisfy the 

continuity equations and that is called the displacement current density.  
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Once we say that then what we are saying is now the net current which we are talking 

about is not only the conduction current but it is the conduction current plus the 

displacement current. And then Maxwell said: if you incorporate this term appropriately 

for defining the total current then the Ampere’s law can be modified to say that the 

magneto motive force around a closed loop is equal to the total current enclosed by that 

loop which includes the conduction current as well as the displacement current. 

  

So earlier since this concept was not there the current was always meant by the flow of 

the charges. However, in this case there is no flow of charges that even if you... I do not 

have charges still I will get this quantity because this quantity D is related to the electric 

field. So, if I have an electric field which is time varying this term will be equivalent to a 

current flow. So this quantity which is simply representing the rate of change of electric 

field represents the quantity which is equivalent to current.  

 

So, if I take the total current which is a combination of the conduction current which is 

because of the moment of the charges and because of the time varying electric field, this 

total current is equal to the magneto motive force around the closed loop. And once you 

do that then this equation of the Ampere’s circuit law is modified because now this 



current is being changed to the conduction current density plus the displacement current 

density.  

 

So, once you get that then the Ampere’s law now has been modified is modified to del 

cross H that is equal to the conduction current density as we had earlier plus we are 

having now an additional term which is dD by dt. That essentially resolves the difficulties 

which were faced by Maxwell and now this gives you the complete description of the 

phenomena of electromagnetics.  

 

So essentially now the four equations which you have got: the Gauss’ law equation, the 

Gauss’ law equivalent applied to the magnetic fields for magnetic charges, the Faraday’s 

law of electromagnetic induction and the Ampere’s law appropriately modified to 

accommodate what is called the displacement current density makes the complete set of 

equations which represent the static and time varying electric and magnetic fields. So 

these equations are called the Maxwell’s equations. 

  

So as we mentioned earlier the Maxwell’s equations can be written in the differential 

form or they can be written in the integral form and depending upon the suitability the 

equations can be used either in differential form or they can be used in the integral form. 

So we finally write the four Maxwell’s equations. We can write this in two forms so we 

can get these equations in differential and integral form.  

  

So I write here the differential form or I can write this equation in the integral form. So if 

I go to the the first equation which is the Gauss’ law that gives you del dot D that is equal 

to rho. The same equation when written in the integral form it says that D dot da over the 

surface that is equal to the rho into dv. The second equation when applied to the magnetic 

charges that gives me del dot B is equal to 0 and that can be written in the integral form S 

B dot da that is equal to 0. 

  



The third equation which is Faraday’s law of electromagnetic induction that gives me del 

cross E that is equal to minus dB by dt and the integral form of it can be written as 

integral over the contour E dot dℓ that is equal to minus dB by dt dot da. 

 

And finally the Ampere’s law which we have got after introducing displacement current 

density that is del cross H will be equal to J plus dD by dt and the integral form the same 

thing is over this contour H dot dℓ that is equal to the total current enclosed so that is J 

plus dD by dt into da. 
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So now these are the set of equations which governs the total phenomena of 

electromagnetics for static as well as time varying fields. So once you have these 

generalized equations which are for time varying fields we can reduce the equation for 

the static fields that is by putting all time derivatives to zero; I will get the equations for 

the static, electric and magnetic fields. So depending upon whether the permittivity or the 

permeability of the medium is varying as a function of space that means if the medium is 

homogeneous I will use this equation, if the permittivity is constant in the function of 

space then I can write the same equation as we saw earlier; I can take epsilon now and I 

can say del dot E is equal to rho upon epsilon and so on. 



So you may have various forms of these equations depending upon the condition applied 

to the medium whether we are dealing with the electric fields, magnetic fields or we are 

dealing with the displacement vector and the magnetic flux densities and so on. And also 

as we said if we are talking about the static fields then the time derivative should be put 

identically to zero so this quantity will be zero for the static field, this quantity will be 

zero for the static fields. 

  

So if we consider the static fields then this quantity will be equal to zero so the curl of the 

electric field will be always equal to zero. So we will see depending upon application 

later on that we may put this quantity equal to zero if you are dealing with the static 

fields. However, in this particular course which is a course on electromagnetic waves we 

are dealing with the quantities which are time varying.  

 

The static fields you would have studied in the earlier course which is now 

electromagnetic fields. So here we assume that all the fields and all the quantities which 

we are dealing here they are time varying in general. So the quantity rho, the quantity B, 

the quantity D, J, H all these quantities are essentially time varying quantities. So we will 

look for the solution of these equations later for the time varying fields. 

 

Now as we mentioned earlier that this equation which is in differential form cannot be 

applied in a situation where medium has discontinuity. That means if we talk about the 

media interfaces where the medium property suddenly change the permittivity may 

change or permeability may change and there the derivatives the space derivatives cannot 

be defined because the medium is discontinuous so the differential form of this 

Maxwell’s equations is not useful in those situations. 

  

However, as we had mentioned, the integral form is always useful and this can be applied 

in a situation. However, when we apply the integral form to the discrete media interfaces 

we get a relationship between the quantities D B E H in the two media just across the 

interface and that relationship we call as the boundary condition. So the same set of 

equations when written in differential form they give you what is called point relation so 



these relations are valid at every point in space. The equation in integral form when 

applied to the discrete media interfaces they give you what is called the boundary 

conditions. 
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However, before we go into the boundary conditions let us introduce a concept of what is 

called the surface current and surface charges and the idea is as follows.  

 

Let us say I have a surface which is having let us say thickness some D so the thickness 

for this is D and let us say I have a charge density inside this slab which is given by rho; I 

have a charge density which is rho which as we saw is Coulomb per meter cube that is 

the density which you have, so all over these charges inside is distributed to this density. 

  

If I have considered an area which is unit area on the surface so let us say this length is 1, 

this is also 1; so if I consider a volume of unit area on the surface of the sheet the total 

charge which will be in this volume which is having a height of D and area 1 will be the 

charge density multiplied by the volume. So I have total charge in this area in unit area 

slab that will be equal to rho into the volume of this which is 1 into 1 into D so that is 



equal to d. So if the thickness is given then I can say if I see from the top that is the 

charge I am going to see which is: rho into D in this area which is 1 into 1. 
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Now let us see if I reduce the thickness of this lab and go to a limit when d tends to 0 and 

suppose the rho increases to infinitive when this thing happens when d tends to 0 so you 

will get a quantity when this is tending to infinity, this is tending to zero so the product of 

these two still might tend to a finite quantity. 

  

So if I have a situation where the volume charge density rho is infinity but the thickness 

to which this density is confined is zero I will see a net charge which is just on the 

surface because the charge is now confined to a thickness of zero width. So, since the 

thickness is zero the charge will be just lying on the surface and that charge now is in this 

area of unit area. So if I take this quantity rho into d and take a limit when d tends to zero, 

I get a quantity what is called a charge distributed on the surface and that density will be 

surface charge density. So the units for rho will be Coulomb per meter cube I am 

multiplying by this so I will get now a charge which is per unit area and this charge truly 

is confined to the surface of the sheet. So we say rho s is in the limit when d tends to 0 if I 

calculate this quantity rho into d that is what is called the surface charge density. 
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So the two things you should note here that if I go from this volume charge density rho to 

the surface charge density when d tends to 0 if two surface charge is there that is 

equivalent to the infinite volume charge density. If that infinite density is confined to zero 

thickness that gives me the distribution of charge truly on the surface and that is what is 

called surface charge density. So we have here what is called surface charge density and 

the unit for this will be Coulomb per meter square. So we have this quantity which will 

be Coulomb per meter square.  

 

So, later on we will see that in situation like conducting boundaries where the 

conductivity becomes infinite you might get the charge density which you... the volume 

charge density which will be infinite and these charges truly will be confined to the 

surface and that time this concept of surface charge density will be useful. So at the 

moment without getting into which media will give me surface charge density we can say 

principally we may have charges distributed truly on the surface within a zero thickness 

and that charge density we will call as a surface charge density. 
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A similar thing we can do for the current also. So let us say I have again this slab of 

thickness d and let us say this is carrying a current which is J. Now let us consider now 

like this (Refer Slide Time: 33:17) so the current which is slowing now in this will be this 

is let us say this is unity, this is unity so the total current which will be flowing through 

this will be J multiplied by the cross section of this which if I see from the f side the cross 

section will be d into 1 so the total current which I am going to see under this area that 

will be J into 1 into d that is a current which is confined to this.  

 

So, for the conduction current density J the current which will be flowing in the direction 

of J within the unit area on the surface will be J into d. So if I say this is the conduction 

current density I will say now the current under unit area on the surface that quantity will 

be equal to J into d into 1 which is the area of cross section is 1 into d so that will be the 

current which will be under this. 
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Now again if we make this d tending to 0 and if J goes to infinitive then again this 

product J into D will be a finite quantity so you will have a current which is truly flowing 

on the surface and that current we call as the surface current. So if I take a limit, so if I 

define what is called surface current density and that is given by J s that is equal to the 

limit when d tends to 0 J into d times d is not a dot product it is just the J multiplied by 

the area and direction of J s is same as the direction of J so this quantity will give me a 

current which is flowing on the surface.  

 

And again as I mentioned, this will be true provided this quantity of the conduction 

current density J is infinite then and then only when d goes to 0 this product will be finite 

and we will have the surface current density. This again will be applicable to the 

boundary which are conducting boundaries so when the conductivity of the medium 

becomes infinite that time the current which will be sigma times E for finite electric field 

will become infinite and then you will have what is called the surface current. 

  

Since the unit of the conduction current density is Ampere’s per meter square the unit for 

this will be the Ampere’s per meter square multiplied by d which is the length so the unit 

for J s will be Ampere’s per meter; that is the reason this quantity is also called linear 



surface current density because this is now as the per unit length you are defining this 

current. 
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So now we are having overall, the quantities like: the charge density which means 

volume charge density, we have a quantity like current density which means conduction 

current density, we have a quantity like displacement current density then we got surface 

charge density and then we have got the surface current density. So one may say these are 

the sources which are related to the fields which are the electric and magnetic fields. 

  

So in general then one can establish relationship between these quantities which we can 

call sources to the fields which are electric and magnetic fields and these relationships are 

called the boundary conditions. 
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Let us now solve some problems based on the Maxwell’s equations and also on the 

boundary conditions. So let us consider a very simple problem based on the Gauss’ law. 

So we see here the volume charge density inside the hollow sphere is given as the rho 

equal to 10 into e to the power minus 20r Coulombs per meter cube. Find the total charge 

enclosed within the sphere. Also find the electric flux density on the surface of the 

sphere. 

  

So, finding the total charge enclosed inside this sphere is very straightforward. So the 

total charge enclosed inside this sphere Q that will be equal to the integral over the 

volume of this sphere to rho into dv. If we write down this volume into the spherical 

coordinates this is equal to the phi going from 0 to 2pi, theta going from 0 to pi and then r 

which is the radius of the sphere which is 2 meters so it is going from r is equal to 0 to 2 

rho r square sin theta dr d theta d phi. 
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So if I substitute now for the charge density inside this and integrate over this volume 

essentially we can write down is the integral 0 to 2pi, there is a circular symmetry over 

phi, then we are having integral for theta which is going from 0 to phi sin theta d theta 

and then we have integral here which is from 0 to 2 so integral 0 to 2pi then we can 

substitute for rho from here that is 10 e to the power minus 20r into r square dr. This 

integral is very straightforward that will give me equal to 2pi. Similarly, the sin theta 

integral is also very straightforward, will be minus cos theta and if I substitute for the 

limits of theta and pi then I can get the total integral for this that will be equal to pi 

divided by 100 Coulomb. 

 

So the total charge enclosed inside the sphere of radius 2r this circular symmetry with the 

charge density which is given by this is pi upon 100 Coulombs. 

  

Now, to find out the electric flux density on the surface of the sphere essentially we can 

make use of the Gauss’ law which states that the total electric displacement from a closed 

surface is equal to the total charge enclosed by that surface. 

  



And in this case this surface is a spherical surface and if the charge is distributed in a 

spherically symmetric manner the electric displacement will be uniformly distributed on 

the surface of this sphere. If I consider this sphere like that the electric displacement will 

be uniform all across the sphere. 

  

So now we can find out the electric displacement on the surface of this sphere which is 

nothing but the total charge enclosed which is this charge Q which is pi upon 100. So if 

you want to find out what is the electric flux density on the surface of this sphere 

essentially we have 4pi r square where r is the radius of this sphere multiplied by the 

density is equal to the total charge enclosed which is Q which is equal to pi upon 100. 
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So from here we can calculate the electric for density on the surface of this sphere which 

is equal to Q upon 4pi r square and substituting for the value of Q which is pi upon 100 

and r equal to 2 meters we get electric flux density on the surface of this sphere equal to 

6.25 into 10 to the power minus 4 Coulomb per meter square. 
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So in this simple problem the electric charge density was given inside a spherical volume 

and we were to find out the total charge enclosed in that volume and also the electric flux 

density on the surface of this sphere. 

  

Let us consider another problem. Let us say now the problem is that the electric flux 

density is given as: D is equal to x cube x cap plus x square y z cap. 
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 So now the electric field or the electric displacement density is given in the vectorial 

form and you have to find the charge density inside a cube of side 2 meters placed 

centered at the origin with its side along the coordinate axes.  

 

So now we can apply the Gauss’ law in the differential form to find out first the charge 

density and once you get the charge density then we can find out the charge enclosed 

inside the cube. 

  

So firstly we can go... we know from the Gauss’ law that the del dot D is equal to the 

volume charge density rho. Expanding this in the Cartesian coordinate system we get d 

Dx by dx plus d Dy by dy plus d Dz by dz that is equal to the volume charge density in 

that region. Substituting now for the D which is given here where the x component of D 

is x cube, y component of D is 0 and z component of D is x square y. If I substitute this 

into the expression essentially we find that rho is equal to d by dx of x cube, the y 

component is 0 so this quantity is 0 plus d by dz of x square y. Even this quantity is 0 

(Refer Slide Time: 45:12) because d by dz of this quantity x square y will be 0 so 

essentially rho will be d by dx of x cube which is equal to 3 x square. 
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So now inside the volume of the cube the charge density essentially varies only as a 

function of x and the charge density is constant as a function of y and z. So now if I have 

a coordinate system a cube essentially is placed something like this (Refer Slide Time: 

45:50) around the center and then you want to find out what is the total charge enclosed 

inside this cubical volume. 

  

So you can get the total charge enclosed Q that will be integrating this charge density 

over the cubical volume that will be equal to minus 1 to 1 minus 1 to 1 minus 1 to 1 rho 

into dx to dy dz. Substituting for rho in this that will be minus 1 1 minus 1 to 1 minus 1 to 

1 3 x square dx dy dz which we can write this quantity integration versus vector y will 

give me 2 versus to z will give 2 so essentially we have here 12 minus 1 to 1 x square dx 

which is nothing but equal to 12 into 2 upon 3 which is equal to 8 Coulomb. 
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So, in this problem the electric displacement density was given in the vectorial form and 

by applying the same Gauss’ law in the differential form essentially we could find the 

total charge enclosed inside a volume. 
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Let us consider now a problem which is related to the magnetic fields. So let us say now 

the problem is in a conducting medium; the magnetic fields is given as H is equal to y 

square z x cap plus 2 into x plus 1 yz y cap minus x plus 1 z square z cap. Find the 

conduction current density at 0.20 minus 1 meters. Also find the current enclosed by a 

square loop which is defined by y equal to 1 x between 0 and 1 and z between 0 and 1. 

So, essentially this loop is lying in that x, z plane at a height of y equal to 1. So we have 

to find now the conduction current density at a point because of this magnetic field which 

is given in the space.       

 

So essentially we want to use the Ampere’s law in the differential form to find out the 

conduction current density. See if we go to the Ampere’s law we know that the Ampere’s 

law is given J is equal to del cross H. in the Cartesian if we expand this this curl operation 

that will be the determinant x y z d by dx d by dy d by dz and if I write down now the 

component of the magnetic field which are given here which is y square z 2 into x plus 1 

yz minus x plus 1 z square then you can get here y square z 2 into x plus 1 yz minus x 

plus 1 z square. And if I expand this essentially we get the conduction density in the 

vectorial form which will be minus 2 x plus 1 y x cap plus y square plus z square y cap.  



So at location 2, 0, minus 1 the conduction current density J will be equal to... if I 

substitute now x equal to 2 y equal to 0 and y equal to minus 1 the conduction current 

density will be 1.0 y cap. 

 

Once I know the conduction current density then I can go and find out what is the total 

current enclosed by the loop which is defined by y equal to 1 and x going from 0 to 1 and 

z going from 0 to 1. See if I look at this in the y z plane this is the... or xz plane this is z is 

going like that, x is going like that so x is going from 0 to 1, z is going from 0 to 1 and 

now the conduction current density is oriented in the y direction. So that means if I go by 

the right hand rule the z or the fingers if I point from z to x the thumb should point to the 

y direction so essentially the conduction current density within this is essentially given by 

that, the current is coming out of the plane of the paper. 
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So now the total current enclosed by this I that will be integral J dot ds which is nothing 

but the integral J dot y cap to dx dz. If I substitute now for the limits the x from 0 to 1, z 

goes from 0 to 1 and the current now will be only J y because dot product of J and y cap 

will be J y dx dz at y equal to 1. So substituting now for the conduction current density in 

this essentially we get this integral with the same limits 0 to 1 0 to 1 1 plus z square 



because we are substituting y equal to 1 in this dx dz. If I solve this integral I get the total 

current enclosed inside this loop which will be 4 upon 3 Amperes. 
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So in this case we are using the Ampere’s law the differential form. The magnetic field 

was given in the differential form. then by using the Ampere’s law in differential form we 

find out from the curl the conduction current density and once you know the conduction 

current density then we can find out by integrating over the area of the loop the total 

current enclosed by the loop. 

 

So these are some of the very simple problems which essentially give me some feel for 

how to apply in practical life the laws the physical laws like Gauss’ law or the Ampere 

law either in differential form or in integral form.    

 


